1
|
Marques L, Costa B, Pereira M, Silva A, Santos J, Saldanha L, Silva I, Magalhães P, Schmidt S, Vale N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024; 16:332. [PMID: 38543226 PMCID: PMC10975777 DOI: 10.3390/pharmaceutics16030332] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 11/12/2024] Open
Abstract
The landscape of medical treatments is undergoing a transformative shift. Precision medicine has ushered in a revolutionary era in healthcare by individualizing diagnostics and treatments according to each patient's uniquely evolving health status. This groundbreaking method of tailoring disease prevention and treatment considers individual variations in genes, environments, and lifestyles. The goal of precision medicine is to target the "five rights": the right patient, the right drug, the right time, the right dose, and the right route. In this pursuit, in silico techniques have emerged as an anchor, driving precision medicine forward and making this a realistic and promising avenue for personalized therapies. With the advancements in high-throughput DNA sequencing technologies, genomic data, including genetic variants and their interactions with each other and the environment, can be incorporated into clinical decision-making. Pharmacometrics, gathering pharmacokinetic (PK) and pharmacodynamic (PD) data, and mathematical models further contribute to drug optimization, drug behavior prediction, and drug-drug interaction identification. Digital health, wearables, and computational tools offer continuous monitoring and real-time data collection, enabling treatment adjustments. Furthermore, the incorporation of extensive datasets in computational tools, such as electronic health records (EHRs) and omics data, is also another pathway to acquire meaningful information in this field. Although they are fairly new, machine learning (ML) algorithms and artificial intelligence (AI) techniques are also resources researchers use to analyze big data and develop predictive models. This review explores the interplay of these multiple in silico approaches in advancing precision medicine and fostering individual healthcare. Despite intrinsic challenges, such as ethical considerations, data protection, and the need for more comprehensive research, this marks a new era of patient-centered healthcare. Innovative in silico techniques hold the potential to reshape the future of medicine for generations to come.
Collapse
Affiliation(s)
- Lara Marques
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Mariana Pereira
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Abigail Silva
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Joana Santos
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Leonor Saldanha
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Isabel Silva
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Paulo Magalhães
- Coimbra Institute for Biomedical Imaging and Translational Research, Edifício do ICNAS, Polo 3 Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Office 465, Orlando, FL 328227-7400, USA;
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
2
|
Flores-Pérez C, Moreno-Rocha LA, Chávez-Pacheco JL, Noguez-Méndez NA, Flores-Pérez J, Ortiz-Marmolejo D, Sarmiento-Argüello LA. Pharmacokinetic-Pharmacodynamic Modeling of Midazolam in Pediatric Surgery. Pharmaceutics 2023; 15:2565. [PMID: 38004544 PMCID: PMC10674765 DOI: 10.3390/pharmaceutics15112565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Midazolam (MDZ) is used for sedation in surgical procedures; its clinical effect is related to its receptor affinity and the dose administered. Therefore, a pharmacokinetic-pharmacodynamic (PK-PD) population model of MDZ in pediatric patients undergoing minor surgery is proposed. A descriptive, observational, prospective, and longitudinal, study that included patients of both sexes, aged 2-17 years, ASA I/II, who received MDZ in IV doses (0.05 mg/kg) before surgery. Three blood samples were randomly taken between 5-120 min; both sedation by the Bispectral Index Scale (BIS) and its adverse effects were recorded. The PK-PD relationship was determined using a nonlinear mixed-effects, bicompartmental first-order elimination model using Monolix Suite™. Concentrations and the BIS were fitted to the sigmoid Emax PK-PD population and sigmoid Emax PK/PD indirect binding models, obtaining drug concentrations at the effect site (biophase). The relationship of concentrations and BIS showed a clockwise hysteresis loop, probably indicating time-dependent protein binding. Of note, at half the dose used in pediatric patients, adequate sedation without adverse effects was demonstrated. Further PK-PD studies are needed to optimize dosing schedules and avoid overdosing or possible adverse effects.
