1
|
Abdelsalam M, Attia MM, Marzouk MS, Korany RMS, Elgendy MY, Soliman AW, Prince A, Hamada AH. Investigating dynamics, etiology, pathology, and therapeutic interventions of Caligus clemensi and Vibrio alginolyticus co-infection in farmed marine fish. Sci Rep 2024; 14:20704. [PMID: 39237535 PMCID: PMC11377424 DOI: 10.1038/s41598-024-70528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
This study investigated a disease outbreak characterized by caligid copepod infestations and subsequent secondary bacterial infections in European seabass (Dicentrarchus labrax) and flathead grey mullet (Mugil cephalus) cultivated at a private facility in the Deeba Triangle region of Egypt. Moribund fish displayed brown spots on the skin, tongue, and gills, along with lethargy and excess mucus. The fish suffered severe infections, exhibiting external hemorrhages, ulcers, and ascites. The fish had pale, enlarged livers with hemorrhaging. Comprehensive parasitological, bacteriological, molecular, immunity and histopathological analyses were conducted to identify the etiological agents and pathological changes. Caligid copepod infestation was observed in wet mounts from the buccal and branchial cavities of all examined fish, and the caligids were identified as Caligus clemensi through COI gene sequencing and phylogenetic analysis. Vibrio alginolyticus was confirmed as a secondary bacterial infection through biochemical tests, recA gene sequencing, and phylogenetic analyses. Antibiotic susceptibility testing revealed resistance to β-lactams, aminoglycosides, and trimethoprim-sulfamethoxazole in V. alginolyticus isolates. Upregulation of the inflammatory marker IL-1β in gill and skin tissues indicated a robust cell-mediated immune response against the pathogens. Histopathological examination revealed severe tissue damage, hyperplasia, hemorrhage, and congestion in the gills, along with hepatocellular degeneration and steatosis in the liver, providing initial insights into this outbreak. A comprehensive therapeutic regimen was implemented, comprising prolonged hydrogen peroxide immersion baths, followed by the application of the nature-identical plant-based compound Lice-less and probiotic Sanolife Pro-W supplementation. This integrated approach effectively eliminated C. clemensi infestations, controlled secondary bacterial infections, and restored fish health, reducing morbidity and mortality rates to minimal levels.
Collapse
Affiliation(s)
- Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, PO 12211, Giza, Egypt.
| | - Marwa M Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, PO 12211, Giza, Egypt
| | - Mohamed Sayed Marzouk
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, PO 12211, Giza, Egypt
| | - Reda M S Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Mamdouh Y Elgendy
- Hydrobiology Department, Veterinary Research Institute, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Asmaa W Soliman
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Abdelbary Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Ahmed H Hamada
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, PO 12211, Giza, Egypt
- Department of Fish Production, National Company for Fisheries and Aquaculture, Ministry of Defense, Cairo, Egypt
| |
Collapse
|
2
|
Subahar R, Hadyansyah R, Aldilla R, Yulhasri Y, Winita R, Dwira S, El Bayani GF. Toxicity of 6-gingerol and Cymbopogon citratus against Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae): Mortality, detoxifying enzymes, and morphological ultrastructure alterations in lice. Res Vet Sci 2024; 177:105364. [PMID: 39053092 DOI: 10.1016/j.rvsc.2024.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Pediculus humanus capitis (head louse), which causes pediculosis capitis, remains a global health concern. Plant products are efficient alternative pediculicides for treating the human ectoparasite P. h. capitis which is resistant to permethrin. The study evaluates the toxicity and mechanisms of 6-gingerol and Cymbopogon citratus leaf extract on P. h. capitis. Pediculus humanus capitis adult stages were exposed to three different dosages of 6-gingerol and C. citratus crude leaf extract on filter sheets for 5, 10, and 30 min, respectively. The biochemical approach was used to assess the activity of detoxifying enzymes including acetylcholinesterase (AChE), glutathione S-transferase (GST), and oxidase. Scanning electron microscope (SEM) was used to investigate the ultrastructure of the morphological body of lice. After 30 min, 6-gingerol and C. citratus leaf extract killed P. h. capitis completely. Bioassay periods significantly affected lice mortality (P < 0.05). The LC50 values for 6-gingerol and C. citratus extract were 1.79 μg/cm2 and 25.0 μg/cm2, respectively. 6-Gingerol and C. citratus leaf extract significantly lower AChE and GST activity (P < 0.05). Cymbopogon citratus also caused morphological ultrastructure changes in P. h. capitis, including an irregularly formed head, thorax, abdominal respiratory spiracles, and belly. 6-Gingerol and C. citratus leaf extracts could be used as an alternate pediculicide to decrease P. h. capitis populations.
Collapse
Affiliation(s)
- Rizal Subahar
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia.
| | - Rizqy Hadyansyah
- Medical Doctor Program, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Rachmanin Aldilla
- Medical Doctor Program, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Yulhasri Yulhasri
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Rawina Winita
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Surya Dwira
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Gulshan Fahmi El Bayani
- Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| |
Collapse
|
3
|
Elati K, Daly N, Dhibi M, Laaribi H, Rekik M, Gharbi M. Repeated Cross-Sectional Survey of Ectoparasites in Sheep from Central Tunisia: Does Low Prevalence Indicate Good Hygiene or Resistance to Ectoparasites? Animals (Basel) 2024; 14:801. [PMID: 38473186 DOI: 10.3390/ani14050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Sheep ectoparasites such as chewing lice, fleas and ticks are serious constraints to sheep productivity and are the cause of skin lesions in animals that decrease their market value. This study aims at investigating the ectoparasite fauna infesting small ruminants in the district of Sidi Bouzid (central Tunisia). A total of 1243 Barbarine and Queue Fine de l'Ouest (QFO) sheep were examined every two months for one year. Of the total animals examined, 74 were infested by at least 1 parasite group (5.95%). Three ectoparasite groups were identified as Psoroptes ovis (0.48%; 6/1243), ticks (5.3%; n = 66/1243) and one specimen of Ctenocephalides canis (0.08%; n = 1/1243). The most abundant tick among the 358 specimens was Rhipicephalus sanguineus sensu lato (n = 337; 94.1%), followed by Hyalomma impeltatum (n = 7/358; 1.9%), H. dromedarii (n = 7/358; 1.9%), H. excavatum (n = 5/358; 1.4%) and only two specimens of H. scupense (n = 2/358; 0.55%). The sheep herds showed low infestation prevalence by ectoparasite over the year, with a significant difference according to the seasons (p < 0.05). A higher infestation prevalence was recorded in March (14.36%). Barbarine sheep breed showed significantly higher infestation prevalence (16.8%) compared to QFO (0.8%) (p < 0.01). There were no differences in infestation prevalence according to sex of the animal or age groups. Knowledge of the ectoparasite population harboured by sheep, its activity dynamics and risk factors is required to develop effective ectoparasite control options. The low prevalence of ectoparasite infestation in sheep reported here may be due to possible genetic resistance or simply to successful hygiene measures implemented by farmers.
Collapse
Affiliation(s)
- Khawla Elati
- Laboratory of Parasitology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163 Berlin, Germany
| | - Nesrine Daly
- Laboratory of Parasitology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| | - Mokhtar Dhibi
- Laboratory of Parasitology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| | - Hela Laaribi
- Laboratory of Parasitology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| | - Mourad Rekik
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 950764, Amman 11195, Jordan
| | - Mohamed Gharbi
- Laboratory of Parasitology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| |
Collapse
|
4
|
Miarinjara A, Raveloson AO, Mugel SG, An N, Andriamiadanarivo A, Rajerison ME, Randremanana RV, Girod R, Gillespie TR. Socio-ecological risk factors associated with human flea infestations of rural household in plague-endemic areas of Madagascar. PLoS Negl Trop Dis 2024; 18:e0012036. [PMID: 38452122 PMCID: PMC10950221 DOI: 10.1371/journal.pntd.0012036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/19/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Plague is a flea-borne fatal disease caused by the bacterium Yersinia pestis, which persists in rural Madagascar. Although fleas parasitizing rats are considered the primary vectors of Y. pestis, the human flea, Pulex irritans, is abundant in human habitations in Madagascar, and has been found naturally infected by the plague bacterium during outbreaks. While P. irritans may therefore play a role in plague transmission if present in plague endemic areas, the factors associated with infestation and human exposure within such regions are little explored. To determine the socio-ecological risk factors associated with P. irritans infestation in rural households in plague-endemic areas of Madagascar, we used a mixed-methods approach, integrating results from P. irritans sampling, a household survey instrument, and an observational checklist. Using previously published vectorial capacity data, the minimal P. irritans index required for interhuman bubonic plague transmission was modeled to determine whether household infestations were enough to pose a plague transmission risk. Socio-ecological risk factors associated with a high P. irritans index were then identified for enrolled households using generalized linear models. Household flea abundance was also modeled using the same set of predictors. A high P. irritans index occurred in approximately one third of households and was primarily associated with having a traditional dirt floor covered with a plant fiber mat. Interventions targeting home improvement and livestock housing management may alleviate flea abundance and plague risk in rural villages experiencing high P. irritans infestation. As plague-control resources are limited in developing countries such as Madagascar, identifying the household parameters and human behaviors favoring flea abundance, such as those identified in this study, are key to developing preventive measures that can be implemented at the community level.
