1
|
Ren Y, Lin FK, Meng JJ, Liu YQ, Li Y, Zhao WK, Zhao R, Zhu DR, Liu YM. Characterization of potential bioactive molecules in Fissistigma polyanthum using UPLC-ESI-QTOF-MS-based metabolomics integrated with chemometrics approaches. J Chromatogr A 2025; 1746:465804. [PMID: 40009970 DOI: 10.1016/j.chroma.2025.465804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Fissistigma polyanthum is a renowned medicinal plant traditionally used by over 10 ethnic groups in China to treat various ailments, including inflammation. However, research on its chemical composition and bioactivity remains limited. This study investigated the chemical profiles and biological activities across different parts of F. polyanthum, aiming to identify the bioactive molecules associated with anti-inflammatory and anti-Alzheimer's effects. To ensure accurate metabolite identification, an in-house Fissistigma compound library containing 654 chemicals was constructed and integrated with the Progenesis QI informatics platform. Using UPLC-ESI-QTOF-MS-based metabolomics, 97 compounds, including alkaloids, flavonoids and terpenoids, were identified, of which 86 were reported for the first time in this species. Heatmap analysis revealed significant content variations of these constituents across different plant parts: leaves were rich in flavonoids and terpenoids, while the root without bark was abundant in alkaloids. PCA and PLS-DA analyses confirmed significant metabolite differences among the plant parts, with 31 key differential compounds explaining the chemical variations. Comparative bioactivity assays showed that the root without bark exhibited strong anti-butyrylcholinesterase activity, with an IC50 value of 54.22 μg/mL, while the root bark and leaves demonstrated the strongest inhibition of NO production, with IC50 values of 62.64 and 71.85 μg/mL, respectively. The S-plot analysis further identified 25 potential bioactive compounds, primarily alkaloids and flavonoids, responsible for the observed bioactivities, including known anti-inflammatory and anti-Alzheimer's agents. These findings underscore the pharmaceutical potential of F. polyanthum and the effectiveness of integrating metabolomics and chemometrics to discover bioactive molecules in medicinal plants.
Collapse
Affiliation(s)
- Ying Ren
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Feng-Ke Lin
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jia-Jia Meng
- The Institute of Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yu-Qing Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yue Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wen-Kai Zhao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Rui Zhao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Dong-Rong Zhu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yu-Ming Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
2
|
Kumaree KK, Brimson JM, Verma K, Chuchawankul S, Tencomnao T, Prasansuklab A. Agarwood leaf ethanol extract provides neuroprotective properties and promotes cholinergic differentiation of HT22 hippocampal neurons. Sci Rep 2025; 15:10230. [PMID: 40133398 PMCID: PMC11937462 DOI: 10.1038/s41598-025-93462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Neurodegenerative diseases, characterized by the loss or damage of neurons, represent a growing global health concern. Plants are a rich source of naturally occurring compounds with immense therapeutic potential. Among them, Aquilaria crassna (commonly known as agarwood) is a precious fragrant plant extensively used in cosmetics, perfumes, and traditional Asian medicine. However, its neuroprotective role, particularly in neuroregeneration, has been minimally explored. This study aimed to investigate the therapeutic potential of agarwood leaves in promoting neuroregeneration, with a focus on cholinergic function and neural differentiation. To identify bioactive compounds, a comprehensive LC-MS analysis was conducted on agarwood ethanolic extract (AWE). The phytochemicals detected were further evaluated using in silico methods to predict their interaction with receptor proteins linked to neurodegenerative diseases. Virtual screening revealed that several compounds in AWE exhibited strong binding affinities to receptors such as sigma-1, TrkB, Nogo-66, and p75NTR, providing insights into the potential mechanisms underlying its neuroprotective effects. The in-silico findings were validated through in vitro experiments using HT-22 mouse hippocampal cells as a model. AWE treatment led to a dose-dependent increase in the expression of marker proteins associated with neural differentiation and regeneration, including neuronal nuclei (NeuN), growth-associated protein 43 (GAP43), synaptophysin (Syn), brain-derived neurotrophic factor (BDNF), and the sigma-1 receptor. Additionally, AWE enhanced the expression of specific markers for cholinergic neurons, demonstrating its influence on neuronal development and synaptic function. These findings provide compelling evidence of AWE's neuroprotective properties, highlighting its potential as a therapeutic agent for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kishoree K Kumaree
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Natural Products for Neuroprotection and Anti-ageing (Neur-Age NatChula), Chulalongkorn University, Bangkok, 10330, Thailand
| | - James M Brimson
- Center of Excellence on Natural Products for Neuroprotection and Anti-ageing (Neur-Age NatChula), Chulalongkorn University, Bangkok, 10330, Thailand
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanika Verma
- Center of Excellence on Natural Products for Neuroprotection and Anti-ageing (Neur-Age NatChula), Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tewin Tencomnao
- Center of Excellence on Natural Products for Neuroprotection and Anti-ageing (Neur-Age NatChula), Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence on Natural Products for Neuroprotection and Anti-ageing (Neur-Age NatChula), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Dhungel J, Shyaula SL, Faizan M, Rathnayaka RK, Agrawal M. Computer-aided drug design approach for alkaloids isolated from Stephania glandulifera Miers as potential acetylcholinesterase inhibitors. J Biomol Struct Dyn 2025:1-14. [PMID: 40053458 DOI: 10.1080/07391102.2025.2474054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/15/2024] [Indexed: 03/09/2025]
Abstract
Considering the medicinal importance of alkaloids from Stephania glandulifera Miers, five major compounds (stepharine, stepharanine, stepholidine, palmatine and tetrahydropalmatine) from the plant were analyzed for their acetylcholinesterase activity using molecular docking, molecular dynamics simulations and in silico pharmacokinetics. As acetylcholinesterase has been significantly studied for their role in Alzheimer's disease, the enzyme from Torpedo californica (PDB ID: 1QTI) was taken as a receptor protein. AutoDock Vina was used to study the docking affinities during the initial screening of compounds where, stepharine showed promising binding energy (-10.3 kcal/mol) forming crucial interactions with active site residues (His 440, Tyr 121, and Trp 84). Molecular dynamics simulations were performed for 200 ns to analyze the stability of the docked complex. The study of trajectories obtained after simulation showed stepharine with a strong binding affinity and stability with AChE. Moreover, drug likeness and ADMET analysis conducted via Swiss ADME and pKCSM affirmed stepharine's favorable pharmacological properties. Overall, this research highlights stepharine as a potent acetylcholinesterase inhibitor which could be further developed as potential drug against Alzheimer's disease.
Collapse
Affiliation(s)
- Jhalnath Dhungel
- Nepomics Biotech Pvt. Ltd., Kathmandu, Nepal
- Department of Biotechnology, National College, Tribhuvan University, Nayabazar, Nepal
| | - Sajan L Shyaula
- Faculty of Science, Nepal Academy of Science and Technology, Lalitpur, Nepal
| | - Mishal Faizan
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Rajitha Kalum Rathnayaka
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Mohit Agrawal
- School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| |
Collapse
|
4
|
Permana A, Akili AWR, Hardianto A, Latip JB, Sulaeman AP, Herlina T. Virtual Screening, Toxicity Evaluation and Pharmacokinetics of Erythrina Alkaloids as Acetylcholinesterase Inhibitor Candidates from Natural Products. Adv Appl Bioinform Chem 2025; 17:179-201. [PMID: 39931375 PMCID: PMC11808975 DOI: 10.2147/aabc.s495947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose Alzheimer's disease (AD) is a progressive neurodegenerative disorder with limited treatment options, necessitating the development of safer and more effective therapies. The potential of alkaloids derived from the genus Erythrina as acetylcholinesterase (AChE) inhibitors is being investigated to enhance acetylcholine levels in the brain, which is crucial for the treatment of AD. The objective of this study is to identify Erythrina alkaloids with strong inhibitory capacity against AChE and favorable pharmacokinetic profiles. Materials and Methods A multi-step computational approach was employed, beginning with the virtual screening of 143 Erythrina alkaloid structures using molecular docking against the human AChE crystal structure. The binding affinities were compared with the known AChE inhibitor, galantamine. The top alkaloid, 8-oxoerymelanthine (128), was subjected to further analysis through molecular dynamics simulations, with the objective of evaluating its stability and interactions. In silico ADMET predictions were conducted to assess the pharmacokinetic properties. The applicability of Lipinski's Rule of Five was applied to evaluate oral drug-likeness. Results 8-Oxoerymelanthine (128) exhibited the highest binding affinity and remarkable stability in molecular dynamics simulations. The toxicity predictions indicated a low risk of mutagenicity, hepatotoxicity, and cardiotoxicity. Pharmacokinetic assessments indicated good absorption, moderate blood-brain barrier penetration, and favorable metabolic and excretion profiles, supporting its potential as an orally active drug candidate. Conclusion 8-Oxoerythmelanthine (128) exhibits strong potential as an AChE inhibitor with a favorable balance of efficacy, safety, and pharmacokinetic properties. These results warrant further investigation in preclinical and clinical studies to validate its therapeutic potential and safety for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Afri Permana
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Abd Wahid Rizaldi Akili
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Jalifah Binti Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Selangor, Malaysia
| | - Allyn Pramudya Sulaeman
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Tati Herlina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| |
Collapse
|
5
|
Mahajan K, Sharma S, Gautam RK, Goyal R, Mishra DK, Singla RK. Insights on therapeutic approaches of natural anti-Alzheimer's agents in the management of Alzheimer's disease: A future perspective. J Alzheimers Dis 2024; 102:897-923. [PMID: 39523509 DOI: 10.1177/13872877241296557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In the current scenario, Alzheimer's disease is a complex, challenging, and arduous health issue, and its prevalence, together with comorbidities, is accelerating around the universe. Alzheimer's disease is becoming a primary concern that significantly impacts an individual's status in life. The traditional treatment of Alzheimer's disease includes some synthetic drugs, which have numerous dangerous side effects, a high risk of recurrence, lower bioavailability, and limited treatment. Hence, the current article is a detailed study and review of all known information on plant-derived compounds as natural anti-Alzheimer's agents, including their biological sources, active phytochemical ingredients, and a possible mode of action. With the help of a scientific data search engine, including the National Center for Biotechnology Information (NCBI/PubMed), Science Direct, and Google Scholar, analysis from 2001 to 2024 has been completed. This article also described clinical studies on phytoconstituents used to treat Alzheimer's disease. Plant-derived compounds offer promising alternatives to synthetic drugs in treating Alzheimer's disease, with the potential for improving cognitive function and slowing down the progression of the disease. Further research and clinical trials are needed to fully explore their therapeutic potential and develop effective strategies for managing this complex condition.