Collapse
Affiliation(s)
- Carmen Flores-Pérez
- Pharmacology Laboratory, National Institute of Pediatrics, Mexico City 04530, Mexico; (C.F.-P.); (J.L.C.-P.); (J.F.-P.)
| | - Luis Alfonso Moreno-Rocha
- Pharmacokinetics and Pharmacodynamics Laboratory, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Juan Luis Chávez-Pacheco
- Pharmacology Laboratory, National Institute of Pediatrics, Mexico City 04530, Mexico; (C.F.-P.); (J.L.C.-P.); (J.F.-P.)
| | - Norma Angélica Noguez-Méndez
- Molecular and Controlled Release Pharmacy Laboratory, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Janett Flores-Pérez
- Pharmacology Laboratory, National Institute of Pediatrics, Mexico City 04530, Mexico; (C.F.-P.); (J.L.C.-P.); (J.F.-P.)
| | | | | |
Collapse
|
3
|
Healy P, Verrest L, Felisi M, Ceci A, Della Pasqua O. Dose rationale for gabapentin and tramadol in pediatric patients with chronic pain. Pharmacol Res Perspect 2023; 11:e01138. [PMID: 37803937 PMCID: PMC10558965 DOI: 10.1002/prp2.1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 10/08/2023] Open
Abstract
Despite off-label use, the efficacy and safety of gabapentin and tramadol in pediatric patients (3 months to <18 years old) diagnosed with chronic pain has not been characterized. However, generating evidence based on randomized clinical trials in this population has been extremely challenging. The current investigation illustrates the use of clinical trial simulations (CTSs) as a tool for optimizing doses and protocol design for a prospective investigation in pediatric patients with chronic pain. Pharmacokinetic (PK) modeling and CTSs were used to describe the PKs of gabapentin and tramadol in the target population. In the absence of biomarkers of analgesia, systemic exposure (AUC, Css) was used to guide dose selection under the assumption of a comparable exposure-response (PKPD) relationship for either compound between adults and children. Two weight bands were identified for gabapentin, with doses titrated from 5 to 63 mg/kg. This yields gabapentin exposures (AUC0-8 ) of approximately 35 mg/L*h (1200 mg/day adult dose equivalent). For tramadol, median steady state concentrations between 200 and 300 ng/mL were achieved after doses of 2-5 mg/kg, but concentrations showed high interindividual variability. Simulation scenarios showed that titration steps are required to explore therapeutically relevant dose ranges taking into account the safety profile of both drugs. Gabapentin can be used t.i.d. at doses between 7-63 and 5-45 mg/kg for patients receiving gabapentin weighing <15 and ≥15 kg, respectively, whereas a t.i.d. regimen with doses between 1 and 5 mg/kg can be used for tramadol in patients who are not fast metabolisers.
Collapse
Affiliation(s)
- Paul Healy
- Clinical Pharmacology & Therapeutics Group, School of PharmacyUniversity College LondonLondonUK
| | - Luka Verrest
- Clinical Pharmacology & Therapeutics Group, School of PharmacyUniversity College LondonLondonUK
| | | | - Adriana Ceci
- Fondazione per la Ricerca Farmacologica Gianni Benzi onlusValenzanoItaly
| | - Oscar Della Pasqua
- Clinical Pharmacology & Therapeutics Group, School of PharmacyUniversity College LondonLondonUK
| |
Collapse
|
4
|
Thangaraju P, Velmurugan H, Neelambaran K. Current Status of Pharmacokinetic Research in Children: A Systematic Review of Clinical Trial Records. Curr Rev Clin Exp Pharmacol 2023; 19:78-92. [PMID: 36573054 DOI: 10.2174/2772432818666221223155455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/05/2022] [Accepted: 10/18/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Many medications have different pharmacokinetics in children than in adults. Knowledge about the safety and efficacy of medications in children requires research into the pharmacokinetic profiles of children's medicines. By analysing registered clinical trial records, this study determined how frequently pharmacokinetic data is gathered in paediatric drug trials. METHODS We searched for the pharmacokinetic data from clinical trial records for preterm infants and children up to the age of 16 from January 2011 to April 2022. The records of trials involving one or more drugs in preterm infants and children up to the age of 16 were examined for evidence that pharmacokinetic data would be collected. RESULTS In a total of 1483 records of interventional clinical trials, 136 (9.17%) pharmacokinetic data involved adults. Of those 136 records, 60 (44.1%) records were pharmacokinetics trials involving one or more medicines in children up to the age of 16.20 (33.3%) in America, followed by 19 (31.6%) in Europe. Most trials researched medicines in the field of infection or parasitic diseases 20 (33.3%). 27 (48.2%) and 26 (46.4%) trials investigated medicines that were indicated as essential medicine. CONCLUSION The pharmacokinetic characteristics of children's drugs need to be better understood. The current state of pharmacokinetic research appears to address the knowledge gap in this area adequately. Despite slow progress, paediatric clinical trials have experienced a renaissance as the significance of paediatric trials has gained international attention. The outcome of paediatric trials will have an impact on children's health in the future. In recent years, the need for greater availability and access to safe child-size pharmaceuticals has received a lot of attention.