Collapse
Affiliation(s)
- Adélaïde Miarinjara
- Departments of Environmental Sciences and Environmental Health, Emory University and Rollins School of Public Health, Atlanta, United States of America
| | - Annick Onimalala Raveloson
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Ecole Doctorale Science de la Vie et de l’Environnement, Université d’Antananarivo, Antananarivo, Madagascar
| | - Stephen Gilbert Mugel
- Departments of Environmental Sciences and Environmental Health, Emory University and Rollins School of Public Health, Atlanta, United States of America
| | - Nick An
- Departments of Environmental Sciences and Environmental Health, Emory University and Rollins School of Public Health, Atlanta, United States of America
| | | | | | | | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Thomas Robert Gillespie
- Departments of Environmental Sciences and Environmental Health, Emory University and Rollins School of Public Health, Atlanta, United States of America
- Centre Valbio, Ranomafana, Madagascar
| |
Collapse
|
5
|
Cha W, Fungbrant K, Grandi G, Persson Y. Prevalence and risk factors for hair loss in outdoor-wintered beef cattle under cold weather conditions. Res Vet Sci 2024; 166:105094. [PMID: 38006873 DOI: 10.1016/j.rvsc.2023.105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Keeping cattle outdoors year-around is considered an attractive alternative to indoor winter-housing, due to lower investment costs and better welfare. However, hair loss, attributed to lice, may impair cattle's thermal balance during harsh winters. During the winters of 2019-2021, outdoor cattle in Sweden were studied for the prevalence and development of hair loss, while surveys were conducted among the farmers on their perceptions and attitudes around hair loss. Of the 463 groups of cattle from 75 farms enrolled in a welfare control program issued by the Swedish Board of Agriculture, 25.7% (n = 119) had at least one animal with hair loss. When we followed up a subset of animals (n = 3673) which did not receive prophylactic delousing, 15.7% developed hair loss. Hair loss occurrence increased between visits within each winter in these animals, suggesting a contagious etiology. Logistic regression analyses, using the information collected in the control program and the hair loss outcome, showed that preventive delousing before November was effective, alongside keeping animals clean and the group size small. Meanwhile, being older (>2 years) and having access to bedding materials was shown to increase the risk at an animal-level. Some groups (n = 34) had no hair loss despite receiving no prophylactic delousing. Based on the survey conducted among the farmers (n = 15), groups with lower hair loss prevalence belonged to farmers who were more observant of hair loss and gave prompt treatment. This study provides knowledge useful to limit delousing interventions without compromising animal welfare.
Collapse
Affiliation(s)
- Wonhee Cha
- Department of Epidemiology and Disease Control, National Veterinary Institute, 751 89 Uppsala, Sweden.
| | | | - Giulio Grandi
- Department of Microbiology, National Veterinary Institute, 751 89 Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden.
| | - Ylva Persson
- Department of Animal Health and Antibiotic Strategies, National Veterinary Institute, 751 89 Uppsala, Sweden.
| |
Collapse
|
6
|
Benyahia H, Parola P, Almeras L. Evolution of MALDI-TOF MS Profiles from Lice and Fleas Preserved in Alcohol over Time. INSECTS 2023; 14:825. [PMID: 37887837 PMCID: PMC10607003 DOI: 10.3390/insects14100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
MALDI-TOF is now considered a relevant tool for the identification of arthropods, including lice and fleas. However, the duration and conditions of storage, such as in ethanol, which is frequently used to preserve these ectoparasites, could impede their classification. The purpose of the present study was to assess the stability of MS profiles from Pediculus humanus corporis lice and Ctenocephalides felis fleas preserved in alcohol from one to four years and kinetically submitted to MALDI-TOF MS. A total of 469 cephalothoraxes from lice (n = 170) and fleas (n = 299) were tested. The reproducibility of the MS profiles was estimated based on the log score values (LSVs) obtained for query profiles compared to the reference profiles included in the MS database. Only MS spectra from P. humanus corporis and C. felis stored in alcohol for less than one year were included in the reference MS database. Approximately 75% of MS spectra from lice (75.2%, 94/125) and fleas (74.4%, 122/164) specimens stored in alcohol for 12 to 48 months, queried against the reference MS database, obtained relevant identification. An accurate analysis revealed a significant decrease in the proportion of identification for both species stored for more than 22 months in alcohol. It was hypothesized that incomplete drying was responsible for MS spectra variations. Then, 45 lice and 60 fleas were subjected to longer drying periods from 12 to 24 h. The increase in the drying period improved the proportion of relevant identification for lice (95%) and fleas (80%). This study highlighted that a correct rate of identification by MS could be obtained for lice and fleas preserved in alcohol for up to four years on the condition that the drying period was sufficiently long for accurate identification.
Collapse
Affiliation(s)
- Hanene Benyahia
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Lionel Almeras
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
| |
Collapse
|
7
|
The Bm86 Discovery: A Revolution in the Development of Anti-Tick Vaccines. Pathogens 2023; 12:pathogens12020231. [PMID: 36839503 PMCID: PMC9965646 DOI: 10.3390/pathogens12020231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The presence in nature of species with genetic resistance to ticks, or with acquired resistance after repeated tick infestations, has encouraged the scientific community to consider vaccination as an alternative to the unsustainable chemical control of ticks. After numerous attempts to artificially immunize hosts with tick extracts, the purification and characterization of the Bm86 antigen by Willadsen et al. in 1989 constituted a revolutionary step forward in the development of vaccines against ticks. Previously, innovative studies that had used tick gut extracts for the immunization of cattle against Rhipicepahalus microplus (previously named Boophilus microplus) ticks, with amazingly successful results, demonstrated the feasibility of using antigens other than salivary-gland-derived molecules to induce a strong anti-tick immunity. However, the practical application of an anti-tick vaccine required the isolation, identification, and purification of the responsible antigen, which was finally defined as the Bm86 protein. More than thirty years later, the only commercially available anti-tick vaccines are still based on this antigen, and all our current knowledge about the field application of immunological control based on vaccination against ticks has been obtained through the use of these vaccines.
Collapse
|
8
|
Taylor S, Walther D, Fernando DD, Swe-Kay P, Fischer K. Investigating the Antibacterial Properties of Prospective Scabicides. Biomedicines 2022; 10:biomedicines10123287. [PMID: 36552044 PMCID: PMC9776028 DOI: 10.3390/biomedicines10123287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Scabies is a dermatological disease found worldwide. Mainly in tropical regions, it is also the cause of significant morbidity and mortality due to its association with potentially severe secondary bacterial infections. Current treatment strategies for scabies do not consider the role of opportunistic bacteria, and here we investigate whether current and emerging scabicides can offer any anti-bacterial protection. Using the broth microdilution method, we examined antimicrobial potential of the current scabicide ivermectin and emerging scabies treatments: abametapir, mānuka oil, and its individual β-triketones. Our results demonstrate that the two novel scabicides abametapir and mānuka oil have antimicrobial properties against common scabies-associated bacteria, specifically Staphylococcus aureus, Streptococcus pyogenes, Streptococcus dysgalactiae subsp. equisimilis and Acinetobacter baumannii. The current scabicide ivermectin offers some antimicrobial activity and is capable of inhibiting the growth aforementioned bacteria. This research is important as it could help to inform future best treatment options of scabies, and scabies-related impetigo.
Collapse
|
9
|
Antiparasitic Activity of Tea Tree Oil (TTO) and Its Components against Medically Important Ectoparasites: A Systematic Review. Pharmaceutics 2022; 14:pharmaceutics14081587. [PMID: 36015213 PMCID: PMC9416580 DOI: 10.3390/pharmaceutics14081587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Ectoparasites are pathogens that can infect the skin and cause immense pain, discomfort, and disease. They are typically managed with insecticides. However, the fast-emerging antimicrobial resistance and the slow rate of development of new bio-actives combined with environmental and health concerns over the continued use of neurotoxic insecticides warrant newer and alternative methods of control. Tea tree oil (TTO), as an alternative agent, has shown remarkable promise against ectoparasites in recent studies. To our knowledge, this is the first systematic review to assess preclinical and clinical studies exploring the antiparasitic activity of TTO and its components against clinically significant ectoparasites, such as Demodex mites, scabies mites, house dust mites, lice, fleas, chiggers, and bed bugs. We systematically searched databases, including PubMed, MEDLINE (EBSCOhost), Embase (Scopus), CENTRAL, Cochrane Library, CINAHL, ScienceDirect, Web of Science, SciELO, and LILACS in any language from inception to 4 April 2022. Studies exploring the therapeutic activity of TTO and its components against the ectoparasites were eligible. We used the ToxRTool (Toxicological data reliability assessment) tool, the Joanna Briggs Institute (JBI) critical appraisal tools, and the Jadad scale to assess the methodological qualities of preclinical (in vitro and in vivo) studies, non-randomised controlled trials (including cohort, case series, and case studies), and randomised controlled trials, respectively. Of 497 identified records, 71 studies were included in this systematic review, and most (66%) had high methodological quality. The findings of this review revealed the promising efficacy of TTO and its components against ectoparasites of medical importance. Most importantly, the compelling in vitro activity of TTO against ectoparasites noted in this review seems to have translated well into the clinical environment. The promising outcomes observed in clinical studies provide enough evidence to justify the use of TTO in the pharmacotherapy of ectoparasitic infections.
Collapse
|
10
|
Cai W, Kumar S, Navaneethaiyer U, Caballero-Solares A, Carvalho LA, Whyte SK, Purcell SL, Gagne N, Hori TS, Allen M, Taylor RG, Balder R, Parrish CC, Rise ML, Fast MD. Transcriptome Analysis of Atlantic Salmon ( Salmo salar) Skin in Response to Sea Lice and Infectious Salmon Anemia Virus Co-Infection Under Different Experimental Functional Diets. Front Immunol 2022; 12:787033. [PMID: 35046944 PMCID: PMC8763012 DOI: 10.3389/fimmu.2021.787033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Sea lice (Lepeophtheirus salmonis) are ectoparasitic copepods that cause significant economic loss in marine salmoniculture. In commercial salmon farms, infestation with sea lice can enhance susceptibility to other significant pathogens, such as the highly contagious infectious salmon anemia virus (ISAv). In this study, transcriptomic analysis was used to evaluate the impact of four experimental functional feeds (i.e. 0.3% EPA/DHA+high-ω6, 0.3% EPA/DHA+high-ω6+immunostimulant (IS), 1% EPA/DHA+high-ω6, and 1% EPA/DHA+high-ω3) on Atlantic salmon (Salmo salar) during a single infection with sea lice (L. salmonis) and a co-infection with sea lice and ISAv. The overall objectives were to compare the transcriptomic profiles of skin between lice infection alone with co-infection groups and assess differences in gene expression response among animals with different experimental diets. Atlantic salmon smolts were challenged with L. salmonis following a 28-day feeding trial. Fish were then challenged with ISAv at 18 days post-sea lice infection (dpi), and maintained on individual diets, to establish a co-infection model. Skin tissues sampled at 33 dpi were subjected to RNA-seq analysis. The co-infection’s overall survival rates were between 37%-50%, while no mortality was observed in the single infection with lice. With regard to the infection status, 756 and 1303 consensus differentially expressed genes (DEGs) among the four diets were identified in “lice infection vs. pre-infection” and “co-infection vs. pre-infection” groups, respectively, that were shared between the four experimental diets. The co-infection groups (co-infection vs. pre-infection) included up-regulated genes associated with glycolysis, the interferon pathway, complement cascade activity, and heat shock protein family, while the down-regulated genes were related to antigen presentation and processing, T-cell activation, collagen formation, and extracellular matrix. Pathway enrichment analysis conducted between infected groups (lice infection vs. co-infection) resulted in several immune-related significant GO terms and pathways unique to this group, such as “autophagosome”, “cytosolic DNA-sensing pathway” and “response to type I interferons”. Understanding how experimental functional feeds can impact the host response and the trajectory of co-infections will be an essential step in identifying efficacious intervention strategies that account for the complexities of disease in open cage culture.