Collapse
Affiliation(s)
- Kalpesh Mahajan
- School of Pharmacy and Technology Management, SVKMS NMIMS Maharashtra, Shirpur, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, Maharashtra, India
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Rau, Indore, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Dinesh Kumar Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University) Koni, Bilaspur (C.G.), India
| | - Rajeev K Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Xia Y, Wang X, Lin S, Dong TTX, Tsim KWK. Berberine and palmatine, acting as allosteric potential ligands of α7 nAChR, synergistically regulate inflammation and phagocytosis of microglial cells. FASEB J 2024; 38:e70094. [PMID: 39373933 DOI: 10.1096/fj.202302538rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Berberine and palmatine are isoquinoline quaternary alkaloids derived from Chinese medicinal herbs. These alkaloids have shown promising synergy in inhibiting acetylcholinesterase (AChE), indicating their potential in treating Alzheimer's disease (AD). Besides, the anti-inflammatory effects of berberine and palmatine have been widely reported, although the underlying mechanism remains unclear. Here, we found that berberine and palmatine could induce calcium ion (Ca2+) influx via activating α7 nicotinic acetylcholine receptor (α7 nAChR) in cultured microglial cells, possibly serving as its allosteric potential ligands. Furthermore, we examined the synergistic anti-inflammatory effects of berberine and palmatine in the LPS-induced microglia, that significantly suppressed the production of TNF-α and iNOS. Notably, this suppression was reversed by co-treatment with a selective antagonist of α7 nAChR. Moreover, the alkaloid-induced microglial phagocytosis was shown to be mediated by the induction of Ca2+ influx through α7 nAChR and subsequent CaMKII-Rac1-dependent pathway. Additionally, the combination of berberine and palmatine, at low concentration, protected against the LPS-induced endoplasmic reticulum stress and mitochondrial dysfunction in microglia. These findings indicate the potential of berberine and palmatine, either individually or in combination, in contributing to anti-AD drug development, which provide valuable insights into the mechanisms by which natural products, such as plant alkaloids, exert their anti-AD effects.
Collapse
Affiliation(s)
- Yingjie Xia
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Xiaoyang Wang
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Shengying Lin
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Tina T X Dong
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Karl W K Tsim
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Emam M, El-Newary SA, Aati HY, Wei B, Seif M, Ibrahim AY. Anti-Alzheimer's Potency of Rich Phenylethanoid Glycosides Extract from Marrubium vulgare L.: In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2024; 17:1282. [PMID: 39458923 PMCID: PMC11510615 DOI: 10.3390/ph17101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Marrubium vulgare L. (M. vulgare), the white horehound, is well known for treating inflammation-related diseases. METHODS In this context, we investigated the efficacy of M. vulgare ingredients in treating Alzheimer's disease using various in vitro and in silico antioxidant, anti-inflammatory, anti-cholinesterase, and anti-tyrosinase mechanisms. RESULTS In our results, sixty-one components were tentatively identified using gas and liquid chromatography (GC-MS and LC-MSn) and categorized as hydrocarbons, fatty acids, and polyphenolics. The extract inhibited linoleic oxidation with an IC50 value of 114.72 µg/mL, captured iron (Fe2+) ions with an IC50 value of 164.19 µg/mL, and displayed reducing power. In addition, the extract showed radical-scavenging ability towards DPPH•, NO•, ABTS•+, and H2O2 assays compared to L-ascorbic acid and butylated hydroxytoluene. The DPPH• was scavenged by 77.62% at 100 µg/mL, and NO•, ABTS•+, and H2O2 were scavenged with IC50 values of 531.66, 117.51, and 143.10 µg/mL, respectively. M. vulgare also exhibited discriminating anti-inflammatory potency against cyclooxygenase (COX-2) with IC50 values of 619.15 µg/mL compared to celecoxib (p > 0.05). Notably, three Alzheimer's biomarkers, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase were significantly inhibited. The molecular docking study supposed that the phenylethanoid glycosides of samioside and forsythoside B inhibited AChE and tyrosinase enzymes with low binding affinities of -9.969 and -8.804 kcal/mol, respectively. Marruboside was a proper inhibitor of COX and BChE enzymes with a binding score of -10.218 and -10.306 kcal/mol, respectively. CONCLUSIONS M. vulgare extract showed significant inhibitory actions, which suggest that it could have a promising potential as an anti-Alzheimer agent.
Collapse
Affiliation(s)
- Mahmoud Emam
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Samah A. El-Newary
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Hanan Y. Aati
- Pharmacognosy Department, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Mohamed Seif
- Food Toxicology and Contaminants Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abeer Y. Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| |
Collapse
|
8
|
Chua RW, Song KP, Ting ASY. Characterization and identification of antimicrobial compounds from endophytic Fusarium incarnatum isolated from Cymbidium orchids. Int Microbiol 2024; 27:977-992. [PMID: 37975992 DOI: 10.1007/s10123-023-00442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
This study characterized and identified the antimicrobial compounds from an endophytic fungus (Fusarium incarnatum (C4)) isolated from the orchid, Cymbidium sp. Chromatographic techniques were employed to separate the bioactive compounds from the crude extracts of F. incarnatum (C4). Following bio-guided fractionation, two fractionated extracts (fractions 1 and 2) of F. incarnatum (C4) exhibited antibacterial and antifungal activities against Bacillus cereus (MIC: 0.156 mg/mL) and Ganoderma boninense (MIC: 0.3125 mg/mL), respectively. The active fractions were discovered to comprise of a variety of bioactive compounds with pharmacological importance (alkaloids, flavonoids, phenolic compounds, terpenoids, peptides and fatty acids). Liquid chromatography mass-spectrometry (LCMS) analysis detected the presence of antibacterial (kanzonol N, rifaximin, linoleic acid (d4), cannabisativine, docosanedioic acid, and stearamide) and antifungal components (3-methyl-quinolin-2-ol, prothiocarb, kanzonol N, peganine, 5Z-tridecene, and tetronasin) in fractions 1 and 2, respectively, which may have contributed to the antimicrobial effects. Findings from this study highlighted the important potential of fungal endophytes from medicinal hosts as producers of antimicrobials and antibiotics.
Collapse
Affiliation(s)
- Ru Wei Chua
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Keang Peng Song
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
9
|
Tallini LR, Acosta León K, Chamorro R, Osorio EH, Bastida J, Jost L, Oleas NH. Alkaloid Profiling and Anti-Cholinesterase Potential of Three Different Genera of Amaryllidaceae Collected in Ecuador: Urceolina Rchb., Clinanthus Herb. and Stenomesson Herb. Life (Basel) 2024; 14:924. [PMID: 39202667 PMCID: PMC11355869 DOI: 10.3390/life14080924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
Ecuador is an important center of biodiversity for the plant subfamily Amaryllidoideae, known for its important bioactive molecules. This study aimed to assess the chemical and biological potential of four different Amaryllidoideae species collected in Ecuador: Urceolina formosa, Urceolina ruthiana, Clinanthus incarnatus, and Stenomesson aurantiacum. Twenty-six alkaloids were identified in the bulb extracts of these species using GC-MS. The extract of S. aurantiacum exhibited the greatest structural diversity and contained the highest amounts of alkaloids, particularly lycorine and galanthamine. Only for this species, identification of all the alkaloids belonging to this chemical profile was not possible. Six of them remain unidentified. The potential of these three Amaryllidoideae genera against Alzheimer's disease was then evaluated by measuring their AChE and BuChE inhibitory activity, revealing that C. incarnatus and U. formosa (from Sucumbíos province) showed the best results with IC50 values of 1.73 ± 0.25 and 30.56 ± 1.56 µg·mL-1, respectively. Molecular dynamic assays were conducted to characterize the possible interactions that occurs among 2-hydroxyanhydrolycorine and the AChE enzyme, concluded that it is stabilized in the pocket in a similar way to galanthamine. This study expands our understanding of the biodiversity of Amaryllidoideae species from Ecuador, highlighting their potential as source of chemical compounds with pharmaceutical applications.
Collapse
Affiliation(s)
- Luciana R. Tallini
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (L.R.T.); (J.B.)
| | - Karen Acosta León
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador; (K.A.L.)
| | - Raúl Chamorro
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador; (K.A.L.)
| | - Edison H. Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730002, Colombia
| | - Jaume Bastida
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (L.R.T.); (J.B.)
| | - Lou Jost
- Fundación EcoMinga, Vía a Runtún s/n, Baños EC180250, Ecuador
| | - Nora H. Oleas
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) y Facultad de Ciencias de la Salud y Bienestar Humano, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito EC170301, Ecuador
| |
Collapse
|
10
|
Alkanad M, Hani U, V AH, Ghazwani M, Haider N, Osmani RAM, M D P, Hamsalakshmi, Bhat R. Bitter yet beneficial: The dual role of dietary alkaloids in managing diabetes and enhancing cognitive function. Biofactors 2024; 50:634-673. [PMID: 38169069 DOI: 10.1002/biof.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
With the rising prevalence of diabetes and its association with cognitive impairment, interest in the use of dietary alkaloids and other natural products has grown significantly. Understanding how these compounds manage diabetic cognitive dysfunction (DCD) is crucial. This comprehensive review explores the etiology of DCD and the effects of alkaloids in foods and dietary supplements that have been investigated as DCD therapies. Data on how dietary alkaloids like berberine, trigonelline, caffeine, capsaicin, 1-deoxynojirimycin, nuciferine, neferine, aegeline, tetramethylpyrazine, piperine, and others regulate cognition in diabetic disorders were collected from PubMed, Research Gate, Web of Science, Science Direct, and other relevant databases. Dietary alkaloids could improve memory in behavioral models and modulate the mechanisms underlying the cognitive benefits of these compounds, including their effects on glucose metabolism, gut microbiota, vasculopathy, neuroinflammation, and oxidative stress. Evidence suggests that dietary alkaloids hold promise for improving cognition in diabetic patients and could open exciting avenues for future research in diabetes management.