Collapse
Affiliation(s)
- Pugazhenthan Thangaraju
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Hemasri Velmurugan
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Krishnapriya Neelambaran
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|
5
|
Cochius - den Otter S, Deprest JA, Storme L, Greenough A, Tibboel D. Challenges and Pitfalls: Performing Clinical Trials in Patients With Congenital Diaphragmatic Hernia. Front Pediatr 2022; 10:852843. [PMID: 35498783 PMCID: PMC9051320 DOI: 10.3389/fped.2022.852843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a rare developmental defect of the lungs and diaphragm, with substantial morbidity and mortality. Although internationally established treatment guidelines have been developed, most recommendations are still expert opinions. Trials in patients with CDH, more in particular randomized controlled trials, are rare. Only three multicenter trials in patients with CDH have been completed, which focused on fetoscopic tracheal occlusion and ventilation mode. Another four are currently recruiting, two with a focus on perinatal transition and two on the treatment of pulmonary hypertension. Herein, we discuss major challenges and pitfalls when performing a clinical trial in infants with CDH. It is essential to select the correct intervention and dose, select the appropriate population of CDH patients, and also define a relevant endpoint that allows a realistic duration and sample size. New statistical approaches might increase the feasibility of randomized controlled trials in patients with CDH. One should also timely perform the trial when there is still equipoise. But above all, awareness of policymakers for the relevance of investigator-initiated trials is essential for future clinical research in this rare disease.
Collapse
Affiliation(s)
- Suzan Cochius - den Otter
- Intensive Care and Department of Pediatric Surgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Jan A. Deprest
- Department of Obstetrics and Gynaecology, University Hospitals KU Leuven, Leuven, Belgium
- Academic Department of Development and Regeneration, Biomedical Sciences, KU Leuven, Leuven, Belgium
- Institute for Women's Health, University College London, London, United Kingdom
| | - Laurent Storme
- Metrics-Perinatal Environment and Health, University of Lille, Lille, France
- Department of Neonatology, Jeanne de Flandre Hospital, Centre Hospitalier Universitaire de Lille, Lille, France
- Center of Rare Disease Congenital Diaphragmatic Hernia, Jeanne de Flandre Hospital, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Anne Greenough
- Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, London, United Kingdom
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- The Asthma UK Centre for Allergic Mechanisms in Asthma, King's College London, London, United Kingdom
- NIHR Biomedical Centre, Guy's and St Thomas NHS Foundation Trust and King's College London, London, United Kingdom
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
6
|
Babu M, Pavithran K. Therapeutic Drug Monitoring as a Tool for Therapy Optimization. Drug Metab Lett 2022; 15:DML-EPUB-122284. [PMID: 35382721 DOI: 10.2174/1872312815666220405122021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
The use of pharmacotherapy for improving healthcare in society is increasing. A vast majority of patients have either received subtherapeutic treatment (which could result from low pharmacokinetic) or experienced adverse effects due to the toxic levels of the drug. The medicines used to treat chronic conditions, such as epilepsy; cardiovascular diseases; and oncological, neurological, and psychiatric disorders, require routine monitoring. New targeted therapies suggest an individualized treatment that can slowly move practitioners away from the concept of a one-size-fits-all-fixed-dosing approach. Therapeutic drug use can be monitored based on pharmacokinetic, pharmacodynamic, and pharmacometric methods. Based on the experiences of therapeutic drug monitoring of various agents across the globe, we can look ahead to the possible developments of therapeutic drug monitoring in India.