Collapse
Affiliation(s)
- Wenlong Cai
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | - Laura A Carvalho
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Shona K Whyte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Sara L Purcell
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Nellie Gagne
- Fisheries and Oceans Canada, Moncton, NB, Canada
| | - Tiago S Hori
- Centre for Aquaculture Technologies Canada, Souris, PE, Canada
| | - Melissa Allen
- Centre for Aquaculture Technologies Canada, Souris, PE, Canada
| | | | - Rachel Balder
- Cargill Animal Nutrition, Elk River, MN, United States
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
11
|
Gaffney LP, Lavery JM. Research Before Policy: Identifying Gaps in Salmonid Welfare Research That Require Further Study to Inform Evidence-Based Aquaculture Guidelines in Canada. Front Vet Sci 2022; 8:768558. [PMID: 35155641 PMCID: PMC8835349 DOI: 10.3389/fvets.2021.768558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Aquaculture is a growing industry worldwide and Canadian finfish culture is dominated by marine salmonid farming. In part due to increasing public and stakeholder concerns around fish welfare protection, the first-ever Canadian Code of Practice for the Care and Handling of Farmed Salmonids was recently completed, following the National Farm Animal Care Council's (NFACC) rigorous Code development process. During this process, both the Scientific (responsible for reviewing existing literature and producing a peer-reviewed report that informs the Code) and Code Development (a diverse group of stakeholders including aquaculture producers, fish transporters, aquaculture veterinarians, animal welfare advocates, food retailers, government, and researchers) Committees identified research gaps in tandem, as they worked through the literature on salmonid physiology, health, husbandry, and welfare. When those lists are combined with the results of a public "top-of-mind" survey conducted by NFACC, they reveal several overlapping areas of scientific, stakeholder, and public concern where scientific evidence is currently lacking: (1) biodensity; (2) health monitoring and management, with a focus on sea lice infection prevention and management; (3) feed quality and management, particularly whether feed restriction or deprivation has consequences for welfare; (4) enclosure design, especially focused on environmental enrichment provision and lighting design; and (5) slaughter and euthanasia. For each of these five research areas, we provide a brief overview of current research on the topic and outline the specific research gaps present. The final section of this review identifies future research avenues that will help address these research gaps, including using existing paradigms developed by terrestrial animal welfare researchers, developing novel methods for assessing fish welfare, and the validation of new salmonid welfare indices. We conclude that there is no dearth of relevant research to be done in the realm of farmed salmonid welfare that can support crucial evidence-based fish welfare policy development.
Collapse
Affiliation(s)
- Leigh P. Gaffney
- National Animal Welfare Representative, Code Development Committee (NFACC) for the Code of Practice for the Care and Handling of Farm Animal Care Council (NFACC), Ottawa, ON, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - J. Michelle Lavery
- Scientific Committee (NFACC) for the Code of Practice for the Care and Handling of Farmed Salmonids, National Farm Animal Care Council (NFACC), Ottawa, ON, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
12
|
Gizaw Z, Engdaw GT, Nigusie A, Gebrehiwot M, Destaw B. Human Ectoparasites Are Highly Prevalent in the Rural Communities of Northwest Ethiopia: A Community-Based Cross-Sectional Study. ENVIRONMENTAL HEALTH INSIGHTS 2021; 15:11786302211034463. [PMID: 34366670 PMCID: PMC8299896 DOI: 10.1177/11786302211034463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ectoparasites are organisms which inhabit the skin or outgrowths of the skin of another organism (the host). Many ectoparasites are known to be vectors of pathogens, which the parasites typically transmit to hosts. Though, ectoparasites are common in the vulnerable groups and economically disadvantaged communities, there is limited evidence on its magnitude in Ethiopia. This community-based cross-sectional study was, therefore, conducted to assess the prevalence and associated factors of ectoparasites in the rural communities of northwest Ethiopia. METHODS A community-based cross-sectional study design with structured observation was conducted among 1191 randomly selected rural households in northwest Ethiopia in May 2016. Data were collected using structured interviewer administered interview questionnaire and structured observation checklist. Prevalence of human ectoparasites in the rural communities was defined as the presence of one or more lice, fleas, bed bugs, mites, and ticks and the presence of these ectoparasites were observed by trained environmental health experts. Multivariable binary logistic regression analysis was used to identify variables associated with prevalence of ectoparasites on the basis of adjusted odds ratio (AOR) with 95% confidence interval (CI) and P values <.05. RESULTS Of a total of 1191 rural households, human or hair lice were observed in one or more of the family members in 186 (15.6%) rural households. Similarly, fleas were observed in more than half, 609 (51.1%) of rural households and bed bugs were observed in 441 (37%) rural households. Furthermore, mites and ticks were reported in 113 (9.5%) and 130 (10.9%) of the households respectively. Accordingly, one or more ectoparasites were observed in 865 of 1191 rural households. The presence of one or more ectoparasites was, therefore, found to be 72.6% (95% CI = 70%-75.1%). The prevalence of ectoparasites was statistically associated with educational status of the female head being not educated (AOR = 1.476, 95% CI = 1.001, 2.177) and absence close supervision by health extension workers (AOR = 2.151, 95% CI = 1.205, 3.843). CONCLUSION The prevalence of one or more ectoparasites was high in the rural communities of northwest Ethiopia. The high prevalence was associated with education status of the female head and close supervision of households by health extension workers. Disseminating health information about intervention strategies of ectoparasites and closely supervising the rural households need to be considered.
Collapse
Affiliation(s)
- Zemichael Gizaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Garedew Tadege Engdaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Adane Nigusie
- Department of Health Education and Behavioral Sciences, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulat Gebrehiwot
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bikes Destaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
13
|
Ebani VV, Mancianti F. Entomopathogenic Fungi and Bacteria in a Veterinary Perspective. BIOLOGY 2021; 10:biology10060479. [PMID: 34071435 PMCID: PMC8229426 DOI: 10.3390/biology10060479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
Simple Summary Several fungal species are well suited to control arthropods, being able to cause epizootic infection among them and most of them infect their host by direct penetration through the arthropod’s tegument. Most of organisms are related to the biological control of crop pests, but, more recently, have been applied to combat some livestock ectoparasites. Among the entomopathogenic bacteria, Bacillus thuringiensis, innocuous for humans, animals, and plants and isolated from different environments, showed the most relevant activity against arthropods. Its entomopathogenic property is related to the production of highly biodegradable proteins. Entomopathogenic fungi and bacteria are usually employed against agricultural pests, and some studies have focused on their use to control animal arthropods. However, risks of infections in animals and humans are possible; thus, further studies about their activity are necessary. Abstract The present study aimed to review the papers dealing with the biological activity of fungi and bacteria against some mites and ticks of veterinary interest. In particular, the attention was turned to the research regarding acarid species, Dermanyssus gallinae and Psoroptes sp., which are the cause of severe threat in farm animals and, regarding ticks, also pets. Their impact on animal and human health has been stressed, examining the weaknesses and strengths of conventional treatments. Bacillus thuringiensis, Beauveria bassiana and Metarhizium anisopliae are the most widely employed agents. Their activities have been reviewed, considering the feasibility of an in-field application and the effectiveness of the administration alone or combined with conventional and alternative drugs is reported.
Collapse
Affiliation(s)
- Valentina Virginia Ebani
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-6968
| | - Francesca Mancianti
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
14
|
Benyahia H, Ouarti B, Diarra AZ, Boucheikhchoukh M, Meguini MN, Behidji M, Benakhla A, Parola P, Almeras L. Identification of Lice Stored in Alcohol Using MALDI-TOF MS. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1126-1133. [PMID: 33346344 DOI: 10.1093/jme/tjaa266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 06/12/2023]
Abstract
Lice pose major public and veterinary health problems with economic consequences. Their identification is essential and requires the development of an innovative strategy. MALDI-TOF MS has recently been proposed as a quick, inexpensive, and accurate tool for the identification of arthropods. Alcohol is one of the most frequently used storage methods and makes it possible to store samples for long periods at room temperature. Several recent studies have reported that alcohol alters protein profiles resulting from MS analysis. After preliminary studies on frozen lice, the purpose of this research was to evaluate the influence of alcohol preservation on the accuracy of lice identification by MALDI-TOF MS. To this end, lice stored in alcohol for variable periods were submitted for MS analysis and sample preparation protocols were optimized. The reproducibility and specificity of the MS spectra obtained on both these arthropod families allowed us to implement the reference MS spectra database (DB) with protein profiles of seven lice species stored in alcohol. Blind tests revealed a correct identification of 93.9% of Pediculus humanus corporis (Linnaeus, 1758) and 98.4% of the other lice species collected in the field. This study demonstrated that MALDI-TOF MS could be successfully used for the identification of lice stored in alcohol for different lengths of time.