Collapse
Affiliation(s)
- Maged Alkanad
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Annegowda H V
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Pandareesh M D
- Center for Research and Innovations, Adichunchanagiri University, BGSIT, Mandya, India
| | - Hamsalakshmi
- Department of Pharmacognosy, Cauvery College of Pharmacy, Cauvery Group of Institutions, Mysuru, India
| | - Rajeev Bhat
- ERA-Chair in Food By-Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
11
|
Rezaul Islam M, Akash S, Murshedul Islam M, Sarkar N, Kumer A, Chakraborty S, Dhama K, Ahmed Al-Shaeri M, Anwar Y, Wilairatana P, Rauf A, Halawani IF, Alzahrani FM, Khan H. Alkaloids as drug leads in Alzheimer's treatment: Mechanistic and therapeutic insights. Brain Res 2024; 1834:148886. [PMID: 38582413 DOI: 10.1016/j.brainres.2024.148886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Alzheimer's disease (AD) has few effective treatment options and continues to be a major global health concern. AD is a neurodegenerative disease that typically affects elderly people. Alkaloids have potential sources for novel drug discovery due to their diverse chemical structures and pharmacological activities. Alkaloids, natural products with heterocyclic nitrogen-containing structures, are considered potential treatments for AD. This review explores the neuroprotective properties of alkaloids in AD, focusing on their ability to regulate pathways such as amyloid-beta aggregation, oxidative stress, synaptic dysfunction, tau hyperphosphorylation, and neuroinflammation. The FDA has approved alkaloids such as acetylcholinesterase inhibitors like galantamine and rivastigmine. This article explores AD's origins, current market medications, and clinical applications of alkaloids in AD therapy. This review explores the development of alkaloid-based drugs for AD, focusing on pharmacokinetics, blood-brain barrier penetration, and potential adverse effects. Future research should focus on the clinical evaluation of promising alkaloids, developing recently discovered alkaloids, and the ongoing search for novel alkaloids for medical treatment. A pharmaceutical option containing an alkaloid may potentially slow down the progression of AD while enhancing its symptoms. This review highlights the potential of alkaloids as valuable drug leads in treating AD, providing a comprehensive understanding of their mechanisms of action and therapeutic implications.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Mohammed Murshedul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, College of Arts and Sciences IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10, Uttara Model Town, Dhaka 1230, Bangladesh; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sandip Chakraborty
- State Disease Investigation Laboratory, ARDD, Abhoynagar, Agartala, West Tripura, Pin-799005, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI) Izatnagar-243 122, Bareilly, Uttar Pradesh, India
| | - Majed Ahmed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan.
| |
Collapse
|
12
|
Sevindik M, Gürgen A, Khassanov VT, Bal C. Biological Activities of Ethanol Extracts of Hericium erinaceus Obtained as a Result of Optimization Analysis. Foods 2024; 13:1560. [PMID: 38790860 PMCID: PMC11121622 DOI: 10.3390/foods13101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Mushrooms are one of the indispensable elements of human diets. Edible mushrooms stand out with their aroma and nutritional properties. In this study, some biological activities of the wild edible mushroom Hericium erinaceus were determined. In this context, firstly, the most suitable extraction conditions of the fungus in terms of biological activity were determined. First, 64 different experiments were performed with the Soxhlet device under 40-70 °C extraction temperature, 3-9 h extraction time, and 0.5-2 mg/mL extraction conditions. As a result, a total antioxidant status (TAS) analysis was performed, and the extraction conditions were optimized so that the objective function was the maximum TAS value. The data obtained from the experimental study were modeled with artificial neural networks (ANNs), one of the artificial intelligence methods, and optimized with a genetic algorithm (GA). All subsequent tests were performed using the extract obtained under optimum extraction conditions. The antioxidant capacity of the mushroom was assessed using Rel assay kits and the DPPH and FRAP techniques. The agar dilution method was used to measure the antimicrobial activity. The anti-Alzheimer activity was assessed based on the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The antiproliferative activity was assessed against the A549 cancer cell line. The total phenolic content was measured using the Folin-Ciocalteu reagent. The measurement of total flavonoids was conducted using the aluminum chloride test. LC-MS/MS equipment was used to screen for the presence of standard chemicals. The optimum extraction conditions were found to be a 60.667 °C temperature, 7.833 h, and 1.98 mg/mL. It was determined that the mushroom has high antioxidant potential. It was determined that the substance was successful at combating common bacterial and fungal strains when used at dosages ranging from 25 to 200 µg/mL. The high antiproliferative effect of the substance was attributed to its heightened concentration. The anti-AChE value was found to be 13.85 μg/mL, while the anti-BChE value was confirmed to be 28.00 μg/mL. The phenolic analysis of the mushroom revealed the presence of 13 chemicals. This investigation found that H. erinaceus exhibits robust biological activity when extracted under appropriate circumstances.
Collapse
Affiliation(s)
- Mustafa Sevindik
- Department of Biology, Engineering and Natural Sciences Faculty, Osmaniye Korkut Ata University, 80000 Osmaniye, Türkiye
| | - Ayşenur Gürgen
- Department of Industrial Engineering, Engineering and Natural Sciences Faculty, Osmaniye Korkut Ata University, 80000 Osmaniye, Türkiye;
| | - Vadim Tagirovich Khassanov
- Department of Biology, Agronomic Faculty, Saken Seifullin Kazakh Agrotechnical University, Astana 010011, Kazakhstan;
| | - Celal Bal
- Department of Biology, Science and Literature Faculty, Gaziantep University, 27310 Gaziantep, Türkiye;
| |
Collapse
|
13
|
Sadeghi G, Dinani MS, Rabbani M. Effects of extracts and manna of Echinops cephalotes on impaired cognitive function induced by scopolamine in mice. Res Pharm Sci 2024; 19:167-177. [PMID: 39035579 PMCID: PMC11257209 DOI: 10.4103/rps.rps_27_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/16/2023] [Accepted: 03/05/2024] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Alzheimer's disease (AD) is a neurodegenerative disease specified by chronic and irreversible destruction of neurons. This study aimed to evaluate the effects of different extracts (aqueous, hydroalcoholic, hexane, and ethyl acetate) and manna of Echinops cephalotes (EC) on impaired cognitive function induced by scopolamine in mice. EC is shown to have anti-cholinesterase-butyrylcholinesterase activities. Experimental approach In this study, aqueous and hydroalcoholic extracts, hexane and ethyl acetate fractions of EC (25, 50, 100 mg/kg, i.p.), and the manna (25, 50, 100 mg/kg, gavage) were administered for 14 days alongside scopolamine (0.7 mg/kg, i.p.). Rivastigmine (reference drug) was administered for 2 weeks i.p. Mice were tested for their memory function using two behavioral models, object recognition test (ORT) and passive avoidance test (PAT). Findings/Results Administration of scopolamine significantly impaired memory function in both behavioral models. In the PAT model, all extracts at 50 and 100 mg/kg significantly reversed the effect of memory destruction caused by scopolamine. At a lower dose of 25 mg/kg, however, none of the extracts were able to significantly change the step-through latency time. In the ORT model, however, administration of all extracts at 50 and 100 mg/kg, significantly increased the recognition index. Only the manna and the aqueous extract at 25 mg/kg were able to reverse scopolamine-induced memory impairment. Conclusions and implications These results suggest that all forms of EC extracts improve memory impairment induced by scopolamine comparably to rivastigmine. Whether the effects are sustained over a longer period remains to be tested in future work.
Collapse
Affiliation(s)
- Giti Sadeghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Sadeghi Dinani
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rabbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Dehghani H, Rashedinia M, Mohebbi G, Vazirizadeh A. Studies on Secondary Metabolites and In vitro and In silico Anticholinesterases
Activities of the Sea Urchin Echinometra mathaei Crude Venoms
from the Persian Gulf-Bushehr. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/2210315514666230622144244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 12/08/2023]
Abstract
Background:
Echinoderms are a unique source of amazing secondary metabolites with a wide
spectrum of biological activities. Several species of sea urchins contain various toxins and biologically
active metabolites. One of the most attractive approaches to treat Alzheimer's disease is searching for
effective marine natural products with cholinesterase inhibitory activities.
Objective:
The current study is designed to investigate the in vitro and in silico acetylcholinesterase and
butyrylcholinesterase inhibitory activities of the Persian Gulf echinoderm sea urchin Echinometra
mathaei venom and related chemical compounds.
Methods:
The experiments for LD50, total protein, protein bands, in vitro cholinesterase inhibitory activities,
the identity of secondary metabolites, and the in silico evaluations, respectively, were performed by
Spearman-Karber, Lowry, SDS-PAGE, Ellman's spectroscopic, GC-MS, and docking methods.
Results:
The LD50 (IV rat) of the spine, gonad, and coelomic fluid from sea urchin samples were 2.231 ±
0.09, 1.03 ± 0.05, and 1.12 ± 0.13 mg/ml, respectively. The SDS-PAGE and total protein studies showed
that at least a portion of the venom is protein in nature. GC-MS analysis of the identified samples revealed
12, 23, and 21 compounds with different chemical types, including alkaloids, terpenes, and steroids,
respectively. According to the results, all samples act as significant inhibitors of both enzymes. In
silico data for the identified compounds also confirmed the experimental results.
Conclusion:
The alkaloid compound 6H-Indolo[3,2,1-de] [1,5] naphthyridine-6-one,1,2,3a,4,5-
hexahydro-8-hydroxy-3-methyl (C7) had the highest affinity for both enzymes. Further research is needed
to determine whether C7 could be a therapeutic candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- Hamideh Dehghani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz,
Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz,
Iran
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research
Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Vazirizadeh
- Department of Marine Biotechnology, The Persian
Gulf Research and Studies Center, The Persian Gulf University, Bushehr, Iran
| |
Collapse
|
15
|
Haldar S, Mohapatra S, Ganguly P, Paul N, Ash A, Biswas R, Singh R, Katiyar CK. N-Methylneolitsine as a new and potent acetylcholinesterase inhibitor of Cissampelos pareira Linn. aerial parts: bioassay-guided isolation and quantitative densitometric analysis. Nat Prod Res 2024; 38:1044-1048. [PMID: 37154600 DOI: 10.1080/14786419.2023.2209819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The rising geriatric population is expected to increase the demand for drugs treating neurodegenerative diseases. The present work is aimed to discover acetylcholinesterase (AChE) inhibitors from Cissampelos pareira Linn. aerial parts (Family: Menispermaceae). Bioassay-guided isolation, AChE inhibition study and estimation of the therapeutic marker in different parts of raw herbs were conducted. The structure of the compound (1) was elucidated as N-methylneolitsine by using NMR (1D and 2D) and ESI-MS/MS spectral data, which is a new natural analogue of neolitsine. It showed good AChE inhibition with an IC50 value of 12.32 µg/mL. It was densitometrically estimated to be 0.074 - 0.33% in aerial parts of C. pareira, collected from various locations. The alkaloid reported here could be potentially useful for the treatment of various neurodegenerative diseases and the aerial part of C. pareira could be used as a promising ingredient for various preparations treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Sagnik Haldar
- Corporate Analytical Design Excellence, Emami Limited, Kolkata, India
| | | | - Partha Ganguly
- Corporate Analytical Design Excellence, Emami Limited, Kolkata, India
| | - Nirankush Paul
- Corporate Analytical Design Excellence, Emami Limited, Kolkata, India
| | - Avinandan Ash
- Corporate Analytical Design Excellence, Emami Limited, Kolkata, India
| | | | - Rahul Singh
- Corporate Analytical Design Excellence, Emami Limited, Kolkata, India
| | - Chandra Kant Katiyar
- Corporate Analytical Design Excellence, Emami Limited, Kolkata, India
- R&D Centre, Emami Limited, Kolkata, India
| |
Collapse
|
16
|
Ribeiro J, Araújo-Silva H, Fernandes M, da Silva JA, Pinto FDCL, Pessoa ODL, Santos HS, de Menezes JESA, Gomes AC. Petrosamine isolated from marine sponge Petrosia sp. demonstrates protection against neurotoxicity in vitro and in vivo. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:16. [PMID: 38383833 PMCID: PMC10881933 DOI: 10.1007/s13659-024-00439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
According to The World Alzheimer Report 2023 by Alzheimer's Disease International (ADI) estimates that 33 to 38.5 million people worldwide suffer from Alzheimer's Disease (AD). A crucial hallmark associated with this disease is associated with the deficiency of the brain neurotransmitter acetylcholine, due to an affected acetylcholinesterase (AChE) activity. Marine organisms synthesize several classes of compounds, some of which exhibit significant AChE inhibition, such as petrosamine, a coloured pyridoacridine alkaloid. The aim of this work was to characterize the activity of petrosamine isolated for the first time from a Brazilian marine sponge, using two neurotoxicity models with aluminium chloride, as exposure to aluminium is associated with the development of neurodegenerative diseases. The in vitro model was based in a neuroblastoma cell line and the in vivo model exploited the potential of zebrafish (Danio rerio) embryos in mimicking hallmarks of AD. To our knowledge, this is the first report on petrosamine's activity over these parameters, either in vitro or in vivo, in order to characterize its full potential for tackling neurotoxicity.