Collapse
Affiliation(s)
- Merin Babu
- Department of Medical Oncology, Amrita Institute of Medical Sciences and Research Centre Amrita Vishwa Vidyapeetham, Ponekkara P.O, Kochi, Kerala, India
| | - Keechilat Pavithran
- Department of Medical Oncology, Amrita Institute of Medical Sciences and Research Centre Amrita Vishwa Vidyapeetham, Ponekkara P.O, Kochi, Kerala, India
| |
Collapse
|
7
|
Hoppu K, Fonseca H. Why are certain age bands used for children in paediatric studies of medicines? Arch Dis Child 2021; 106:631-635. [PMID: 33419728 DOI: 10.1136/archdischild-2020-319019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/09/2020] [Accepted: 12/13/2020] [Indexed: 01/14/2023]
Abstract
Rational prescribing of medicines requires evidence from clinical trials on efficacy, safety and the dose to be prescribed, based on clinical trials. Regulatory authorities assess these data and information is included in the approved summary of product characteristics. Regulatory guidelines on clinical investigation of medicinal products in the paediatric population generally propose that studies are done in defined age groups but advise that any classification of the paediatric population into age categories is to some extent arbitrary or that the age groups are intended only as a guide. The pharmaceutical companies tend to plan their studies using age groups the regulatory guidelines suggest, to avoid problems when applying for marketing authorisation. These age bands end up in the paediatric label, and consequently into national paediatric formularies. The age bands of the most commonly used age-subsets: neonates, infant/toddlers, children and adolescents, are more historical than based on physiology or normal development of children. Particularly problematic are the age bands for neonates and adolescents. The age of 12 years separating children from adolescents, and the upper limit of the adolescents set by the definition of paediatric age in healthcare, which varies according to the region, are particularly questionable. Modern pharmacometric methods (modelling and simulation) are being increasingly used in paediatric drug development and may allow assessment of growth and/or development as continuous covariables. Maybe time has come to reconsider the rational of the currently used age bands.
Collapse
Affiliation(s)
- Kalle Hoppu
- New Children's Hospital, Helsinki University Hospital, Helsinki, Finland .,Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Helena Fonseca
- Adolescent Outpatient Clinic, Department of Paediatrics, Hospital de Santa Maria, Lisbon, Portugal.,Paediatric Committee (PDCO), European Medicines Agency, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Chang HP, Kim SJ, Wu D, Shah K, Shah DK. Age-Related Changes in Pediatric Physiology: Quantitative Analysis of Organ Weights and Blood Flows. AAPS JOURNAL 2021; 23:50. [DOI: 10.1208/s12248-021-00581-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/11/2021] [Indexed: 02/08/2023]
|
9
|
Jacqz-Aigrain E, Leroux S, Thomson AH, Allegaert K, Capparelli EV, Biran V, Simon N, Meibohm B, Lo YL, Marques R, Peris JE, Lutsar I, Saito J, Nakamura H, van den Anker JN, Sharland M, Zhao W. Population pharmacokinetic meta-analysis of individual data to design the first randomized efficacy trial of vancomycin in neonates and young infants. J Antimicrob Chemother 2020; 74:2128-2138. [PMID: 31049551 DOI: 10.1093/jac/dkz158] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/26/2019] [Accepted: 03/16/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES In the absence of consensus, the present meta-analysis was performed to determine an optimal dosing regimen of vancomycin for neonates. METHODS A 'meta-model' with 4894 concentrations from 1631 neonates was built using NONMEM, and Monte Carlo simulations were performed to design an optimal intermittent infusion, aiming to reach a target AUC0-24 of 400 mg·h/L at steady-state in at least 80% of neonates. RESULTS A two-compartment model best fitted the data. Current weight, postmenstrual age (PMA) and serum creatinine were the significant covariates for CL. After model validation, simulations showed that a loading dose (25 mg/kg) and a maintenance dose (15 mg/kg q12h if <35 weeks PMA and 15 mg/kg q8h if ≥35 weeks PMA) achieved the AUC0-24 target earlier than a standard 'Blue Book' dosage regimen in >89% of the treated patients. CONCLUSIONS The results of a population meta-analysis of vancomycin data have been used to develop a new dosing regimen for neonatal use and to assist in the design of the model-based, multinational European trial, NeoVanc.