Collapse
Affiliation(s)
- Hanene Benyahia
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Basma Ouarti
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Mehdi Boucheikhchoukh
- Department of Veterinary Sciences, Chadli Bendjedid University, El-Tarf, 36000, Algeria
| | - Mohamed Nadir Meguini
- Institute of Veterinary and Agronomic Sciences, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
| | - Makhlouf Behidji
- Institute of Veterinary and Agronomic Sciences, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
| | - Ahmed Benakhla
- Department of Veterinary Sciences, Chadli Bendjedid University, El-Tarf, 36000, Algeria
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
15
|
Mazorra-Alonso M, Tomás G, Soler JJ. Microbially Mediated Chemical Ecology of Animals: A Review of Its Role in Conspecific Communication, Parasitism and Predation. BIOLOGY 2021; 10:274. [PMID: 33801728 PMCID: PMC8065758 DOI: 10.3390/biology10040274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Microbial symbionts are nowadays considered of pivotal importance for animal life. Among the many processes where microorganisms are involved, an emerging research avenue focuses on their major role in driving the evolution of chemical communication in their hosts. Volatiles of bacterial origin may underlie chemical communication and the transfer of social information through signals, as well as inadvertent social information. We reviewed the role of microorganisms in animal communication between conspecifics, and, because the microbiome may cause beneficial as well as deleterious effects on their animal hosts, we also reviewed its role in determining the outcome of the interactions with parasites and predators. Finally, we paid special attention to the hypothetical role of predation and parasitism in driving the evolution of the animal microbiome. We highlighted the novelty of the theoretical framework derived from considering the microbiota of animals in scenarios of communication, parasitism, and predation. We aimed to encourage research in these areas, suggesting key predictions that need to be tested to better understand what is one of the main roles of bacteria in animal biology.
Collapse
Affiliation(s)
- Mónica Mazorra-Alonso
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
| | - Gustavo Tomás
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
- Unidad Asociada (Consejo Superior de Investigaciones Científicas): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071 Granada, Spain
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
- Unidad Asociada (Consejo Superior de Investigaciones Científicas): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
16
|
Vinturelle R, Mattos C, Meloni J, Lamberti HD, Nogueira J, da Silva Vaz Júnior I, Rocha L, Lione V, Folly E. Evaluation of essential oils as an ecological alternative in the search for control Rhipicephalus microplus (Acari: Ixodidae). VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 23:100523. [PMID: 33678378 DOI: 10.1016/j.vprsr.2020.100523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 11/17/2020] [Accepted: 12/20/2020] [Indexed: 01/21/2023]
Abstract
The cattle tick Rhipicephalus microplus is a significant problem for livestock, causing losses of billions of dollars per year. This work aimed to determine the chemical composition of essential oils obtained from Laurus nobilis and Copaifera officinalis and evaluate activity against engorged R. microplus females. Chemical composition analyzed by GC-MS revealed the presence of 39 components accounting for 95.38% of the oil in L. nobilis, the most abundant being 1,8-cineol (25.7%), trans-sabinene-hydrate (20.8%), and α-terpinil acetate (15.0%). Chemical analysis of C. officinalis oil identified 25 components corresponding to 80.5% of the total constituents, where the major compounds were β-caryophyllene (21.1%), caryophyllene oxide (10.7%), and α-trans-bergamotene (9.3%). Adult immersion test (AIT) showed that L. nobilis essential oil at 5% or 10% caused 80.5% mortality of engorged females after 24 h and reached 96.9% and 100% mortality on the third day after treatment, respectively. While the essential oil from C. officinalis caused 84.7% mortality after six days at 10% and at 5%, achieved approximately 100% mortality rate at the end of the experiment (day 15). Both essential oils and the combination significantly inhibited egg-laying; however, the combination treatment showed higher effectiveness than the isolated oils at 2.5%. A possible synergic action of L. nobilis and C. officinalis against the cattle tick R. microplus is therefore suggested. The present work introduces a potential alternative for the development of a formulation environment-friendly (green pesticide) used to control cattle tick infestations.
Collapse
Affiliation(s)
- Rafaelle Vinturelle
- Laboratório de Estudos de Pragas e Parasitos (LEPP), Universidade Federal Fluminense (UFF), Instituto de Biologia, Departamento de Biologia Celular e Molecular (GCM), Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, UFF, Niterói, RJ, Brazil
| | - Camila Mattos
- Laboratório de Estudos de Pragas e Parasitos (LEPP), Universidade Federal Fluminense (UFF), Instituto de Biologia, Departamento de Biologia Celular e Molecular (GCM), Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, UFF, Niterói, RJ, Brazil
| | - Jéssica Meloni
- Laboratório de Estudos de Pragas e Parasitos (LEPP), Universidade Federal Fluminense (UFF), Instituto de Biologia, Departamento de Biologia Celular e Molecular (GCM), Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, UFF, Niterói, RJ, Brazil
| | - Helen D Lamberti
- Laboratório de Estudos de Pragas e Parasitos (LEPP), Universidade Federal Fluminense (UFF), Instituto de Biologia, Departamento de Biologia Celular e Molecular (GCM), Niterói, RJ, Brazil
| | - Jeane Nogueira
- Laboratório de Tecnologia de Produtos Naturais, Faculdade de Farmácia, UFF, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Departamento de Farmácia e Administração Farmacêutica, Faculdade de Farmácia, UFF, Niterói, RJ, Brazil
| | - Itabajara da Silva Vaz Júnior
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, RS, Brazil; Instituto Nacional de Ciências e Tecnologia, Entomologia Molecular (INCT-EM), Brazil
| | - Leandro Rocha
- Laboratório de Tecnologia de Produtos Naturais, Faculdade de Farmácia, UFF, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Departamento de Farmácia e Administração Farmacêutica, Faculdade de Farmácia, UFF, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, UFF, Niterói, RJ, Brazil
| | - Viviane Lione
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Evelize Folly
- Laboratório de Estudos de Pragas e Parasitos (LEPP), Universidade Federal Fluminense (UFF), Instituto de Biologia, Departamento de Biologia Celular e Molecular (GCM), Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, UFF, Niterói, RJ, Brazil; Instituto Nacional de Ciências e Tecnologia, Entomologia Molecular (INCT-EM), Brazil.
| |
Collapse
|
17
|
Béland K, Séguin G, Lair S. Emamectin benzoate is a safe and effective anthelmintic against coelomic nematode Philometra rubra in striped bass Morone saxatilis. DISEASES OF AQUATIC ORGANISMS 2020; 142:47-53. [PMID: 33210611 DOI: 10.3354/dao03530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An unusually high mortality rate due to verminous (Philometra rubra) coelomitis was documented in wild-hatched striped bass Morone saxatilis raised in a fish hatchery as part of a stock restoration program. To decrease the parasitic burden and therefore potentially minimize mortality, the effectiveness of 2 different anthelmintics was evaluated. Two trials were conducted on wild-collected fingerlings naturally infected by P. rubra. In 2006, 144 yearling fish were randomly assigned to 4 experimental groups: (1) levamisole (Levasol®) at 2 mg l-1 via immersion for 8 h once weekly for 3 wk; (2) levamisole at a dose of 2.5 mg kg-1 biomass via feed once daily for 7 d; (3) emamectin benzoate (Slice®) at a dose of 0.05 mg kg-1 biomass via feed once daily for 7 d; and (4) control. Emamectin successfully eliminated live nematodes in 84.9% of the fish, whereas the administration of levamisole, either via immersion or feed, was not successful in significantly reducing the number of live P. rubra. In 2007, the administration of the same dosage of emamectin to approximately 1000 naturally infected yearling striped bass was associated with a 100% mortality rate of P. rubra in the 30 fish randomly examined 5 wk after the beginning of the treatment. Results of these trials indicate that, at the dosage used, the administration of emamectin at the end of the summer is safe for striped bass yearlings and considerably reduces the prevalence and intensity of the infection by this parasite.
Collapse
Affiliation(s)
- Karine Béland
- Centre québécois sur la santé des animaux sauvages / Canadian Wildlife Health Cooperative, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Quebec J2S 8H5, Canada
| | | | | |
Collapse
|
18
|
Mul MF, van Vugt SMA, Goselink YSM, van den Brand H. Effects of heating laying hen houses between consecutive laying cycles on the survival of the poultry red mite Dermanyssus gallinae. Vet Parasitol 2020; 288:109307. [PMID: 33220641 DOI: 10.1016/j.vetpar.2020.109307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/25/2022]
Abstract
The poultry red mite (PRM) Dermanyssus gallinae, the most common ectoparasite affecting laying hens worldwide, is difficult to control. During the period between consecutive laying cycles, when no hens are present in the layer house, the PRM population can be reduced drastically. Heating a layer house to temperatures above 45 °C for several days in order to kill PRM has been applied in Europe. The effect of such a heat treatment on the survival of PRM adults, nymphs and eggs, however, is largely unknown. To determine that effect, an experiment was executed in four layer houses. Nylon bags with ten PRM adults, nymphs or eggs were placed at five different locations, being a) inside the nest boxes, b) between two wooden boards, to simulate refugia, c) near an air inlet, d) on the floor, under approximately 1 cm of manure and e) on the floor without manure. Mite survival was measured in 6 replicates of each of these locations in each of four layer houses. After heating up the layer house, in this case with a wood pellet burning heater, the temperature of the layer house was maintained at ≥ 45 °C for at least 48 h. Thereafter, the bags were collected and the mites were assessed as being dead or alive. The eggs were assessed for hatchability. Despite a maximum temperature of only 44 °C being reached at one location, near an air inlet, all stages of PRM were dead after the heat treatment. It can be concluded that a heat treatment of layer houses between consecutive laying cycles appears to be an effective method to control PRM.