Collapse
Affiliation(s)
- Joana Ribeiro
- CBMA (Centre of Molecular and Environmental Biology) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Henrique Araújo-Silva
- CBMA (Centre of Molecular and Environmental Biology) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mário Fernandes
- CBMA (Centre of Molecular and Environmental Biology) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joilna Alves da Silva
- Program in Natural Sciences, Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisco das Chagas L Pinto
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Otília Deusdenia L Pessoa
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Hélcio Silva Santos
- Program in Natural Sciences, Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, Ceará, Brazil
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
17
|
Dehghani H, Rashedinia M, Mohebbi G, Vazirizadeh A, Baghban N. Antioxidant and anticholinesterase properties of Echinometra mathaei and Ophiocoma erinaceus venoms from the Persian Gulf. Front Chem 2024; 11:1332921. [PMID: 38235395 PMCID: PMC10791789 DOI: 10.3389/fchem.2023.1332921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction: The Persian Gulf is home to a diverse range of marine life, including various species of fish, crustaceans, mollusks, and echinoderms. This study investigates the potential therapeutic properties of venoms from echinoderms in the Persian Gulf, specifically their ability to inhibit cholinesterases (Acetylcholinesterase and butyrylcholinesterase) and act as antioxidants. Methods: Four venoms from two echinoderm species, including the spine, gonad, and coelomic fluids of sea urchins, as well as brittle star venoms, were analyzed using various methods, including LD50 determination, protein analysis, antioxidant assays, GC-MS for secondary metabolite identification, and molecular docking simulations. Results and discussion: The study's results revealed the LD50 of the samples as follows: 2.231 ± 0.09, 1.03 ± 0.05, 1.12 ± 0.13, and 6.04 ± 0.13 mg/mL, respectively. Additionally, the protein levels were 44.037 ± 0.002, 74.223 ± 0.025, 469.97 ± 0.02, and 104.407 ± 0.025 μg/mL, respectively. SDS-PAGE and total protein studies indicated that at least part of the venom was proteinaceous. Furthermore, the study found that the brittle star samples exhibited significantly higher antioxidant activity compared to other samples, including the standard ascorbic acid, at all tested concentrations. GC-MS analysis identified 12, 23, 21, and 25 compounds in the samples, respectively. These compounds had distinct chemical and bioactive structures, including alkaloids, terpenes, and steroids. Conclusion: These venoms displayed strong cholinesterase inhibitory and antioxidant activities, likely attributed to their protein content and the presence of alkaloids, terpenes, and steroids. Notably, the alkaloid compound C 7 was identified as a promising candidate for further research in Alzheimer's disease therapy. In conclusion, echinoderms in the Persian Gulf may hold significant potential for discovering novel therapeutic agents.
Collapse
Affiliation(s)
- Hamideh Dehghani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Vazirizadeh
- Department of Marine Biotechnology, The Persian Gulf Research and Studies Center, The Persian Gulf University, Bushehr, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
18
|
Murray AP, Biscussi B, Cavallaro V, Donozo M, Rodriguez SA. Naturally Occurring Cholinesterase Inhibitors from Plants, Fungi, Algae, and Animals: A Review of the Most Effective Inhibitors Reported in 2012-2022. Curr Neuropharmacol 2024; 22:1621-1649. [PMID: 37357520 PMCID: PMC11284722 DOI: 10.2174/1570159x21666230623105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 06/27/2023] Open
Abstract
Since the development of the "cholinergic hypothesis" as an important therapeutic approach in the treatment of Alzheimer's disease (AD), the scientific community has made a remarkable effort to discover new and effective molecules with the ability to inhibit the enzyme acetylcholinesterase (AChE). The natural function of this enzyme is to catalyze the hydrolysis of the neurotransmitter acetylcholine in the brain. Thus, its inhibition increases the levels of this neurochemical and improves the cholinergic functions in patients with AD alleviating the symptoms of this neurological disorder. In recent years, attention has also been focused on the role of another enzyme, butyrylcholinesterase (BChE), mainly in the advanced stages of AD, transforming this enzyme into another target of interest in the search for new anticholinesterase agents. Over the past decades, Nature has proven to be a rich source of bioactive compounds relevant to the discovery of new molecules with potential applications in AD therapy. Bioprospecting of new cholinesterase inhibitors among natural products has led to the discovery of an important number of new AChE and BChE inhibitors that became potential lead compounds for the development of anti-AD drugs. This review summarizes a total of 260 active compounds from 142 studies which correspond to the most relevant (IC50 ≤ 15 μM) research work published during 2012-2022 on plant-derived anticholinesterase compounds, as well as several potent inhibitors obtained from other sources like fungi, algae, and animals.
Collapse
Affiliation(s)
- Ana Paula Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Brunella Biscussi
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Valeria Cavallaro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Martina Donozo
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvana A. Rodriguez
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
19
|
Tallini LR, da Silva CR, Jung T, Alves EDO, Baldin SL, Apel M, Timmers LFSM, Rico EP, Bastida J, Zuanazzi JAS. Acetylcholinesterase Inhibition Activity of Hippeastrum papilio (Ravenna) Van Scheepen (Amaryllidaceae) Using Zebrafish Brain Homogenates. Life (Basel) 2023; 13:1721. [PMID: 37629578 PMCID: PMC10455992 DOI: 10.3390/life13081721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The Amaryllidaceae family constitutes an interesting source of exclusive alkaloids with a broad spectrum of biological activity. Galanthamine, the most relevant one, has been commercialized for the palliative treatment of Alzheimer's disease symptoms since 2001 due to its potential as an acetylcholinesterase (AChE) inhibitor. In vitro screenings against AChE by applying different Amaryllidaceae species and alkaloids have been reported in the literature; however, they are usually carried out using purified market enzymes. The main goal of this work is to evaluate the AChE inhibitory potential of Hippeastrum papilio (Amaryllidaceae) extracts using zebrafish brain homogenates. The biological assays show that the H. papilio bulb extracts present an interesting AChE inhibitory activity in comparison with the positive reference control galanthamine (IC50 values of 1.20 ± 0.10 and 0.79 ± 0.15 μg/mL, respectively). The chemical profile of H. papilio shows that this species has a high amount of galanthamine, which may contribute to the inhibitory effect on AChE activity of zebrafish brains. Computational experiments were used to build the model for zebrafish AChE and to evaluate the interactions between galanthamine and the enzymic active site. This work suggests that zebrafish could represent an important model in the search for bioactive molecules from the Amaryllidaceae family for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Luciana R. Tallini
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (L.R.T.); (E.d.O.A.)
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Camila Rockenbach da Silva
- Centro de Ciências da Vida, Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil; (C.R.d.S.); (L.F.S.M.T.)
| | - Tatiana Jung
- Programa de Pós-Graduação em Ciências Médicas (PPGCM), Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil;
| | - Elen de Oliveira Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (L.R.T.); (E.d.O.A.)
| | - Samira Leila Baldin
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil (E.P.R.)
| | - Miriam Apel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (L.R.T.); (E.d.O.A.)
| | - Luis F. S. M. Timmers
- Centro de Ciências da Vida, Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil; (C.R.d.S.); (L.F.S.M.T.)
- Programa de Pós-Graduação em Ciências Médicas (PPGCM), Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil
| | - Eduardo Pacheco Rico
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil (E.P.R.)
| | - Jaume Bastida
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - José Angelo S. Zuanazzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (L.R.T.); (E.d.O.A.)
| |
Collapse
|
20
|
Cely-Veloza W, Kato MJ, Coy-Barrera E. Quinolizidine-Type Alkaloids: Chemodiversity, Occurrence, and Bioactivity. ACS OMEGA 2023; 8:27862-27893. [PMID: 37576649 PMCID: PMC10413377 DOI: 10.1021/acsomega.3c02179] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Quinolizidine alkaloids (QAs) are nitrogen-containing compounds produced naturally as specialized metabolites distributed in plants and animals (e.g., frogs, sponges). The present review compiles the available information on the chemical diversity and biological activity of QAs reported during the last three decades. So far, 397 QAs have been isolated, gathering 20 different representative classes, including the most common such as matrine (13.6%), lupanine (9.8%), anagyrine (4.0%), sparteine (5.3%), cytisine (6.5%), tetrahydrocytisine (4.3%), lupinine (12.1%), macrocyclic bisquinolizidine (9.3%), biphenylquinolizidine lactone (7.1%), dimeric (7.1%), and other less known QAs (20.9%), which include several structural patterns of QAs. A detailed survey of the reported information about the bioactivities of these compounds indicated their potential as cytotoxic, antiviral, antimicrobial, insecticidal, anti-inflammatory, antimalarial, and antiacetylcholinesterase compounds, involving favorable putative drug-likeness scores. In this regard, research progress on the structural and biological/pharmacological diversity of QAs requires further studies oriented on expanding the chemical space to find bioactive scaffolds based on QAs for pharmacological and agrochemical applications.