Collapse
Affiliation(s)
- Evelyne Jacqz-Aigrain
- Department of Pediatric Pharmacology and Pharmacogenetics, Hôpital Robert Debré, APHP, Paris, France.,Clinical Investigation Center CIC1426, Hôpital Robert Debré, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Stéphanie Leroux
- Department of Pediatric Pharmacology and Pharmacogenetics, Hôpital Robert Debré, APHP, Paris, France.,Clinical Investigation Center CIC1426, Hôpital Robert Debré, Paris, France.,Division of Neonatology, Department of Child and Adolescent Medicine, CHU de Rennes, Rennes, France
| | - Alison H Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Pharmacy Department, Glasgow Royal Infirmary, Glasgow, UK
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Intensive Care, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Edmund V Capparelli
- Pediatric Pharmacology and Drug Discovery, University of California, San Diego, CA, USA
| | - Valérie Biran
- Neonatal Intensive Care Unit, Hôpital Robert Debré, Paris, France
| | - Nicolas Simon
- Department of Pharmacology, Hôpital de la Timone, APHM, Université de la Méditerranée, Marseille, France.,Service de Pharmacologie Clinique, Hôpital Sainte marguerite, CAP-TV, 13274 Marseille, France.,Aix Marseille University, INSERM, IRD, SESSTIM, Marseille, France
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yoke-Lin Lo
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Remedios Marques
- Department of Pharmacy Services, La Fe Hospital, Valencia, Spain
| | - José-Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain
| | - Irja Lutsar
- Institute of Medical Microbiology, University of Tartu, Tartu, Estonia
| | - Jumpei Saito
- Department of Pharmacy, National Children's Hospital National Center for Child Health and Development, Tokyo, Japan
| | - Hidefumi Nakamura
- Department of Development Strategy, Center for Clinical Research and Development, National Center for Child Health and Development, Tokyo, Japan
| | - Johannes N van den Anker
- Pharmacy Department, Glasgow Royal Infirmary, Glasgow, UK.,Division of Clinical Pharmacology, Children's National Medical Center, Washington, DC, USA.,Departments of Pediatrics, Pharmacology & Physiology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA.,Department of Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, Basel, Switzerland
| | - Mike Sharland
- Paediatric Infectious Disease Unit, St George's Hospital, London, UK
| | - Wei Zhao
- Department of Pediatric Pharmacology and Pharmacogenetics, Hôpital Robert Debré, APHP, Paris, France.,Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
10
|
Wink LK, Reisinger DL, Horn P, Shaffer RC, O’Brien K, Schmitt L, Dominick KR, Pedapati EV, Erickson CA. Brief Report: Intranasal Ketamine in Adolescents and Young Adults with Autism Spectrum Disorder—Initial Results of a Randomized, Controlled, Crossover, Pilot Study. J Autism Dev Disord 2020; 51:1392-1399. [DOI: 10.1007/s10803-020-04542-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Perspectives of Biological Analysis in Latin America Using Multi and Comprehensive Two-Dimensional Gas Chromatography: A Mini-review. Chromatographia 2020. [DOI: 10.1007/s10337-020-03910-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Sassen SDT, Zwaan CM, van der Sluis IM, Mathôt RAA. Pharmacokinetics and population pharmacokinetics in pediatric oncology. Pediatr Blood Cancer 2020; 67:e28132. [PMID: 31876123 DOI: 10.1002/pbc.28132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/28/2022]
Abstract
Pharmacokinetic research has become increasingly important in pediatric oncology as it can have direct clinical implications and is a crucial component in individualized medicine. Population pharmacokinetics has become a popular method especially in children, due to the potential for sparse sampling, flexible sampling times, computing of heterogeneous data, and identification of variability sources. However, population pharmacokinetic reports can be complex and difficult to interpret. The aim of this article is to provide a basic explanation of population pharmacokinetics, using clinical examples from the field of pediatric oncology, to facilitate the translation of pharmacokinetic research into the daily clinic.