Collapse
Affiliation(s)
- Monique F Mul
- Wageningen Livestock Research, P.O. Box 338, 6700 AH, Wageningen, the Netherlands.
| | - Sonja M A van Vugt
- Wageningen University, Adaptation Physiology Group. P.O. Box 338, 6700 AH Wageningen, the Netherlands
| | - Yvo S M Goselink
- Wageningen University, Adaptation Physiology Group. P.O. Box 338, 6700 AH Wageningen, the Netherlands
| | - Henry van den Brand
- Wageningen University, Adaptation Physiology Group. P.O. Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
19
|
Swain JK, Carpio Y, Johansen LH, Velazquez J, Hernandez L, Leal Y, Kumar A, Estrada MP. Impact of a candidate vaccine on the dynamics of salmon lice (Lepeophtheirus salmonis) infestation and immune response in Atlantic salmon (Salmo salar L.). PLoS One 2020; 15:e0239827. [PMID: 33006991 PMCID: PMC7531828 DOI: 10.1371/journal.pone.0239827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/14/2020] [Indexed: 11/19/2022] Open
Abstract
Infection with parasitic copepod salmon louse Lepeophtheirus salmonis, represents one of the most important limitations to sustainable Atlantic salmon (Salmo salar L.) farming today in the North Atlantic region. The parasite exerts negative impact on health, growth and welfare of farmed fish as well as impact on wild salmonid populations. It is therefore central to ensure continuous low level of salmon lice with the least possible handling of the salmon and drug use. To address this, vaccination is a cost-effective and environmentally friendly control approach. In this study, efficacy of a vaccine candidate, containing a peptide derived from ribosomal protein P0, was validated post infestation with L. salmonis, at the lab-scale. The sampling results showed good potential of the vaccine candidate when administered intraperitoneally in the host, in reducing the ectoparasite load, through reduction of adult female lice counts and fecundity and with greater presumptive effect in F1 lice generation. The sampling results correlated well with the differential modulation of pro-inflammatory, Th1, Th2 and T regulatory mediators at the transcript level at different lice stages. Overall, the results supports approximately 56% efficacy when administered by intraperitoneal injection. However, additional validation is necessary under large-scale laboratory trial for further application under field conditions.
Collapse
Affiliation(s)
- Jaya Kumari Swain
- Nofima—The Food Research Institute, Tromsø, Norway
- * E-mail: (JKS); (YC); (MPE)
| | - Yamila Carpio
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- * E-mail: (JKS); (YC); (MPE)
| | | | - Janet Velazquez
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Liz Hernandez
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Yeny Leal
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Ajey Kumar
- Symbiosis Centre for Information Technology, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Mario Pablo Estrada
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- * E-mail: (JKS); (YC); (MPE)
| |
Collapse
|
20
|
Bui S, Geitung L, Oppedal F, Barrett LT. Salmon lice survive the straight shooter: A commercial scale sea cage trial of laser delousing. Prev Vet Med 2020; 181:105063. [PMID: 32593083 DOI: 10.1016/j.prevetmed.2020.105063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Ectoparasitic salmon louse (Lepeophtheirus salmonis) infestations are costly for Atlantic salmon (Salmo salar) farmers in Norway. As a result, there is a strong desire for solutions to prevent and control infestations, and new technologies are typically developed and commercialised rapidly, without rigorous validation. Here, we tested the efficacy of a new commercially available control measure-delousing by underwater lasers-using a replicated design at full commercial scale. Laser delousing was used in combination with a preventive method (snorkel cages), with laser nodes deployed in 3 of the 6 sea cages at the site. The trial ran for 54 days, after which time there was no difference in infestation density of mobile salmon louse stages (pre-adult, adult male or adult female) in cages with or without laser nodes installed. By the end of the trial, adult female lice numbers in all cages were close to the legislated trigger for mandatory delousing (0.5 adult female lice per fish). The laser nodes delivered a large number of pulses relative to the number of lice in the cages, indicating that a lack of lethality rather than a lack of target detection was the limiting factor. If all pulses had been effective, they should have removed between 4-38 % of mobile lice each day. There was no effect on salmon welfare indicators such as skin condition or eye status. Our results highlight the importance of rigorous validation of new technologies across a range of conditions before widespread implementation by industry.
Collapse
Affiliation(s)
- Samantha Bui
- Animal Welfare Research Group, Institute of Marine Research, Matredal 5984, Norway.
| | - Lena Geitung
- Bremnes Seashore AS, Øklandsvegen 90, 5430 Bremnes, Norway; Department of Biology, University of Bergen, 5006 Bergen, Norway
| | - Frode Oppedal
- Animal Welfare Research Group, Institute of Marine Research, Matredal 5984, Norway
| | - Luke T Barrett
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), School of BioSciences, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
21
|
Contreras M, Karlsen M, Villar M, Olsen RH, Leknes LM, Furevik A, Yttredal KL, Tartor H, Grove S, Alberdi P, Brudeseth B, de la Fuente J. Vaccination with Ectoparasite Proteins Involved in Midgut Function and Blood Digestion Reduces Salmon Louse Infestations. Vaccines (Basel) 2020; 8:vaccines8010032. [PMID: 31963779 PMCID: PMC7157638 DOI: 10.3390/vaccines8010032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
Infestation with the salmon louse Lepeophtheirus salmonis (Copepoda, Caligidae) affects Atlantic salmon (Salmo salar L.) production in European aquaculture. Furthermore, high levels of salmon lice in farms significantly increase challenge pressure against wild salmon populations. Currently, available control methods for salmon louse have limitations, and vaccination appears as an attractive, environmentally sound strategy. In this study, we addressed one of the main limitations for vaccine development, the identification of candidate protective antigens. Based on recent advances in tick vaccine research, herein, we targeted the salmon louse midgut function and blood digestion for the identification of candidate target proteins for the control of ectoparasite infestations. The results of this translational approach resulted in the identification and subsequent evaluation of the new candidate protective antigens, putative Toll-like receptor 6 (P30), and potassium chloride, and amino acid transporter (P33). Vaccination with these antigens provided protection in Atlantic salmon by reducing adult female (P33) or chalimus II (P30) sea lice infestations. These results support the development of vaccines for the control of sea lice infestations.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
| | - Marius Karlsen
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Rolf Hetlelid Olsen
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Lisa Marie Leknes
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Anette Furevik
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Karine Lindmo Yttredal
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Haitham Tartor
- Norwegian Veterinary Institute, 0106 Oslo, Norway; (H.T.); (S.G.)
| | - Soren Grove
- Norwegian Veterinary Institute, 0106 Oslo, Norway; (H.T.); (S.G.)
- Institute of Marine Research, 5005 Bergen, Norway
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
| | - Bjorn Brudeseth
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
- Correspondence: (B.B.); (J.d.l.F.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence: (B.B.); (J.d.l.F.)
| |
Collapse
|
22
|
Nezhadali A, Babazadeh T, Nadrian H, Allahverdipour H. Cognitive Factors Associated to Pediculosis Preventive Behaviors Among Mothers of School-Age Children in Chaldoran County, Iran. J Multidiscip Healthc 2020; 13:19-26. [PMID: 32021231 PMCID: PMC6966949 DOI: 10.2147/jmdh.s237101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/20/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Despite the improvement of living standards and public health as well as conducting the specific programs based on pediculosis control guidelines, Head Lice Infestation (HLI) is still a worldwide health concern. The purpose of this study was to investigate the cognitive factors associated to school-age children's HLI among mothers in an urban community. SUBJECTS AND METHODS In this cross-sectional study, a multi-stage cluster random sample of 619 mothers of students in elementary schools of Chaldoran County, located in North-West of Iran, was recruited to participate in the study. Data were collected applying a set of questionnaires including socio-demographic and cognitive-behavioral factors, including Pediculosis Preventive Behaviors (PPBs), HLI knowledge, threat appraisal, as well as HLI prevention perceived self-efficacy, response efficacy, and perceived collective family efficacy. RESULTS Statistically significant differences were found in the children's HLI by their mother's age and performance in PPBs (p-value=0.001). Hierarchical multiple linear regressions were performed with PPBs as outcome variable. According to their natures, the predictors for this outcome variable were classified in two different blocks. Demographic characteristics (p > 0.05), and cognitive constructs (p< 0.001) explained 9% and 21.1% of the observed variance in PPBs, respectively. Pediculosis was found as an epidemic among the students, particularly female students, of Chaldoran County, which call for action by health stakeholders and policymakers. CONCLUSION The healthcare providers are recommended to develop HLI prevention programs, within which the mothers and their school-age children as well as school mangers and public places' employers are considered as the core target groups for interventions. Besides PPBs, response efficacy and perceived collective family efficacy to perform the behaviors should be considered as the core categories while designing such prevention programs.
Collapse
Affiliation(s)
- Ali Nezhadali
- Department of Health Education and Promotion, Faculty of Health Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Towhid Babazadeh
- Department of Public Health, Sarab Faculty of Medical Sciences, Sarab14711, Iran
| | - Haidar Nadrian
- Department of Health Education & Promotion, Tabriz University of Medical Sciences, Tabriz14711, Iran
| | - Hamid Allahverdipour
- Research Center of Psychiatry and Behavioral Sciences, Department of Health Education & Promotion, Tabriz University of Medical Sciences, Tabriz14711, Iran
| |
Collapse
|
23
|
Larsen KE, Lifschitz AL, Lanusse CE, Virkel GL. In vitro and in vivo effects of chlorpyrifos and cypermethrin on blood cholinesterases in sheep. J Vet Pharmacol Ther 2019; 42:548-555. [PMID: 31328799 DOI: 10.1111/jvp.12798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/15/2019] [Accepted: 06/27/2019] [Indexed: 11/28/2022]
Abstract
The combination of the organophosphate (OP) chlorpyrifos (CPF) and the pyrethroid cypermethrin (CPM) is commonly marketed as pour-on formulations for the control of sheep lice, ked, and blowflies. CPF irreversibly inhibits acetylcholinesterases (AChE), while pyrethroids are not AChE inhibitors. However, combinations of pyrethroids with OPs showed a highly synergistic effect on AChE inhibition. Thus, the aim of the current work was to evaluate in vitro and in vivo the inhibitory potency of both pesticides, alone and in combination with AChE and butyrylcholinesterase (BChE) activities in sheep blood. In vitro, IC50 values were similar after CPF or CPF plus CPM incubations. The pour-on coadministration of recommended doses of CPF and CPM did not cause a significant inhibition of AChE and BChE in sheep blood. Only slight percentages of inhibition of their catalytic activities were observed when both drugs were given at 4-fold higher dose rates. The lower systemic availability of topical administration of OPs in sheep may help to explain the lower degree of inhibition of blood AChE and BChE in vivo. The results emerged from this research are a further contribution to the knowledge of the risks of implementing higher dosage regimens of OPs-containing antiparasitic formulations.