Collapse
Affiliation(s)
- Willy Cely-Veloza
- Bioorganic
Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá 250247, Colombia
| | - Massuo J. Kato
- Institute
of Chemistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Ericsson Coy-Barrera
- Bioorganic
Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá 250247, Colombia
| |
Collapse
|
21
|
Pishgouii F, Lotfi S, Sedaghati E. Anti-AChE and Anti-BuChE Screening of the Fermentation Broth Extracts from Twelve Aspergillus Isolates and GC-MS and Molecular Docking Studies of the Most Active Extracts. Appl Biochem Biotechnol 2023; 195:5199-5216. [PMID: 37129742 DOI: 10.1007/s12010-023-04548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Nowadays, the administration of cholinesterase enzyme (acetylcholinesterase: AChE and butyrylcholinesterase: BuChE) inhibitors is very common for the symptomatic treatment of Alzheimer's disease and the other forms of dementia and CNS disorders. In this paper, the anti-AChE and anti-BuChE activities of the fermentation broth ethyl acetate extracts from twelve Aspergillus isolates were evaluated by Ellman method. The results showed that A1 (Aspergillus flavus) and A5 (Aspergillus tubingensis, isolate 1) extracts with IC50 values of 46.77 μg/mL and 75.85 μg/mL possess the greatest ability to inhibit AChE and BuChE, respectively. GC-MS analysis of the extracts (A1 and A5) demonstrated that two alkaloids named 14-methyl-16-azabicyclo[10.3.1]hexadeca-1(15),12(16),13-triene (MAHT) and 6-chloro-2-methyl-7,8,9,10-tetrahydro-phenanthridine (CMTP) account for the highest percentage of A1 (26.95%) and A5 (25.5%) extracts, respectively. A 2-pyrazoline derivative, 5-hydroxy-3-(4-pyridinyl)-5-trifluoromethyl-1-(2,4,6-trimethylphenoxyacetyl)- (PHPTT), also constituted the high percentage (9.54%) of A5 extract. The anticholinesterase and neuroprotective effects of some 2-pyrazoline derivatives have been previously reported. The interaction study of MAHT with human AChE and CMTP and PHPTT with human BuChE using molecular docking indicated that these alkaloids bind to the active site gorge of the enzymes with high affinity. The best docking scores of MAHT, CMTP, and PHPTT were -7.1, -8.2, and -9.7 kcal/mol, respectively.
Collapse
Affiliation(s)
- Fatemeh Pishgouii
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Ebrahim Sedaghati
- Department of Plant Protection, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
22
|
Rodríguez-Escobar ML, Tallini LR, Lisa-Molina J, Berkov S, Viladomat F, Meerow A, Bastida J, Torras-Claveria L. Chemical and Biological Aspects of Different Species of the Genus Clinanthus Herb. (Amaryllidaceae) from South America. Molecules 2023; 28:5408. [PMID: 37513280 PMCID: PMC10385320 DOI: 10.3390/molecules28145408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The genus Clinanthus Herb. is found in the Andes Region (South America), mainly in Peru, Ecuador, and Bolivia. These plants belong to the Amaryllidaceae family, specifically the Amaryllidoideae subfamily, which presents an exclusive group of alkaloids known as Amaryllidaceae alkaloids that show important structural diversity and pharmacological properties. It is possible to find some publications in the literature regarding the botanical aspects of Clinanthus species, although there is little information available about their chemical and biological activities. The aim of this work was to obtain the alkaloid profile and the anti-cholinesterase activity of four different samples of Clinanthus collected in South America: Clinanthus sp., Clinanthus incarnatus, and Clinanthus variegatus. The alkaloid extract of each sample was analyzed by gas chromatography coupled with mass spectrometry (GC-MS), and their potential against the enzymes acetyl- and butyrylcholinesterase were evaluated. Thirteen alkaloids have been identified among these species, while six unidentified structures have also been detected in these plants. The alkaloid extract of the C. variegatus samples showed the highest structural diversity as well as the best activity against AChE, which was likely due to the presence of the alkaloid sanguinine. The results suggest this genus as a possible interesting new source of Amaryllidaceae alkaloids, which could contribute to the development of new medicines.
Collapse
Affiliation(s)
- María Lenny Rodríguez-Escobar
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Luciana R Tallini
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil
| | - Julia Lisa-Molina
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Strahil Berkov
- Department of Plant and Fungal Diversity, Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Francesc Viladomat
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Alan Meerow
- School of Life Sciences, Arizona State University, Tempe, AZ 85282, USA
| | - Jaume Bastida
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Laura Torras-Claveria
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| |
Collapse
|
23
|
Husna Hasnan MH, Sivasothy Y, Khaw KY, Nafiah MA, Hazni H, Litaudon M, Wan Ruzali WA, Liew SY, Awang K. N-Methyl Costaricine and Costaricine, Two Potent Butyrylcholinesterase Inhibitors from Alseodaphne pendulifolia Gamb. Int J Mol Sci 2023; 24:10699. [PMID: 37445877 DOI: 10.3390/ijms241310699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Studies have been conducted over the last decade to identify secondary metabolites from plants, in particular those from the class of alkaloids, for the development of new anti-Alzheimer's disease (AD) drugs. The genus Alseodaphne, comprising a wide range of alkaloids, is a promising source for the discovery of new cholinesterase inhibitors, the first-line treatment for AD. With regard to this, a phytochemical investigation of the dichloromethane extract of the bark of A. pendulifolia Gamb. was conducted. Repeated column chromatography and preparative thin-layer chromatography led to the isolation of a new bisbenzylisoquinoline alkaloid, N-methyl costaricine (1), together with costaricine (2), hernagine (3), N-methyl hernagine (4), corydine (5), and oxohernagine (6). Their structures were elucidated by the 1D- and 2D-NMR techniques and LCMS-IT-TOF analysis. Compounds 1 and 2 were more-potent BChE inhibitors than galantamine with IC50 values of 3.51 ± 0.80 µM and 2.90 ± 0.56 µM, respectively. The Lineweaver-Burk plots of compounds 1 and 2 indicated they were mixed-mode inhibitors. Compounds 1 and 2 have the potential to be employed as lead compounds for the development of new drugs or medicinal supplements to treat AD.
Collapse
Affiliation(s)
- Muhammad Hafiz Husna Hasnan
- Chemistry Division, Centre for Foundation Studies in Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasodha Sivasothy
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Mohd Azlan Nafiah
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Hazrina Hazni
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Wan Adriyani Wan Ruzali
- Chemistry Division, Centre for Foundation Studies in Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Yee Liew
- Chemistry Division, Centre for Foundation Studies in Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Khalijah Awang
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
24
|
Afolabi OB, Olasehinde OR, Olanipon DG, Mabayoje SO, Familua OM, Jaiyesimi KF, Agboola EK, Idowu TO, Obafemi OT, Olaoye OA, Oloyede OI. Antioxidant evaluation and computational prediction of prospective drug-like compounds from polyphenolic-rich extract of Hibiscus cannabinus L. seed as antidiabetic and neuroprotective targets: assessment through in vitro and in silico studies. BMC Complement Med Ther 2023; 23:203. [PMID: 37337198 DOI: 10.1186/s12906-023-04023-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Reports have implicated diabetes mellitus (DM) and Alzheimer's disease (AD) as some of the global persistent health challenges with no lasting solutions, despite of significant inputs of modern-day pharmaceutical firms. This study therefore, aimed to appraise the in vitro antioxidant potential, enzymes inhibitory activities, and as well carry out in silico study on bioactive compounds from polyphenolic-rich extract of Hibiscus cannabinus seed (PEHc). METHODS In vitro antioxidant assays were performed on PEHc using standard methods while the identification of phytoconstituents was carried out with high performance liquid chromatography (HPLC). For the in silico molecular docking using Schrodinger's Grid-based ligand docking with energetics software, seven target proteins were retrieved from the database ( https://www.rcsb.org/ ). RESULTS HPLC technique identified twelve chemical compounds in PEHc, while antioxidant quantification revealed higher total phenolic contents (243.5 ± 0.71 mg GAE/g) than total flavonoid contents (54.06 ± 0.09 mg QE/g) with a significant (p < 0.05) inhibition of ABTS (IC50 = 218.30 ± 0.87 µg/ml) and 1, 1-diphenyl-2-picrylhydrazyl free radicals (IC50 = 227.79 ± 0.74 µg/ml). In a similar manner, the extract demonstrated a significant (p < 0.05) inhibitory activity against α-amylase (IC50 = 256.88 ± 6.15 µg/ml) and α-glucosidase (IC50 = 183.19 ± 0.23 µg/ml) as well as acetylcholinesterase (IC50 = 262.95 ± 1.47 µg/ml) and butyrylcholinesterase (IC50 = 189.97 ± 0.82 µg/ml), respectively. Furthermore, In silico study showed that hibiscetin (a lead) revealed a very strong binding affinity energies for DPP-4, (PDB ID: 1RWQ) and α-amylase (PDB ID: 1SMD), gamma-tocopherol ( for peptide-1 receptor; PDB ID: 3C59, AChE; PDB ID: 4EY7 and BChE; PDB ID: 7B04), cianidanol for α-glucosidase; PDB ID: 7KBJ and kaempferol for Poly [ADP-ribose] polymerase 1 (PARP-1); PDB ID: 6BHV, respectively. More so, ADMET scores revealed drug-like potentials of the lead compounds identified in PEHc. CONCLUSION As a result, the findings of this study point to potential drug-able compounds in PEHc that could be useful for the management of DM and AD.
Collapse
Affiliation(s)
- Olakunle Bamikole Afolabi
- Phytomedicine and Toxicology Unit, Biochemistry Programme, Department of Chemical Sciences, College of Sciences, Afe-Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria.
| | - Oluwaseun Ruth Olasehinde
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Damilola Grace Olanipon
- Department of Biological Sciences, College of Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Samson Olatunde Mabayoje
- Department of Biological Sciences, College of Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Olufemi Michael Familua
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Kikelomo Folake Jaiyesimi
- Phytomedicine and Toxicology Unit, Biochemistry Programme, Department of Chemical Sciences, College of Sciences, Afe-Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Esther Kemi Agboola
- Phytomedicine and Toxicology Unit, Biochemistry Programme, Department of Chemical Sciences, College of Sciences, Afe-Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Tolulope Olajumoke Idowu
- Medicinal Plant Unit, Chemistry Programme, Department of Chemical Sciences, College of Sciences, Afe-Babalola University, P.M.B 5454, Ado- Ekiti, Ekiti State, Nigeria
| | - Olabisi Tajudeen Obafemi
- Phytomedicine and Toxicology Unit, Biochemistry Programme, Department of Chemical Sciences, College of Sciences, Afe-Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Oyindamola Adeniyi Olaoye
- Phytomedicine and Toxicology Unit, Biochemistry Programme, Department of Chemical Sciences, College of Sciences, Afe-Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Omotade Ibidun Oloyede
- Department of Biochemistry, Ekiti State University, P.M.B 5363, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
25
|
Babashpour-Asl M, kaboudi PS, Barez SR. Therapeutic and medicinal effects of snowdrop ( Galanthus spp.) in Alzheimer's disease: A review. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2023; 12:128. [PMID: 37397105 PMCID: PMC10312406 DOI: 10.4103/jehp.jehp_451_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/13/2022] [Indexed: 07/04/2023]
Abstract
Genus Galanthus (Amaryllidaceae) is an early spring flowering bulbous plant. Galanthus species contain alkaloids that have shown pharmacological activity. Galanthamine is an alkaloid that was extracted from Galanthus and other Amaryllidaceae. Owing to its acetylcholinesterase (AChE) inhibitory activity, galanthamine is used and marketed to treat Alzheimer's disease (AD). The aim of the present study, while introducing the botanical and pharmacological characteristics and various aspects of the medicinal plant Galanthus, is to emphasize the effect of this plant in the treatment of AD. In this web-based study in 2021, articles indexed in scientific databases in English language, including ISI Web of Knowledge, PubMed, Scopus, MedLib, Medknow, SID, ISC, and also articles and e-books published in Springer, Elsevier, John Wiley and Sons, and Taylor and Francis were evaluated from 1990 to 2021, using the following keywords: "Galanthus" "galanthamine," "Alzheimer's disease." Amaryllidaceae-type alkaloids possess an anticholinesterase activity. The most studied Galanthus alkaloid, galanthamine, is a long-acting, selective, reversible, competitive inhibitor of AChE and an allosteric modulator of the neuronal nicotinic receptor for acetylcholine (ACh). Owing to its AChE inhibitory activity, galanthamine is used to treat certain stages of AD. Galantamine can act as a parasympathomimetic agent, especially as a reversible cholinesterase inhibitor. Galantamine is not structurally associated with other AChE inhibitors. Hence, its proposed mechanism of action involves the reversible inhibition of AChE, preventing hydrolysis of ACh that results in an increased concentration of ACh at cholinergic synapses.