Collapse
Affiliation(s)
- Sebastiaan D T Sassen
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Ron A A Mathôt
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Borella E, Oosterholt S, Magni P, Della Pasqua O. Use of prior knowledge and extrapolation in paediatric drug development: A case study with deferasirox. Eur J Pharm Sci 2019; 136:104931. [PMID: 31108206 DOI: 10.1016/j.ejps.2019.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/09/2019] [Accepted: 05/13/2019] [Indexed: 01/19/2023]
Abstract
The characterisation of pharmacokinetics, pharmacodynamics and dose-exposure-response relationships requires data arising from well-designed study protocols and a relatively large sample from the target patient population. Such a prerequisite is unrealistic for paediatric rare diseases, where the patient population is often vulnerable and very small. In such cases, different sources of data and knowledge need to be considered to ensure trial designs are truly informative and oncoming data can be analysed efficiently. Here, we use clinical trial simulations to assess the contribution of historical data for (1) the analysis of sparse samples from a limited number of children and (2) the optimisation of study design when an increase in the number of subjects is not feasible. The evaluation of the pharmacokinetics of deferasirox in paediatric patients affected by haemoglobinopathies was used as case study. Our investigation shows that the incorporation of prior knowledge increases parameter precision and probability of successful convergence from only 12% with no priors to 56% and 75% for weakly and highly informative priors, respectively. In addition, results suggest that even when only one sample is collected per subject, as implemented in the original trial and in many other examples in clinical research, there is a 60% probability of biased parameter estimates (>25%). In conjunction with adult prior information and optimisation techniques, the probability of bias could be limited to <20% by increasing the number of samples/subject from 1 to 3. The methodology described here can be easily applied to other studies in small populations.
Collapse
Affiliation(s)
- Elisa Borella
- Dipart. Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy
| | - Sean Oosterholt
- Clinical Pharmacology & Therapeutics Group, University College London, London, UK
| | - Paolo Magni
- Dipart. Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy
| | - Oscar Della Pasqua
- Clinical Pharmacology & Therapeutics Group, University College London, London, UK; Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Uxbridge, UK.
| |
Collapse
|
14
|
Balduini W, Weiss MD, Carloni S, Rocchi M, Sura L, Rossignol C, Longini M, Bazzini F, Perrone S, Ott D, Wadhawan R, Buonocore G. Melatonin pharmacokinetics and dose extrapolation after enteral infusion in neonates subjected to hypothermia. J Pineal Res 2019; 66:e12565. [PMID: 30734962 DOI: 10.1111/jpi.12565] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Neonates with hypoxic-ischemic encephalopathy (HIE) undergoing hypothermia may benefit from adjunctive therapy with melatonin. However, melatonin safety, pharmacokinetics (PK), and dosage in this sensitive population are still unknown. METHODS AND RESULTS This study assessed the PK and safety of melatonin enteral administration to neonates with HIE undergoing hypothermia. Melatonin was infused at 0.5 mg/kg in five neonates with HIE undergoing hypothermia. Infusion started 1 hour after the neonates reached the target temperature of 33.5°C. Blood samples were collected before and at selective times after melatonin infusion. Abdominal complications or clinically significant changes in patients' vital signs were not found during or after melatonin. The peak plasma concentration reached 0.25 µg/mL. The area under the curve in 24 hours was 4.35 µg/mL*h. DISCUSSION Melatonin half-life and clearance were prolonged, and the distribution volume decreased compared to adults. In silico simulation estimated that the steady state can be reached after four infusions. Hypothermia does not affect melatonin PK. In humans high blood concentrations with lower doses can be achieved compared to animal experimentation, although intravenous administration is advised in the neonate population. Our study is a preparatory step for future clinical studies aimed at assessing melatonin efficacy in HIE.