Collapse
Affiliation(s)
- Karen E Larsen
- Laboratorio de Ecotoxicología y Biología Celular, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina.,Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN-CIC-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Adrián L Lifschitz
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN-CIC-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Carlos E Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN-CIC-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Guillermo L Virkel
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN-CIC-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| |
Collapse
|
24
|
Engelman D, Cantey PT, Marks M, Solomon AW, Chang AY, Chosidow O, Enbiale W, Engels D, Hay RJ, Hendrickx D, Hotez PJ, Kaldor JM, Kama M, Mackenzie CD, McCarthy JS, Martin DL, Mengistu B, Maurer T, Negussu N, Romani L, Sokana O, Whitfeld MJ, Fuller LC, Steer AC. The public health control of scabies: priorities for research and action. Lancet 2019; 394:81-92. [PMID: 31178154 PMCID: PMC11257500 DOI: 10.1016/s0140-6736(19)31136-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/14/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022]
Abstract
Scabies is a parasitic disease of the skin that disproportionately affects disadvantaged populations. The disease causes considerable morbidity and leads to severe bacterial infection and immune-mediated disease. Scientific advances from the past 5 years suggest that scabies is amenable to population-level control, particularly through mass drug administration. In recognition of these issues, WHO added scabies to the list of neglected tropical diseases in 2017. To develop a global control programme, key operational research questions must now be addressed. Standardised approaches to diagnosis and methods for mapping are required to further understand the burden of disease. The safety of treatments for young children, including with ivermectin and moxidectin, should be investigated. Studies are needed to inform optimum implementation of mass treatment, including the threshold for intervention, target, dosing, and frequency. Frameworks for surveillance, monitoring, and evaluation of control strategies are also necessary.
Collapse
Affiliation(s)
- Daniel Engelman
- Tropical Diseases Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Department of General Medicine, Royal Children's Hospital, Melbourne, VIC, Australia.
| | - Paul T Cantey
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Michael Marks
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Anthony W Solomon
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Aileen Y Chang
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Olivier Chosidow
- Department of Dermatology, Hôpital Henri-Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France; Université Paris-Est Créteil Val-de-Marne, Créteil, France
| | - Wendemagegn Enbiale
- Department of Dermatovenerology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Dirk Engels
- Uniting to Combat Neglected Tropical Diseases, Switzerland
| | - Roderick J Hay
- Department of Dermatology, King's College London, London, UK
| | - David Hendrickx
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Peter J Hotez
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - John M Kaldor
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Mike Kama
- Ministry of Health and Medical Services, Suva, Fiji
| | | | - James S McCarthy
- QIMR Berghoefer Medical Research Institute, Brisbane, QLD, Australia
| | - Diana L Martin
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Toby Maurer
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | | | - Lucia Romani
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Oliver Sokana
- Ministry of Health and Medical Services, Honiara, Solomon Islands
| | - Margot J Whitfeld
- Department of Dermatology, St Vincent's Hospital, University of New South Wales, Sydney, NSW, Australia
| | - L Claire Fuller
- Chelsea and Westminster Healthcare National Health Service Foundation Trust, London, UK; International Foundation for Dermatology, London, UK
| | - Andrew C Steer
- Tropical Diseases Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Department of General Medicine, Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Sievers M, Oppedal F, Ditria E, Wright DW. The effectiveness of hyposaline treatments against host-attached salmon lice. Sci Rep 2019; 9:6976. [PMID: 31061506 PMCID: PMC6502938 DOI: 10.1038/s41598-019-43533-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/17/2019] [Indexed: 11/27/2022] Open
Abstract
Understanding how salinity affects marine parasites is vital to understanding their ecology and treatment, particularly for host-parasite systems that traverse marine and freshwater realms such as the globally important Atlantic salmon (Salmo salar), salmon louse (Lepeophtheirus salmonis) system. Growing concerns for wild fish populations, and decreased efficiencies and burgeoning costs of lice treatments for farmed fish has necessitated more environmentally and socially acceptable delousing procedures, such as hyposaline treatments. The effect of brackish water on L. salmonis following primary attachment is largely unknown, with experimental evidence derived mostly from unattached or newly attached copepodids, or adult stages. We aimed to understand how attached lice respond to hyposaline environments to assess effectiveness as a parasite management strategy and to help better define delousing areas used by wild fish. Louse development at 4, 12, 19 and 26 ppt, and survival at 4 ppt, decreased as exposure times increased, but survival was otherwise unaffected. Subjecting salmon to fluctuating, repeat exposures did not influence efficacy. We confirm that free-swimming stages are susceptible, and show that attached copepodids were more tolerant than previously predicted based on experiments on alternate development stages. These results improve our understanding of the utility of hyposaline treatments in aquaculture and self-treating in wild fish, and could apply to other fish-lice parasite systems. Further, these data are important for models predicting host-parasite interactions and can contribute to predictive models on the transmission dynamics of sea lice from farm to wild fish.
Collapse
Affiliation(s)
- Michael Sievers
- Institute of Marine Research, 5984, Matredal, Norway. .,Australian Rivers Institute - Coast and Estuaries, Griffith University, Gold Coast, 4222, Queensland, Australia. .,Australian Rivers Institute - Coast and Estuaries, Griffith University, Gold Coast, 4222, Queensland, Australia.
| | - Frode Oppedal
- Institute of Marine Research, 5984, Matredal, Norway
| | - Ellen Ditria
- Institute of Marine Research, 5984, Matredal, Norway.,Australian Rivers Institute - Coast and Estuaries, Griffith University, Gold Coast, 4222, Queensland, Australia.,Australian Rivers Institute - Coast and Estuaries, Griffith University, Gold Coast, 4222, Queensland, Australia
| | | |
Collapse
|
26
|
Taank V, Zhou W, Zhuang X, Anderson JF, Pal U, Sultana H, Neelakanta G. Characterization of tick organic anion transporting polypeptides (OATPs) upon bacterial and viral infections. Parasit Vectors 2018; 11:593. [PMID: 30428915 PMCID: PMC6236954 DOI: 10.1186/s13071-018-3160-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Ixodes scapularis organic anion transporting polypeptides (OATPs) play important roles in tick-rickettsial pathogen interactions. In this report, we characterized the role of these conserved molecules in ticks infected with either Lyme disease agent Borrelia burgdorferi or tick-borne Langat virus (LGTV), a pathogen closely related to tick-borne encephalitis virus (TBEV). Results Quantitative real-time polymerase chain reaction analysis revealed no significant changes in oatps gene expression upon infection with B. burgdorferi in unfed ticks. Synchronous infection of unfed nymphal ticks with LGTV in vitro revealed no significant changes in oatps gene expression. However, expression of specific oatps was significantly downregulated upon LGTV infection of tick cells in vitro. Treatment of tick cells with OATP inhibitor significantly reduced LGTV loads, kynurenine amino transferase (kat), a gene involved in the production of tryptophan metabolite xanthurenic acid (XA), levels and expression of several oatps in tick cells. Furthermore, bioinformatics characterization of OATPs from some of the medically important vectors including ticks, mosquitoes and lice revealed the presence of several glycosylation, phosphorylation and myristoylation sites. Conclusions This study provides additional evidence on the role of arthropod OATPs in vector-intracellular pathogen interactions. Electronic supplementary material The online version of this article (10.1186/s13071-018-3160-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vikas Taank
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Wenshuo Zhou
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Xuran Zhuang
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - John F Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA. .,Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
27
|
Engelman D, Steer AC. Control Strategies for Scabies. Trop Med Infect Dis 2018; 3:E98. [PMID: 30274494 PMCID: PMC6160909 DOI: 10.3390/tropicalmed3030098] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 10/29/2022] Open
Abstract
Scabies is a neglected tropical disease of the skin, causing severe itching and stigmatizing skin lesions. Further, scabies leads to impetigo, severe bacterial infections, and post-infectious complications. Around 200 million people are affected, particularly among disadvantaged populations living in crowded conditions in tropical areas. After almost 50 years, research into scabies control has shown great promise, particularly in highly-endemic island settings, but these findings have not been widely adopted. Newer approaches, utilizing ivermectin-based mass drug administration, appear feasible and highly effective. Inclusion of scabies in the WHO portfolio of neglected tropical diseases in 2017 may facilitate renewed opportunities and momentum toward global control. However, further operational research is needed to develop evidence-based strategies for control in a range of settings, and monitor their impact. Several enabling factors are required for successful implementation, including availability of affordable drug supply. Integration with existing health programs may provide a cost-effective approach to control.
Collapse
Affiliation(s)
- Daniel Engelman
- Tropical Diseases, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.
- Department of Paediatrics, University of Melbourne, Parkville VIC 3052, Australia.
- Department of General Medicine, Royal Children's Hospital, Parkville VIC 3052, Australia.
- International Alliance for the Control of Scabies, Parkville VIC 3052, Australia.
| | - Andrew C Steer
- Tropical Diseases, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.
- Department of Paediatrics, University of Melbourne, Parkville VIC 3052, Australia.
- Department of General Medicine, Royal Children's Hospital, Parkville VIC 3052, Australia.