Collapse
Affiliation(s)
- Marzieh Babashpour-Asl
- Department of Horticultural Science, Maragheh Branch, Islamic Azad University, Maragheh, Iran
| | | | - Shekufe Rezghi Barez
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Ahmad S, Ahmed SB, Khan A, Wasim M, Tabassum S, Haider S, Ahmed F, Batool Z, Khaliq S, Rafiq H, Tikmani P, Gilani AUH. Natural remedies for Alzheimer's disease: A systematic review of randomized controlled trials. Metab Brain Dis 2023; 38:17-44. [PMID: 35960461 DOI: 10.1007/s11011-022-01063-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is the common type of dementia and is currently incurable. Existing FDA-approved AD drugs may not be effective for everyone, they cannot cure the disease nor stop its progression and their effects diminish over time. Therefore, the present review aimed to explore the role of natural alternatives in the treatment of AD. A systematic search was conducted using Ovid MEDLINE, CINAHL, Cochrane and PubMed databases and reference lists up to November 30, 2021. Only randomized control trials were included and appraised using the National Institute of Health framework. Data analysis showed that herbs like Gingko Biloba, Melissa Officinalis, Salvia officinalis, Ginseng and saffron alone or in combination with curcumin, low-fat diet, NuAD-Trail, and soy lecithin showed significant positive effects on AD. Moreover, combination of natural and pharmaceuticals has far better effects than only allopathic treatment. Thus, different herbal remedies in combination with FDA approved drugs are effective and more promising in treatment of AD.
Collapse
Affiliation(s)
- Saara Ahmad
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Saad Bilal Ahmed
- Department of Geriatrics, Monash University, Melbourne, Australia
| | - Asra Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Muhammad Wasim
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Saiqa Tabassum
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
- Department of Biosciences, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, Pakistan
| | - Saida Haider
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Fatima Ahmed
- Department of Ophthalmology, Liaquat National Hospital, Karachi, Pakistan
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Saima Khaliq
- Department of Biochemistry, Federal Urdu University of Science and Technology, Karachi, Pakistan
| | - Hamna Rafiq
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Prashant Tikmani
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Anwar-Ul-Hassan Gilani
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
27
|
Refaey MS, Shah MA, Fayed MA, Rasul A, Siddiqui MF, Qasim M, Althobaiti NA, Saleem U, Malik A, Blundell R, Eldahshan OA. Neuroprotective effects of steroids. PHYTONUTRIENTS AND NEUROLOGICAL DISORDERS 2023:283-304. [DOI: 10.1016/b978-0-12-824467-8.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
28
|
Bakrim S, Aboulaghras S, El Menyiy N, El Omari N, Assaggaf H, Lee LH, Montesano D, Gallo M, Zengin G, AlDhaheri Y, Bouyahya A. Phytochemical Compounds and Nanoparticles as Phytochemical Delivery Systems for Alzheimer's Disease Management. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249043. [PMID: 36558176 PMCID: PMC9781052 DOI: 10.3390/molecules27249043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease remains one of the most widespread neurodegenerative reasons for dementia worldwide and is associated with considerable mortality and morbidity. Therefore, it has been considered a priority for research. Indeed, several risk factors are involved in the complexity of the therapeutic ways of this pathology, including age, traumatic brain injury, genetics, exposure to aluminum, infections, diabetes, vascular diseases, hypertension, dyslipidemia, and obesity. The pathophysiology of Alzheimer's disease is mostly associated with hyperphosphorylated protein in the neuronal cytoplasm and extracellular plaques of the insoluble β-amyloid peptide. Therefore, the management of this pathology needs the screening of drugs targeting different pathological levels, such as acetylcholinesterase (AchE), amyloid β formation, and lipoxygenase inhibitors. Among the pharmacological strategies used for the management of Alzheimer's disease, natural drugs are considered a promising therapeutic strategy. Indeed, bioactive compounds isolated from different natural sources exhibit important anti-Alzheimer effects by their effectiveness in promoting neuroplasticity and protecting against neurodegeneration as well as neuroinflammation and oxidative stress in the brain. These effects involve different sub-cellular, cellular, and/or molecular mechanisms, such as the inhibition of acetylcholinesterase (AchE), the modulation of signaling pathways, and the inhibition of oxidative stress. Moreover, some nanoparticles were recently used as phytochemical delivery systems to improve the effects of phytochemical compounds against Alzheimer's disease. Therefore, the present work aims to provide a comprehensive overview of the key advances concerning nano-drug delivery applications of phytochemicals for Alzheimer's disease management.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
- Correspondence: (G.Z.); (Y.A.); (A.B.)
| | - Yusra AlDhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence: (G.Z.); (Y.A.); (A.B.)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (G.Z.); (Y.A.); (A.B.)
| |
Collapse
|
29
|
Tallini LR, Osorio EH, Berkov S, Torras-Claveria L, Rodríguez-Escobar ML, Viladomat F, Meerow AW, Bastida J. Chemical Survey of Three Species of the Genus Rauhia Traub (Amaryllidaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243549. [PMID: 36559661 PMCID: PMC9787901 DOI: 10.3390/plants11243549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 05/14/2023]
Abstract
Plant biodiversity is an important source of compounds with medicinal properties. The alkaloid galanthamine, first isolated from Galanthus woronowii (Amaryllidaceae), is approved by the FDA for the palliative treatment of mild to moderate Alzheimer's disease due to its acetylcholinesterase (AChE) inhibitory activity. Obtaining this active pharmaceutical ingredient, still sourced on an industrial scale from the Amaryllidaceae species, is a challenge for pharmaceutical companies due to its low natural yield and the high cost of its synthesis. The aim of this work was to determine the alkaloid profile of three different Rauhia (Amaryllidaceae) species collected in Peru, and to assess the potential application of their extracts for the treatment of Alzheimer's disease. The alkaloids were identified by gas chromatography coupled to mass spectrometry (GC-MS), and the AChE inhibitory activity of the extracts was analyzed. Thirty compounds were quantified from the Rauhia species, the R. multiflora extract being the most interesting due to its high diversity of galanthamine-type structures. The R. multiflora extract was also the most active against AChE, with the half maximal inhibitory concentration (IC50) values of 0.17 ± 0.02 μg·mL-1 in comparison with the IC50 values of 0.53 ± 0.12 μg·mL-1 for galanthamine, used as a reference. Computational experiments were carried out on the activity of the galanthamine-type alkaloids identified in R. multiflora toward five different human AChE structures. The simulation of the molecules 3-O-acetylgalanthamine, 3-O-acetylsanguinine, narwedine, and lycoraminone on the 4EY6 crystal structure theoretically showed a higher inhibition of hAChE and different interactions with the active site compared to galanthamine. In conclusion, the results of this first alkaloid profiling of the Rauhia species indicate that R. multiflora is an important natural source of galanthamine-type structures and could be used as a model for the development of biotechnological tools necessary to advance the sustainable production of galanthamine.
Collapse
Affiliation(s)
- Luciana R. Tallini
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| | - Edison H. Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730001, Colombia
| | - Strahil Berkov
- Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences, Department of Plant and Fungal Diversity, 23 Acad, G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Laura Torras-Claveria
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| | - María L. Rodríguez-Escobar
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| | - Francesc Viladomat
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| | - Alan W. Meerow
- School of Life Sciences, Arizona State University, Tempe, AZ 85282, USA
| | - Jaume Bastida
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
30
|
Dehghani H, Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran, Rashedinia M, Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran, Mohebbi GH, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran, Vazirizadeh A, Department of Marine Biotechnology, The Persian Gulf Research and Studies Center, The Persian Gulf University, Bushehr, Iran, Maryamabadi A, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran, Barmak AR, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran. The in vitro and in silico Anticholinesterase Ac-tivities of Brittle Star (Ophiocoma erinaceus) crude venoms from the Persian Gulf-Bushehr. IRANIAN SOUTH MEDICAL JOURNAL 2022; 25:297-325. [DOI: 10.52547/ismj.25.4.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
|
31
|
Dibacto REK, Ngoumen DJN, Ella FA, Nanhah JVK, Ambamba BDA, Hagbe PV, Fonkoua M, Mandob DE, Minka RS, Ngondi JL. In vitro anticholinesterase potential of some spices consumed in Cameroon and their protective effects on hydrogen peroxide-mediated oxidative stress damage in SK-N-SH cells. IBRO Neurosci Rep 2022; 13:107-113. [PMID: 35874495 PMCID: PMC9305342 DOI: 10.1016/j.ibneur.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Many neurodegenerative such as Alzheimer's disease (AD) are characterized by cholinergic dysfunction and oxidative stress which is a key event in neuronal death process. Thus, anticholinesterase and anti-oxidation compounds are two promising strategies in the development of AD drugs. Beyond their culinary use, spices are today studies for health purpose. In this study, some spices consumed in Cameroon were evaluated for their anticholinesterase and neuroprotective effects. Methods Colorimetric methods were used to determine total flavonoid and alkaloid content of a combinated extract (hydroethanolic + ethanolic extracts) of different selected spices. Aftermaths, anti-cholinesterase activity of spice extract was carried out using Ellman’s method. Finally, neuroprotective effects performed on human SK-N-SH cells stressed with H2O2 by assessing neuronal survival ( resazurin assay) and neuronal death (LDH assay). Results Flavonoid content of spices extract were ranged from 22.94 to 32.01 mg EQ/g DM and alkaloid content were ranged from 320 to 896 mg EQu/g DM. Among the spices studied, Xylopia parviflora presented the greatest acetylcholinesterase inhibition with an IC50 = 14 µg/mL. In Cell culture experiments, pre-incubation of SK-N-SH cell with the selected spices at different concentrations were improved neuronal survival and reduced the percentage of neuronal cells dead. Conclusion The present results reveal that selected spices consumed in Cameroon have good anticholinesterase activity as well as neuroprotective effect on SK-N-SH which may provide new natural compounds that could help in the management of Alzheimer's disease.