Collapse
Affiliation(s)
- Walter Balduini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Michael D Weiss
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Marco Rocchi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Livia Sura
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Candace Rossignol
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Mariangela Longini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Francesco Bazzini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Serafina Perrone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Deborah Ott
- Department of Pediatrics, Florida Hospital, Orlando, Florida
| | - Rajan Wadhawan
- Department of Pediatrics, Florida Hospital, Orlando, Florida
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
15
|
Balevic SJ, Cohen-Wolkowiez M. Innovative Study Designs Optimizing Clinical Pharmacology Research in Infants and Children. J Clin Pharmacol 2018; 58 Suppl 10:S58-S72. [PMID: 30248192 PMCID: PMC6310922 DOI: 10.1002/jcph.1053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Almost half of recent pediatric trials failed to achieve labeling indications, in large part because of inadequate study design. Therefore, innovative study methods are crucial to optimizing trial design while also reducing the potential harms inherent with drug investigation. Several methods exist to optimize the amount of pharmacokinetic data collected from the smallest possible volume and with the fewest number of procedures, including the use of opportunistic and sparse sampling, alternative and noninvasive matrices, and microvolume assays. In addition, large research networks using master protocols promote collaboration, reduce regulatory burden, and increase trial efficiency for both early- and late-phase trials. Large pragmatic trials that leverage electronic health records can capitalize on central management strategies to reduce costs, enroll patients with rare diseases on a large scale, and augment study generalizability. Further, trial efficiency and safety can be optimized through Bayesian adaptive techniques that permit planned protocol changes based on analyses of prior and accumulated data. In addition to these trial design features, advances in modeling and simulation have paved the way for systems-based and physiologically based models that individualize pediatric dosing recommendations and support drug approval. Last, given the low prevalence of many pediatric diseases, collecting deidentified genetic and clinical data on a large scale is a potentially transformative way to augment clinical pharmacology research in children.
Collapse
Affiliation(s)
- Stephen J. Balevic
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Michael Cohen-Wolkowiez
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
16
|
Animal Pharmacokinetic/Pharmacodynamic Studies (APPS) Reporting Guidelines. Eur J Drug Metab Pharmacokinet 2018; 43:483-494. [DOI: 10.1007/s13318-018-0498-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Barker CIS, Standing JF, Kelly LE, Hanly Faught L, Needham AC, Rieder MJ, de Wildt SN, Offringa M. Pharmacokinetic studies in children: recommendations for practice and research. Arch Dis Child 2018; 103:695-702. [PMID: 29674514 PMCID: PMC6047150 DOI: 10.1136/archdischild-2017-314506] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022]
Abstract
Optimising the dosing of medicines for neonates and children remains a challenge. The importance of pharmacokinetic (PK) and pharmacodynamic (PD) research is recognised both in medicines regulation and paediatric clinical pharmacology, yet there remain barriers to undertaking high-quality PK and PD studies. While these studies are essential in understanding the dose-concentration-effect relationship and should underpin dosing recommendations, this review examines how challenges affecting the design and conduct of paediatric pharmacological studies can be overcome using targeted pharmacometric strategies. Model-based approaches confer benefits at all stages of the drug life-cycle, from identifying the first dose to be used in children, to clinical trial design, and optimising the dosing regimens of older, off-patent medications. To benefit patients, strategies to ensure that new PK, PD and trial data are incorporated into evidence-based dosing recommendations are needed. This review summarises practical strategies to address current challenges, particularly the use of model-based (pharmacometric) approaches in study design and analysis. Recommendations for practice and directions for future paediatric pharmacological research are given, based on current literature and our joint international experience. Success of PK research in children requires a robust infrastructure, with sustainable funding mechanisms at its core, supported by political and regulatory initiatives, and international collaborations. There is a unique opportunity to advance paediatric medicines research at an unprecedented pace, bringing the age of evidence-based paediatric pharmacotherapy into sight.