- International Alliance for the Control of Scabies, Parkville VIC 3052, Australia.
| |
Collapse
|
28
|
In vitro bioassays used in evaluating plant extracts for tick repellent and acaricidal properties: A critical review. Vet Parasitol 2018; 254:160-171. [DOI: 10.1016/j.vetpar.2018.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/09/2023]
|
29
|
Stutzer C, Richards SA, Ferreira M, Baron S, Maritz-Olivier C. Metazoan Parasite Vaccines: Present Status and Future Prospects. Front Cell Infect Microbiol 2018; 8:67. [PMID: 29594064 PMCID: PMC5859119 DOI: 10.3389/fcimb.2018.00067] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic parasites and pathogens continue to cause some of the most detrimental and difficult to treat diseases (or disease states) in both humans and animals, while also continuously expanding into non-endemic countries. Combined with the ever growing number of reports on drug-resistance and the lack of effective treatment programs for many metazoan diseases, the impact that these organisms will have on quality of life remain a global challenge. Vaccination as an effective prophylactic treatment has been demonstrated for well over 200 years for bacterial and viral diseases. From the earliest variolation procedures to the cutting edge technologies employed today, many protective preparations have been successfully developed for use in both medical and veterinary applications. In spite of the successes of these applications in the discovery of subunit vaccines against prokaryotic pathogens, not many targets have been successfully developed into vaccines directed against metazoan parasites. With the current increase in -omics technologies and metadata for eukaryotic parasites, target discovery for vaccine development can be expedited. However, a good understanding of the host/vector/pathogen interface is needed to understand the underlying biological, biochemical and immunological components that will confer a protective response in the host animal. Therefore, systems biology is rapidly coming of age in the pursuit of effective parasite vaccines. Despite the difficulties, a number of approaches have been developed and applied to parasitic helminths and arthropods. This review will focus on key aspects of vaccine development that require attention in the battle against these metazoan parasites, as well as successes in the field of vaccine development for helminthiases and ectoparasites. Lastly, we propose future direction of applying successes in pursuit of next generation vaccines.
Collapse
Affiliation(s)
- Christian Stutzer
- Tick Vaccine Group, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
30
|
Benelli G, Pavela R. Repellence of essential oils and selected compounds against ticks-A systematic review. Acta Trop 2018; 179:47-54. [PMID: 29287758 DOI: 10.1016/j.actatropica.2017.12.025] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/11/2017] [Accepted: 12/23/2017] [Indexed: 01/17/2023]
Abstract
Ticks act as vectors of a wide range of infectious agents, far encompassing any other group of bloodsucking arthropods worldwide. The prevention of tick-borne diseases is strictly linked to the successful management of tick vector populations. The employ of repellents can represent a worth solution to avoid tick bites. It is widely adopted to protect travellers and pets exposed to ticks during limited periods of the year. The use of natural products as active ingredients in eco-friendly repellent formulations is currently a prominent research area, due to the wide diversity and high effectiveness of a number of plant-borne compounds, with special reference to essential oils (EOs) extracted from medicinal and aromatic species. Here, we reviewed current knowledge available on EOs tested as repellents against tick species of veterinary importance. Furthermore, we analysed the effectiveness of pure compounds isolated from EOs as tick repellents and their potential implications for practical use in the öreal world". A quantitative analysis of literature available is this research field was provided, along with its impact (i.e., in terms of citations over time) on the scientific community of researchers in tick control science and natural product chemistry. In the final sections, future outlooks are highlighted. We discussed major challenges to stabilize the most effective EOs and pure molecules, explore the synergistic and antagonistic effects in blends of EOs and/or pure constituents, standardize currently adopted testing methods, and evaluate non-target risks of herbal repellents.
Collapse
|
31
|
Torina A, Blanda V, Blanda M, Auteri M, La Russa F, Scimeca S, D'Agostino R, Disclafani R, Villari S, Currò V, Caracappa S. A Geographical Information System Based Approach for Integrated Strategies of Tick Surveillance and Control in the Peri-Urban Natural Reserve of Monte Pellegrino (Palermo, Southern Italy). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15030404. [PMID: 29495440 PMCID: PMC5876949 DOI: 10.3390/ijerph15030404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/17/2023]
Abstract
Ticks (Acari: Ixodidae) are bloodsucking arthropods involved in pathogen transmission in animals and humans. Tick activity depends on various ecological factors such as vegetation, hosts, and temperature. The aim of this study was to analyse the spatial/temporal distribution of ticks in six sites within a peri-urban area of Palermo (Natural Reserve of Monte Pellegrino) and correlate it with field data using Geographical Information System (GIS) data. A total of 3092 ticks were gathered via dragging method from June 2012 to May 2014. The species collected were: Ixodes ventalloi (46.09%), Hyalomma lusitanicum (19.99%), Rhipicephalus sanguineus (17.34%), Rhipicephalus pusillus (16.11%), Haemaphisalis sulcata (0.36%), Dermacentor marginatus (0.10%), and Rhipicephalus turanicus (0.03%). GIS analysis revealed environmental characteristics of each site, and abundance of each tick species was analysed in relation to time (monthly trend) and space (site-specific abundance). A relevant presence of I. ventalloi in site 2 and H. lusitanicum in site 5 was observed, suggesting the possible exposure of animals and humans to tick-borne pathogens. Our study shows the importance of surveillance of ticks in peri-urban areas and the useful implementation of GIS analysis in vector ecology; studies on temporal and spatial distribution of ticks correlated to GIS-based ecological analysis represent an integrated strategy for decision support in public health.
Collapse
Affiliation(s)
- Alessandra Torina
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Marcellocalogero Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Michelangelo Auteri
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Francesco La Russa
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Salvatore Scimeca
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Rosalia D'Agostino
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Rosaria Disclafani
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Sara Villari
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Vittoria Currò
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| | - Santo Caracappa
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Via G. Marinuzzi 3, 90100 Palermo, Italy.
| |
Collapse
|
32
|
Wang T, Xie Y, Zheng Y, Wang C, Li D, Koehler AV, Gasser RB. Parasites of the Giant Panda: A Risk Factor in the Conservation of a Species. ADVANCES IN PARASITOLOGY 2018. [PMID: 29530307 PMCID: PMC7103118 DOI: 10.1016/bs.apar.2017.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The giant panda, with an estimated population size of 2239 in the world (in 2015), is a global symbol of wildlife conservation that is threatened by habitat loss, poor reproduction and limited resistance to some infectious diseases. Of these factors, some diseases caused by parasites are considered as the foremost threat to its conservation. However, there is surprisingly little published information on the parasites of the giant panda, most of which has been disseminated in the Chinese literature. Herein, we review all peer-reviewed publications (in English or Chinese language) and governmental documents for information on parasites of the giant pandas, with an emphasis on the intestinal nematode Baylisascaris schroederi (McIntosh, 1939) as it dominates published literature. The purpose of this chapter is to: (i) review the parasites recorded in the giant panda and describe what is known about their biology; (ii) discuss key aspects of the pathogenesis, diagnosis, treatment and control of key parasites that are reported to cause clinical problems and (iii) conclude by making some suggestions for future research. This chapter shows that we are only just 'scratching the surface' when it comes to parasites and parasitological research of the giant panda. Clearly, there needs to be a concerted research effort to support the conservation of this iconic species.
Collapse
Affiliation(s)
- Tao Wang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Youle Zheng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chengdong Wang
- China Conservation and Research Centre for the Giant Panda, Ya'an, Sichuan, China
| | - Desheng Li
- China Conservation and Research Centre for the Giant Panda, Ya'an, Sichuan, China
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
33
|
Turcotte MM, Araki H, Karp DS, Poveda K, Whitehead SR. The eco-evolutionary impacts of domestication and agricultural practices on wild species. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0033. [PMID: 27920378 DOI: 10.1098/rstb.2016.0033] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 01/21/2023] Open
Abstract
Agriculture is a dominant evolutionary force that drives the evolution of both domesticated and wild species. However, the various mechanisms of agriculture-induced evolution and their socio-ecological consequences are not often synthetically discussed. Here, we explore how agricultural practices and evolutionary changes in domesticated species cause evolution in wild species. We do so by examining three processes by which agriculture drives evolution. First, differences in the traits of domesticated species, compared with their wild ancestors, alter the selective environment and create opportunities for wild species to specialize. Second, selection caused by agricultural practices, including both those meant to maximize productivity and those meant to control pest species, can lead to pest adaptation. Third, agriculture can cause non-selective changes in patterns of gene flow in wild species. We review evidence for these processes and then discuss their ecological and sociological impacts. We finish by identifying important knowledge gaps and future directions related to the eco-evolutionary impacts of agriculture including their extent, how to prevent the detrimental evolution of wild species, and finally, how to use evolution to minimize the ecological impacts of agriculture.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Martin M Turcotte
- Center for Adaptation to a Changing Environment, CHN G35.1, Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, Zürich 8092, Switzerland
| | - Hitoshi Araki
- Research Faculty of Agriculture, Hokkaido University, Sapporo 0608589, Hokkaido, Japan
| | - Daniel S Karp
- Institute for Resources, Environment, and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - Katja Poveda
- Department of Entomology, Cornell University, Comstock Hall 4117, Ithaca, NY 14853, USA
| | - Susan R Whitehead
- Department of Entomology, Cornell University, Comstock Hall 4117, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Torre GLTD, Ponsaran KMG, de Guzman ALDP, Manalo RAM, Arollado EC. Safety, Efficacy, and Physicochemical Characterization of Tinospora crispa Ointment: A Community-Based Formulation against Pediculus humanus capitis. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:409-416. [PMID: 28877572 PMCID: PMC5594725 DOI: 10.3347/kjp.2017.55.4.409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 11/23/2022]
Abstract
The high prevalence of pediculosis capitis, commonly known as head lice (Pediculus humanus capitis) infestation, has led to the preparation of a community-based pediculicidal ointment, which is made of common household items and the extract of Tinospora crispa stem. The present study aimed to evaluate the safety, efficacy, and physicochemical characteristics of the T. crispa pediculicidal ointment. The physicochemical properties of the ointment were characterized, and safety was determined using acute dermal irritation test (OECD 404), while the efficacy was assessed using an in vitro pediculicidal assay. Furthermore, the chemical compounds present in T. crispa were identified using liquid-liquid extraction followed by ultra-performance liquid chromatography quadruple time-of-flight mass spectrometric (UPLC-qTOF/MS) analysis. The community-based ointment formulation was light yellow in color, homogeneous, smooth, with distinct aromatic odor and pH of 6.92±0.09. It has spreadability value of 15.04±0.98 g·cm/sec and has thixotropic behavior. It was also found to be non-irritant, with a primary irritation index value of 0.15. Moreover, it was comparable to the pediculicidal activity of the positive control Kwell®, a commercially available 1% permethrin shampoo (P>0.05), and was significantly different to the activity of the negative control ointment, a mixture of palm oil and candle wax (P<0.05). These findings suggested that the community-based T. crispa pediculicidal ointment is safe and effective, having acceptable physicochemical characteristics. Its activity can be attributed to the presence of compounds moupinamide and physalin I.