Collapse
|
32
|
Reaction of 7α-bromo-6-nitrocholest-5-enes with hydrazine: Formation of steroidal pyrazolines and molecular docking against SARS-CoV-2 omicron protease. Steroids 2022; 188:109120. [PMID: 36208699 PMCID: PMC9532268 DOI: 10.1016/j.steroids.2022.109120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
The present work reports simple and effective protocol for preparing 6α-nitro-5α-cholestano[7α,5-cd] pyrazolines (4-7) by the reaction of 7α-bromo-6-nitrocholest-5-enes (1-3) with hydrazine hydrate under reflux [the substrate (2) gave products (5) and (6) and the later on acetylation with AC2O/Py gave (7)]. In the case of reaction of 3β-hydroxy analogue (3) with hydrazine, however, 6α-nitro-5α-cholestano [3α,5-cd] pyrazoline (8) and 6α-nitro-3β, 5-oxido-5β-cholestane (9) were obtained. The probable mechanism of the formation of pyrazolines has also been outlined. In the current pandemic coronavirus disease 2019 scenario, the in-silico study was performed with reactants (1-3), their products (4-9) against SARS-CoV-2 omicron protease (PDB ID:7T9L) for knowing significant interactions between them. Docking results give information that both reactants and products have binding energies ranges from -5.7 to 7.7 kcal/mol and strong interactions with various hydrophilic and hydrophobic amino acids such as ASP, PRO, PHE, SER and LEU which are significant residues playing important role in SARS-CoV-2 Omicron main protease (Mpro).
Collapse
|
33
|
Šafratová M, Křoustková J, Maafi N, Suchánková D, Vrabec R, Chlebek J, Kuneš J, Opletal L, Bucar F, Cahlíková L. Amaryllidaceae Alkaloids from Clivia miniata (Lindl.) Bosse (Amaryllidaceae): Isolation, Structural Elucidation, and Biological Activity. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223034. [PMID: 36432763 PMCID: PMC9692855 DOI: 10.3390/plants11223034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/01/2023]
Abstract
Clivia miniata (Amaryllidaceae) is an herbaceous evergreen flowering plant that is endemic to South Africa and Swaziland and belongs to one of the top-10 traded medicinal plants in informal medicine markets in South Africa. The species has been reported as the most important component of a traditional healer's pallet of healing plants. Eighteen known Amaryllidaceae alkaloids (AAs) of various structural types, and one undescribed alkaloid of homolycorine-type, named clivimine B (3), were isolated from Clivia miniata. The chemical structures of the isolated alkaloids were elucidated by a combination of MS, HRMS, 1D and 2D NMR techniques and by comparison with literature data. Compounds isolated in a sufficient quantity, and not tested previously, were evaluated for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7) and butyrylcholinesterase (BuChE; E.C. 3.1.1.8) inhibition activities.
Collapse
Affiliation(s)
- Marcela Šafratová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jana Křoustková
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Negar Maafi
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Daniela Suchánková
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Rudolf Vrabec
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jakub Chlebek
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lubomír Opletal
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010 Graz, Austria
| | - Lucie Cahlíková
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
34
|
Gul N, Ahmad S, Ahmad H, Aziz A, Almehmadi M, Amer Alsaiari A, Allahyani M, Zainab, Adnan Ali Shah S, Ur Rahman N, Ahmad M. New acetylcholinesterase inhibitors isolated from Delphinium uncinatum. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Anti-Alzheimer's disease potential of traditional chinese medicinal herbs as inhibitors of BACE1 and AChE enzymes. Biomed Pharmacother 2022; 154:113576. [PMID: 36007279 DOI: 10.1016/j.biopha.2022.113576] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that often occurs in the elderly population. At present, most drugs for AD on the market are single-target drugs, which have achieved certain success in the treatment of AD. However, the efficacy and safety of single-target drugs have not achieved the expected results because AD is a multifactorial disease. Multi-targeted drugs act on multiple factors of the disease network to improve efficacy and reduce adverse reactions. Therefore, the search for effective dual-target or even multi-target drugs has become a new research trend. Many of results found that the dual-target inhibitors of the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and acetylcholinesterase (AChE) found from traditional Chinese medicine have a good inhibitory effect on AD with fewer side effects. This article reviews sixty-six compounds extracted from Chinese medicinal herbs, which have inhibitory activity on BACE1 and AChE. This provides a theoretical basis for the further development of these compounds as dual-target inhibitors for the treatment of AD.
Collapse
|
36
|
Alkaloid Composition and Biological Activities of the Amaryllidaceae Species Ismene amancaes (Ker Gawl.) Herb. PLANTS 2022; 11:plants11151906. [PMID: 35893610 PMCID: PMC9331871 DOI: 10.3390/plants11151906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Natural products have always played a significant role in the search for new drugs. One of the most relevant alkaloid-containing plant groups is the Amaryllidaceae family, a source of exclusive structures with a wide variety of pharmacological activities. The aim of this work was to determine the alkaloid composition and biological potential of an extract from the bulbs of an endemic Peruvian Amaryllidaceae species Ismene amancaes (Ker Gawl.) Herb. The alkaloid profiling was carried out by GC-MS, which revealed the presence of 13 compounds, 2 of them unidentified. The plant extract was found to contain high amounts of lycoramine, a galanthamine-type alkaloid. The extract also presented low inhibitory potential against the enzymes AChE and BuChE, with IC50 values of 14.6 ± 0.6 and 37.6 ± 1.4 μg·mL−1, respectively, and good to moderate inhibitory activity against the protozoan Plasmodium falciparum strain FCR-3 (chloroquine-resistant), with IC50 values of 3.78 ± 0.3 μg·mL−1. This is the first report of the alkaloid profile of a plant of the Ismene genus, which could be an interesting source of bioactive compounds.
Collapse
|
37
|
Silva LC, Correia AF, Gomes JVD, Romão W, Motta LC, Fagg CW, Magalhães PO, Silveira D, Fonseca-Bazzo YM. Lycorine Alkaloid and Crinum americanum L. (Amaryllidaceae) Extracts Display Antifungal Activity on Clinically Relevant Candida Species. Molecules 2022; 27:molecules27092976. [PMID: 35566325 PMCID: PMC9100883 DOI: 10.3390/molecules27092976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Candida species are the main fungal agents causing infectious conditions in hospital patients. The development of new drugs with antifungal potential, increased efficacy, and reduced toxicity is essential to face the challenge of fungal resistance to standard treatments. The aim of this study is to evaluate the in vitro antifungal effects of two crude extracts of Crinum americanum L., a rich alkaloid fraction and lycorine alkaloid, on the Candida species. As such, we used a disk diffusion susceptibility test, determined the minimum inhibitory concentration (MIC), and characterized the components of the extracts using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI FT-ICR MS). The extracts were found to have antifungal activity against various Candida species. The chemical characterization of the extracts indicated the presence of alkaloids such as lycorine and crinine. The Amaryllidaceae family has a promising antifungal potential. Furthermore, it was found that the alkaloid lycorine directly contributes to the effects that were observed for the extracts and fraction of C. americanum.
Collapse
Affiliation(s)
- Lorene Coelho Silva
- Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil; (L.C.S.); (J.V.D.G.); (P.O.M.); (D.S.)
- Central Laboratory of the Federal District (LACEN-DF), Lotes O e P, Sgan 601, Asa Norte, Brasília 70830-010, Brazil;
| | - Amabel Fernandes Correia
- Central Laboratory of the Federal District (LACEN-DF), Lotes O e P, Sgan 601, Asa Norte, Brasília 70830-010, Brazil;
| | - João Victor Dutra Gomes
- Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil; (L.C.S.); (J.V.D.G.); (P.O.M.); (D.S.)
| | - Wanderson Romão
- Federal Institute of Espíırito Santo, Vila Velha 29106-010, Brazil;
- Petroleomic and Forensic Laboratory, Department of Chemistry, Federal University of Espírito Santo, Vitória 29075-910, Brazil;
| | - Larissa Campos Motta
- Petroleomic and Forensic Laboratory, Department of Chemistry, Federal University of Espírito Santo, Vitória 29075-910, Brazil;
| | - Christopher William Fagg
- Department of Botany, Institute of Biological Science, School of Pharmacy, Faculty of Ceilândia, University of Brasília, Brasilia 70910-900, Brazil;
| | - Pérola Oliveira Magalhães
- Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil; (L.C.S.); (J.V.D.G.); (P.O.M.); (D.S.)
| | - Dâmaris Silveira
- Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil; (L.C.S.); (J.V.D.G.); (P.O.M.); (D.S.)
| | - Yris Maria Fonseca-Bazzo
- Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil; (L.C.S.); (J.V.D.G.); (P.O.M.); (D.S.)
- Correspondence:
| |
Collapse
|
38
|
Han Y, Hou T, Zhang ZH, Wang YD, Cheng JX, Zhou H, Wang JX, Feng JT, Liu YF, Guo ZM, Liang XM. Structurally diverse isoquinoline and amide alkaloids with dopamine D2 receptor antagonism from Corydalis bungeana. Fitoterapia 2022; 159:105175. [DOI: 10.1016/j.fitote.2022.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/04/2022]
|
39
|
Vrabec R, Maříková J, Ločárek M, Korábečný J, Hulcová D, Hošťálková A, Kuneš J, Chlebek J, Kučera T, Hrabinová M, Jun D, Soukup O, Andrisano V, Jenčo J, Šafratová M, Nováková L, Opletal L, Cahlíková L. Monoterpene indole alkaloids from Vinca minor L. (Apocynaceae): Identification of new structural scaffold for treatment of Alzheimer's disease. PHYTOCHEMISTRY 2022; 194:113017. [PMID: 34798410 DOI: 10.1016/j.phytochem.2021.113017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 05/24/2023]
Abstract
One undescribed indole alkaloid together with twenty-two known compounds have been isolated from aerial parts of Vinca minor L. (Apocynaceae). The chemical structures of the isolated alkaloids were determined by a combination of MS, HRMS, 1D, and 2D NMR techniques, and by comparison with literature data. The NMR data of several alkaloids have been revised, corrected, and missing data have been supplemented. Alkaloids isolated in sufficient quantity were screened for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7) and butyrylcholinesterase (BuChE; E.C. 3.1.1.8) inhibitory activity. Selected compounds were also evaluated for prolyl oligopeptidase (POP; E.C. 3.4.21.26), and glycogen synthase 3β-kinase (GSK-3β; E.C. 2.7.11.26) inhibition potential. Significant hBuChE inhibition activity has been shown by (-)-2-ethyl-3[2-(3-ethylpiperidinyl)-ethyl]-1H-indole with an IC50 value of 0.65 ± 0.16 μM. This compound was further studied by enzyme kinetics, along with in silico techniques, to reveal the mode of inhibition. This compound is also predicted to cross the blood-brain barrier (BBB) through passive diffusion.