Collapse
Affiliation(s)
- Charlotte I S Barker
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK,Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George’s University of London, London, UK,Paediatric Infectious Diseases Unit, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Joseph F Standing
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK,Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George’s University of London, London, UK
| | - Lauren E Kelly
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada,Clinical Trials Platform, George and Fay Yee Centre for Healthcare Innovation, Winnipeg, Manitoba, Canada
| | - Lauren Hanly Faught
- Departments of Paediatrics, Physiology and Pharmacology and Medicine, Western University, London, Ontario, Canada,Molecular Medicine Group, Robarts Research Institute, London, Ontario, Canada
| | - Allison C Needham
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael J Rieder
- Departments of Paediatrics, Physiology and Pharmacology and Medicine, Western University, London, Ontario, Canada,Molecular Medicine Group, Robarts Research Institute, London, Ontario, Canada
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands,Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia, Rotterdam, The Netherlands
| | - Martin Offringa
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada,Division of Neonatology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Kelly LE, Sinha Y, Barker CIS, Standing JF, Offringa M. Useful pharmacodynamic endpoints in children: selection, measurement, and next steps. Pediatr Res 2018; 83:1095-1103. [PMID: 29667952 PMCID: PMC6023695 DOI: 10.1038/pr.2018.38] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/08/2018] [Indexed: 12/13/2022]
Abstract
Pharmacodynamic (PD) endpoints are essential for establishing the benefit-to-risk ratio for therapeutic interventions in children and neonates. This article discusses the selection of an appropriate measure of response, the PD endpoint, which is a critical methodological step in designing pediatric efficacy and safety studies. We provide an overview of existing guidance on the choice of PD endpoints in pediatric clinical research. We identified several considerations relevant to the selection and measurement of PD endpoints in pediatric clinical trials, including the use of biomarkers, modeling, compliance, scoring systems, and validated measurement tools. To be useful, PD endpoints in children need to be clinically relevant, responsive to both treatment and/or disease progression, reproducible, and reliable. In most pediatric disease areas, this requires significant validation efforts. We propose a minimal set of criteria for useful PD endpoint selection and measurement. We conclude that, given the current heterogeneity of pediatric PD endpoint definitions and measurements, both across and within defined disease areas, there is an acute need for internationally agreed, validated, and condition-specific pediatric PD endpoints that consider the needs of all stakeholders, including healthcare providers, policy makers, patients, and families.
Collapse
Affiliation(s)
- Lauren E Kelly
- Department of Pediatrics and Child Health, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yashwant Sinha
- Therapeutic Goods Administration, Department of Health, Sydney, Australia
| | - Charlotte I S Barker
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Joseph F Standing
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Martin Offringa
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Leroux S, Elie V, Zhao W, Magreault S, Jacqz-Aigrain E. Principles and applications of pharmacometrics in drug evaluation in children. Therapie 2018; 73:165-170. [DOI: 10.1016/j.therap.2017.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
|
20
|
Turner MA, Attar S, de Wildt SN, Vassal G, Mangiarini L, Giaquinto C. Roles of Clinical Research Networks in Pediatric Drug Development. Clin Ther 2017; 39:1939-1948. [PMID: 28943118 DOI: 10.1016/j.clinthera.2017.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023]
Abstract
The evaluation of drugs that are used in children has been neglected historically but is now well established as an essential part of clinical drug development. The increase in pediatric activity among industry, and other sectors, has highlighted the importance of joint working. All participants in pediatric drug development need to be aware of the "big picture." An increasingly important part of this big picture in pediatrics, as in other populations, is the design and conduct of clinical trials in networks. This narrative review provides an overview of the roles of clinical research networks in pediatric drug development. Networks take many forms as specialty networks and geographic networks but work toward common principles, including sharing resources between trials, and using experience with trial conduct to improve trial design. Networks develop standardized processes for trial conduct (including performance management) that increase the speed and predictability of trial conduct while reducing burdens on sites, sponsors, and intermediaries. Networks can provide validated, real-world information about natural history, participant distribution, and standards of care to inform planning of development programs, including extrapolation and clinical trial simulation. Networks can work across geographic and jurisdictional barriers to promote global interoperability of drug development. Networks support participant centrality. Networks offer an opportunity to develop relationships with investigators, sites, and methodological experts that span pre-competitive foundations for drug development and specific products. Sustainable networks benefit all stakeholders by providing a multifunctional platform that promotes the quality and timeliness of clinical drug development.
Collapse
Affiliation(s)
- Mark A Turner
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.
| | - Sabah Attar
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University, Nijmegen, the Netherlands; Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Gilles Vassal
- Department of Clinical Research, Gustave Roussy, Paris-Sud University, Paris, France
| | | | - Carlo Giaquinto
- Department of Women's and Children's Health, University of Padova, Padua, Italy
| |
Collapse
|