Collapse
Affiliation(s)
- Gerwin Louis Tapan Dela Torre
- Institute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Ermita, Manila 1000, the Philippines
| | - Kerstin Mariae Gonzales Ponsaran
- Institute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Ermita, Manila 1000, the Philippines
| | - Angelica Louise Dela Peña de Guzman
- Institute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Ermita, Manila 1000, the Philippines
| | - Richelle Ann Mallapre Manalo
- Institute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Ermita, Manila 1000, the Philippines
| | - Erna Custodio Arollado
- Institute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Ermita, Manila 1000, the Philippines
- Department of Pharmacy, College of Pharmacy, University of the Philippines Manila, Ermita, Manila 1000, the Philippines
- Corresponding author ()
| |
Collapse
|
35
|
Sutherland BJ, Covello JM, Friend SE, Poley JD, Koczka KW, Purcell SL, MacLeod TL, Donovan BR, Pino J, González-Vecino JL, Gonzalez J, Troncoso J, Koop BF, Wadsworth SL, Fast MD. Host–parasite transcriptomics during immunostimulant-enhanced rejection of salmon lice (Lepeophtheirus salmonis) by Atlantic salmon (Salmo salar). Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Salmon lice ( Lepeophtheirus salmonis) are important ectoparasites of wild and farmed salmonids and cause major losses to the salmon farming industry throughout the Northern Hemisphere. With the emergence of resistance to several commonly used parasiticides, novel control strategies and integration of multiple treatment options are needed, including host immunostimulation. Here, we investigate the effects of a functional feed containing a peptidoglycan and nucleotide formulation on L. salmonis infection of Atlantic salmon ( Salmo salar) by characterizing lice infection levels, the expression of several host immune genes, and the parasite transcriptomic response to the immunostimulated host. Although initial infection intensities were low, the low dose (LD) immunostimulant diet reduced the total lice burden by 50% relative to controls. Immunostimulant fed hosts up-regulated interleukin-1β in the skin and spleen. This gene has been implicated in successful responses of several salmonid species to salmon lice but is typically not observed in Atlantic salmon, suggesting a favorable influence on the immune response. Lice infecting LD immunostimulated salmon overexpressed genes putatively involved in parasite immunity, including carboxylesterases, and underexpressed genes putatively involved in feeding (e.g., proteases). These lice response genes further improve the characterization of the transcriptome of the non-model parasite by identifying genes potentially involved in evading host immunity.
Collapse
Affiliation(s)
- Ben J.G. Sutherland
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Jennifer M. Covello
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Sarah E. Friend
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | - Jordan D. Poley
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Kim W. Koczka
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Sara L. Purcell
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Tara L. MacLeod
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Bridget R. Donovan
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Jorge Pino
- EWOS/Cargill Innovation Center—Colaco, Colaco KM5, Puerto Montt, Chile
| | | | - Javier Gonzalez
- EWOS/Cargill Innovation Center—Colaco, Colaco KM5, Puerto Montt, Chile
| | - Jose Troncoso
- EWOS/Cargill Innovation Center—Colaco, Colaco KM5, Puerto Montt, Chile
| | - Ben F. Koop
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - Mark D. Fast
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
36
|
Leulmi H, Diatta G, Sokhna C, Rolain JM, Raoult D. Assessment of oral ivermectin versus shampoo in the treatment of pediculosis (head lice infestation) in rural areas of Sine-Saloum, Senegal. Int J Antimicrob Agents 2016; 48:627-632. [DOI: 10.1016/j.ijantimicag.2016.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 11/27/2022]
|
37
|
Olivieri I, Tonnabel J, Ronce O, Mignot A. Why evolution matters for species conservation: perspectives from three case studies of plant metapopulations. Evol Appl 2015; 9:196-211. [PMID: 27087848 PMCID: PMC4780382 DOI: 10.1111/eva.12336] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 09/30/2015] [Indexed: 01/16/2023] Open
Abstract
We advocate the advantage of an evolutionary approach to conservation biology that considers evolutionary history at various levels of biological organization. We review work on three separate plant taxa, spanning from one to multiple decades, illustrating extremes in metapopulation functioning. We show how the rare endemics Centaurea corymbosa (Clape Massif, France) and Brassica insularis in Corsica (France) may be caught in an evolutionary trap: disruption of metapopulation functioning due to lack of colonization of new sites may have counterselected traits such as dispersal ability or self‐compatibility, making these species particularly vulnerable to any disturbance. The third case study concerns the evolution of life history strategies in the highly diverse genus Leucadendron of the South African fynbos. There, fire disturbance and the recolonization phase after fires are so integral to the functioning of populations that recruitment of new individuals is conditioned by fire. We show how past adaptation to different fire regimes and climatic constraints make species with different life history syndromes more or less vulnerable to global changes. These different case studies suggest that management strategies should promote evolutionary potential and evolutionary processes to better protect extant biodiversity and biodiversification.
Collapse
Affiliation(s)
- Isabelle Olivieri
- Institut des Sciences de l'Evolution Université Montpellier CNRS IRD EPHE CC65 Place Eugène Bataillon, 34095, Montpellier cedex 5 France
| | - Jeanne Tonnabel
- Institut des Sciences de l'Evolution Université Montpellier CNRS IRD EPHE CC65 Place Eugène Bataillon, 34095, Montpellier cedex 5 France; Department of Ecology and Evolution Le Biophore UNIL-SORGE University of Lausanne Lausanne Switzerland
| | - Ophélie Ronce
- Institut des Sciences de l'Evolution Université Montpellier CNRS IRD EPHE CC65 Place Eugène Bataillon, 34095, Montpellier cedex 5 France
| | - Agnès Mignot
- Institut des Sciences de l'Evolution Université Montpellier CNRS IRD EPHE CC65 Place Eugène Bataillon, 34095, Montpellier cedex 5 France
| |
Collapse
|
38
|
Mutoloki S, Munang'andu HM, Evensen Ø. Oral Vaccination of Fish - Antigen Preparations, Uptake, and Immune Induction. Front Immunol 2015; 6:519. [PMID: 26539192 PMCID: PMC4610203 DOI: 10.3389/fimmu.2015.00519] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/24/2015] [Indexed: 11/13/2022] Open
Abstract
The oral route offers the most attractive approach of immunization of fish for a number of reasons: the ease of administration of antigens, it is less stressful than parenteral delivery and in principle, it is applicable to small and large sized fish; it also provides a procedure for oral boosting during grow-out periods in cages or ponds. There are, however, not many commercial vaccines available at the moment due to lack of efficacy and challenges associated with production of large quantities of antigens. These are required to stimulate an effective immune response locally and systemically, and need to be protected against degradation before they reach the sites where immune induction occurs. The hostile stomach environment is believed to be particularly important with regard to degradation of antigens in certain species. There is also a poor understanding about the requirements for proper immune induction following oral administration on one side, and the potential for induction of tolerance on the other. To what extent primary immunization via the oral route will elicit both local and systemic responses is not understood in detail. Furthermore, to what extent parenteral delivery will protect mucosal/gut surfaces and vice-versa is also not fully understood. We review the work that has been done on the subject and discuss it in light of recent advances that include mass production of antigens, including the use of plant systems. Different encapsulation techniques that have been developed in the quest to protect antigens against digestive degradation, as well as to target them for appropriate immune induction are also highlighted.
Collapse
Affiliation(s)
- Stephen Mutoloki
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Hetron Mweemba Munang'andu
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| |
Collapse
|
39
|
Gharbi K, Matthews L, Bron J, Roberts R, Tinch A, Stear M. The control of sea lice in Atlantic salmon by selective breeding. J R Soc Interface 2015; 12:0574. [PMID: 26289656 PMCID: PMC4614468 DOI: 10.1098/rsif.2015.0574] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Sea lice threaten the welfare of farmed Atlantic salmon and the sustainability of fish farming across the world. Chemical treatments are the major method of control but drug resistance means that alternatives are urgently needed. Selective breeding can be a cheap and effective alternative. Here, we combine experimental trials and diagnostics to provide a practical protocol for quantifying resistance to sea lice. We then combined quantitative genetics with epidemiological modelling to make the first prediction of the response to selection, quantified in terms of reduced need for chemical treatments. We infected over 1400 young fish with Lepeophtheirus salmonis, the most important species in the Northern Hemisphere. Mechanisms of resistance were expressed early in infection. Consequently, the number of lice per fish and the ranking of families were very similar at 7 and 17 days post infection, providing a stable window for assessing susceptibility to infection. The heritability of lice numbers within this time window was moderately high at 0.3, confirming that selective breeding is viable. We combined an epidemiological model of sea lice infection and control on a salmon farm with genetic variation in susceptibility among individuals. We simulated 10 generations of selective breeding and examined the frequency of treatments needed to control infection. Our model predicted that substantially fewer chemical treatments are needed to control lice outbreaks in selected populations and chemical treatment could be unnecessary after 10 generations of selection. Selective breeding for sea lice resistance should reduce the impact of sea lice on fish health and thus substantially improve the sustainability of Atlantic salmon production.
Collapse
Affiliation(s)
- Karim Gharbi
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, UK
| | - Louise Matthews
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, UK
| | - James Bron
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | - Ron Roberts
- Landcatch Natural Selection Ltd, Alloa FK10 3LP, UK
| | - Alan Tinch
- Landcatch Natural Selection Ltd, Alloa FK10 3LP, UK
| | - Michael Stear
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
40
|
de la Fuente J, Contreras M. Tick vaccines: current status and future directions. Expert Rev Vaccines 2015; 14:1367-76. [DOI: 10.1586/14760584.2015.1076339] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|