Collapse
Affiliation(s)
- Rudolf Vrabec
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jana Maříková
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Miroslav Ločárek
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Anna Hošťálková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jakub Chlebek
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Tomáš Kučera
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Martina Hrabinová
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Ondřej Soukup
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, 47921, Rimini, Italy
| | - Jaroslav Jenčo
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Marcela Šafratová
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lubomír Opletal
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
40
|
Plazas E, Avila M MC, Muñoz DR, Cuca S LE. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol Res 2022; 177:106126. [DOI: 10.1016/j.phrs.2022.106126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
41
|
Fontes Barbosa M, Benatti Justino A, Machado Martins M, Roberta Anacleto Belaz K, Barbosa Ferreira F, Junio de Oliveira R, Danuello A, Salmen Espindola F, Pivatto M. Cholinesterase inhibitors assessment of aporphine alkaloids from Annona crassiflora and molecular docking studies. Bioorg Chem 2022; 120:105593. [DOI: 10.1016/j.bioorg.2021.105593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/23/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
|
42
|
Tallini LR, Carrasco A, Acosta León K, Vinueza D, Bastida J, Oleas NH. Alkaloid Profiling and Cholinesterase Inhibitory Potential of Crinum × amabile Donn. (Amaryllidaceae) Collected in Ecuador. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122686. [PMID: 34961157 PMCID: PMC8707120 DOI: 10.3390/plants10122686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 05/27/2023]
Abstract
Natural products are one of the main sources for developing new drugs. The alkaloids obtained from the plant family Amaryllidaceae have interesting structures and biological activities, such as acetylcholinesterase inhibition potential, which is one of the mechanisms used for the palliative treatment of Alzheimer's disease symptoms. Herein we report the alkaloidal profile of bulbs and leaves extracts of Crinum × amabile collected in Ecuador and their in vitro inhibitory activity on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. Using Gas Chromatography coupled to Mass Spectrometry (GC-MS), we identified 12 Amaryllidaceae alkaloids out of 19 compounds detected in this species. The extracts from bulbs and leaves showed great inhibitory activity against AChE and BuChE, highlighting the potential of Amaryllidaceae family in the search of bioactive molecules.
Collapse
Affiliation(s)
- Luciana R. Tallini
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, Brazil;
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, #27-31, 08028 Barcelona, Spain;
| | - Angelo Carrasco
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador; (A.C.); (K.A.L.); (D.V.)
| | - Karen Acosta León
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador; (A.C.); (K.A.L.); (D.V.)
| | - Diego Vinueza
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador; (A.C.); (K.A.L.); (D.V.)
| | - Jaume Bastida
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, #27-31, 08028 Barcelona, Spain;
| | - Nora H. Oleas
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito EC170301, Ecuador
| |
Collapse
|
43
|
Synthesis and analgesic activity of 1-[(1,2,3-triazol-1-yl)methyl]quinolizines based on the alkaloid lupinine. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03000-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Erythrina variegata L. bark: an untapped bioactive source harbouring therapeutic properties for the treatment of Alzheimer's disease. In Silico Pharmacol 2021; 9:51. [PMID: 34532215 DOI: 10.1007/s40203-021-00110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022] Open
Abstract
A critical approach for target identification to detect the significant molecular mechanism of lead molecules via computational methods combined with in vitro procedures defines the modern strategy to combat untreatable diseases. Hence, the present investigation dealt to determine the effect of Erythrina variegata L. bark extract/fraction(s) over acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity followed by target identification and docking analysis of prime phytoconstituents. The in vitro AChE and BChE enzyme inhibitory assay were performed. Phytoconstituents from E. variegata were screened for carcinogenicity and mutagenicity and predicted for their possible targets leading to the identification of two known targets, i.e. AChE and BChE. The alkaloids with non-carcinogenic and non-mutagenic properties were studied for their main moiety responsible for the inhibitory activity. The protein models were checked in ERRAT for their quality and the homology model was created using Modeller9.10v to fill missing amino acid residues. The docking study predicted the binding affinity of bioactive molecules with identified targets using AutoDock 4.2. Molecular dynamics (MD) simulations for top hits were performed by Schrodinger Desmond 6.1v software. Chloroform fraction showed potent inhibition of AChE and BChE with IC50 value of 38.03 ± 1.987 µg/mL and 20.67 ± 2.794 µg/mL, respectively. Among all the six major bioactive compounds, Erysotine and Erythraline scored the highest binding affinity with AChE and Erysodine with BChE. MD simulation for 20 ns production run demonstrated Erysotine and Erysodine stable interaction with Arg49 of AChE and Lys427 of BChE, respectively. The current data provide enough shreds of evidence supporting the utilization of indolo [7a,1-a] isoquinoline derivatives for the identification of a new drug molecule in the management of Alzheimer's disease. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-021-00110-0.
Collapse
|
45
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
46
|
Biscussi B, Sequeira MA, Richmond V, Arroyo Mañez P, Murray AP. New photochromic azoderivatives with potent acetylcholinesterase inhibition. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Nguyen KV, Nguyen TOT, Ho DV, Heinämäki J, Raal A, Nguyen HT. In Vitro Acetylcholinesterase Inhibitory and Antioxidant Activity of Alphonsea tonkinensis A.DC. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211042134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Knowledge of the bioactivity of Alphonsea tonkinensis A.DC is limited. We have investigated the in vitro acetylcholinesterase inhibitory and antioxidant activities of extracts and pure compounds isolated from stems and leaves of this species collected from Dakrong district, Quang Tri Province, Vietnam. Extracts and isolated compounds were obtained by using an in-house extraction and chromatographic technique. The in vitro acetylcholinesterase inhibitory and antioxidant activities were evaluated using an Ellman test and 2,2-diphenyl-1-picryl-hydrazyl test, respectively. The total MeOH and CH2Cl2 extracts, the MeOH portion of the CH2Cl2 extract, pseudocolumbamine, and pseudopalmatine showed potential inhibitory activity against acetylcholinesterase with IC50 values of 22.7, 32.9, 14.6, 18.9, and 8.6 μM, respectively. The aqueous phase (pH 9), MeOH portion of the CH2Cl2 extract, and N- trans-feruloyltyramin exhibited significant antioxidant activities with IC50 values of 24.5, 72.1, and 61.2 µM, respectively. This is the first study showing such bioactivities of various extracts obtained from A. tonkinensis.
Collapse
Affiliation(s)
- Khan Viet Nguyen
- Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
- Institute of Pharmacy, University of Tartu, Tartu, Estonia
| | | | - Duc Viet Ho
- Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | | | - Ain Raal
- Institute of Pharmacy, University of Tartu, Tartu, Estonia
| | - Hoai Thi Nguyen
- Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| |
Collapse
|
48
|
Recent Progress on Biological Activity of Amaryllidaceae and Further Isoquinoline Alkaloids in Connection with Alzheimer's Disease. Molecules 2021; 26:molecules26175240. [PMID: 34500673 PMCID: PMC8434202 DOI: 10.3390/molecules26175240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive age-related neurodegenerative disease recognized as the most common form of dementia among elderly people. Due to the fact that the exact pathogenesis of AD still remains to be fully elucidated, the treatment is only symptomatic and available drugs are not able to modify AD progression. Considering the increase in life expectancy worldwide, AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. Due to their complex nitrogen-containing structures, alkaloids are considered to be promising candidates for use in the treatment of AD. Since the introduction of galanthamine as an antidementia drug in 2001, Amaryllidaceae alkaloids (AAs) and further isoquinoline alkaloids (IAs) have been one of the most studied groups of alkaloids. In the last few years, several compounds of new structure types have been isolated and evaluated for their biological activity connected with AD. The present review aims to comprehensively summarize recent progress on AAs and IAs since 2010 up to June 2021 as potential drugs for the treatment of AD.
Collapse
|
49
|
Kiris I, Skalicka-Wozniak K, Basar MK, Sahin B, Gurel B, Baykal AT. Molecular Effects of Pteryxin and Scopoletin in the 5xFAD Alzheimer's Disease Mouse Model. Curr Med Chem 2021; 29:2937-2950. [PMID: 34455957 DOI: 10.2174/0929867328666210827152914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most prevalent diseases with rapidly increasing numbers, but there is still no medication to treat or stop the disease. Previous data on coumarins suggests that scopoletin may have potential benefits in AD. OBJECTIVE Evaluate the therapeutic potential of the coumarins with natural origin - scopoletin and pteryxin in a 5xFAD mouse model of AD Methods: Both compounds were administered at two doses to 12-month-old mice, which represent severe AD pathology. The effects of coumarins were assessed on cognition in mouse experiments. Changes in the overall brain proteome were evaluated using LC-MS/MS analyses. RESULTS The Morris water maze test implicated that a higher dose of pteryxin (16 mg/kg) significantly improved learning, and the proteome analysis showed pronounced changes of specific proteins upon pteryxin administration. The amyloid-β precursor protein, glial fibrillary acid protein, and apolipoprotein E protein which are highly associated with AD, were among the differentially expressed proteins at the higher dose of the pteryxin. CONCLUSION Overall, pteryxin may be evaluated further as a disease-modifying agent in AD pathology in the late stages of AD.
Collapse
Affiliation(s)
- Irem Kiris
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul. Turkey
| | | | - Merve Karayel Basar
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul. Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul. Turkey
| | - Busra Gurel
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul. Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul. Turkey
| |
Collapse
|
50
|
Winand L, Schneider P, Kruth S, Greven NJ, Hiller W, Kaiser M, Pietruszka J, Nett M. Mutasynthesis of Physostigmines in Myxococcus xanthus. Org Lett 2021; 23:6563-6567. [PMID: 34355569 DOI: 10.1021/acs.orglett.1c02374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The alkaloid physostigmine is an approved anticholinergic drug and an important lead structure for the development of novel therapeutics. Using a complementary approach that merged chemical synthesis with pathway refactoring, we produced a series of physostigmine analogues with altered specificity and toxicity profiles in the heterologous host Myxococcus xanthus. The compounds that were generated by applying a simple feeding strategy include the promising drug candidate phenserine, which was previously accessible only by total synthesis.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Pascal Schneider
- Institute of Bioorganic Chemistry, Heinrich-Heine-University Düsseldorf at Forschungszentrum Jülich, Jülich, 44227 Nordrhein-Westfalen, Germany
| | - Sebastian Kruth
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Nico-Joel Greven
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich-Heine-University Düsseldorf at Forschungszentrum Jülich, Jülich, 44227 Nordrhein-Westfalen, Germany.,Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1), Forschungszentrum Jülich, Jülich, 52428 Nordrhein-Westfalen, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| |
Collapse
|