1
|
Gangaram S, Naidoo Y, Dewir YH, Singh M, Lin J, Murthy HN. Phytochemical Composition and Antibacterial Activity of Barleria albostellata C.B. Clarke Leaf and Stem Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2396. [PMID: 37446958 DOI: 10.3390/plants12132396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Barleria albostellata (Acanthaceae) is a shrub located in South Africa and is relatively understudied. However, plants within this genus are well known for their medicinal and ethnopharmacological properties. This study aimed to characterise the phytochemical compounds and antibacterial efficacies of B. albostellata. Phytochemical analysis, fluorescence microscopy and gas chromatography-mass spectrometry (GC-MS) analysis were performed to determine the composition of compounds that may be of medicinal importance. Crude leaf and stem extracts (hexane, chloroform and methanol) were subjected to an antibacterial analysis against several pathogenic microorganisms. The qualitative phytochemical screening of leaf and stem extracts revealed the presence various compounds. Fluorescence microscopy qualitatively assessed the leaf and stem powdered material, which displayed various colours under bright and UV light. GC-MS chromatograms represents 10-108 peaks of various compounds detected in the leaf and stem crude extracts. Major pharmacologically active compounds found in the extracts were alpha-amyrin, flavone, phenol, phytol, phytol acetate, squalene and stigmasterol. Crude extracts positively inhibited Gram-positive and Gram-negative bacteria. Significance was established at p < 0.05 for all concentrations and treatments. These results indicate that the leaves and stems of B. albostellata are rich in bioactive compounds, which could be a potential source of antibacterial agents for treating various diseases linked to the pathogenic bacteria studied. Future discoveries from this plant could advance the use of indigenous traditional medicine and provide novel drug leads.
Collapse
Affiliation(s)
- Serisha Gangaram
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Yougasphree Naidoo
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Moganavelli Singh
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Johnson Lin
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | | |
Collapse
|
2
|
Ashrafi S, Rahman M, Ahmed P, Alam S, Hossain MA. Prospective Asian plants with corroborated antiviral potentials: Position standing in recent years. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:47. [PMID: 35402627 PMCID: PMC8980796 DOI: 10.1186/s43088-022-00218-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Viral diseases are extremely widespread infections caused by viruses. Amongst numerous other illnesses, viral infections have challenged human existence severely. Over the history of mankind, new viruses have emerged and presented us with new tests. The range of viral infections varies from familiar infectious diseases such as the common cold, flu, and warts to severe ailments such as AIDS, Ebola, and COVID-19. The world has been racing to find an effective cure for the newly evolving viruses. Toxic effects, non-selectivity, drug resistance, and high price are the most common complications of conventional treatment procedures. Nature is a marvelous source of phytoconstituents with incredible varieties of biological activities. By tradition, medicinal plants have been utilized for the treatment of countless infectious diseases worldwide, some of which contain a broad spectrum of activities. Modern drug discovery and development techniques offer highly efficient separation techniques, inauguration of vector-based schemes where the original infectious virus is cloned to the non-infectious one for antiviral screening targets. The objective of the review was to gather available data on 20 both cultivated and native plants of Asia giving antiviral activities and provide comprehensive information on the phytochemical analysis of the plants and potential antiviral compounds isolated from these plants.
Collapse
Affiliation(s)
- Sania Ashrafi
- Department of Pharmacy, BRAC University, Mohakhali, Dhaka, 1212 Bangladesh
| | - Mamunur Rahman
- Department of Pharmacy, East West University, Aftabnagar, Dhaka, 1212 Bangladesh
| | - Pollob Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Ashulia, Dhaka, Bangladesh
| | - Safaet Alam
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid road, Dhanmondi, Dhaka, 1205 Bangladesh
| | - Md Abid Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Ashulia, Dhaka, Bangladesh
| |
Collapse
|
3
|
Lekhak MM, Patil SS, Deshmukh PV, Lekhak UM, Kumar V, Rastogi A. Genus Barleria L. (Acanthaceae): a review of its taxonomy, cytogenetics, phytochemistry and pharmacological potential. J Pharm Pharmacol 2022; 74:812-842. [PMID: 35199159 DOI: 10.1093/jpp/rgab183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Barleria, a large genus of the Acanthaceae family, comprises more than 300 species with diverse taxonomy, cytogenetics, phytochemistry and pharmacological potential. Therefore, the aim of this review is to critically assess the research on Barleria and provide guidance for future investigations. METHODS The data were obtained from different sources, such as books, theses, journals and some of the websites and internet-based searches, published from 1901 to 2020. Data obtained from PubMed, Google Scholar, ScienceDirect, online electronic journals, SpringerLink, Wiley, etc. have also been used. KEY FINDINGS The species of this genus exhibit considerable medicinal properties. Cytogenetical data are scantily available with chromosome counts available for only 24 species. The most common chromosome number is 2n = 2x = 40. So far, 187 compounds are reported from Barleria species. The active principles, their uses, toxicity and pharmacological effects are discussed. Essential oils, flavones, flavonoids, glycosides, terpenes and terpenoids form the major compounds. SUMMARY It is highly recommended that the pharmacological and economic potential of Barleria species should be exploited and more detailed studies and attention be geared towards its utilization and conservation. In addition, to ensure maximum pharmacological benefits and sustainable use, it is necessary to have empirical information explaining its ethnobotanical values as well as commercial potential.
Collapse
Affiliation(s)
- Manoj M Lekhak
- Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University, Kolhapur, Maharashtra, India
| | - Suraj S Patil
- Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University, Kolhapur, Maharashtra, India
| | - Pradip V Deshmukh
- Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University, Kolhapur, Maharashtra, India
| | - Utkarsha M Lekhak
- Department of Biochemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai, Maharashtra, India
| | - Vijay Kumar
- Plant Biotechnology Lab, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
4
|
Gangaram S, Naidoo Y, Dewir YH, El-Hendawy S. Phytochemicals and Biological Activities of Barleria (Acanthaceae). PLANTS 2021; 11:plants11010082. [PMID: 35009086 PMCID: PMC8747396 DOI: 10.3390/plants11010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022]
Abstract
Plant species belonging to the family Acanthaceae are globally known to possess various medicinal properties and have cultural and economic importance in both traditional medicine and horticulture. They are important to both animals and humans and are used as food or for ornamental purposes worldwide. Barleria is the third largest genus in the family Acanthaceae. A few of the highly important and reported species of Barleria include B. prionitis, B. cristata, B. grandiflora, and B. lupulina. The flowers, leaves, stems, roots, and seed extracts of plants belonging to this genus are rich in bioactive compounds and have exhibited significant medicinal potential for the treatment of various ailments and infections. Evidence derived from several studies has demonstrated the antioxidant, antibacterial, antifungal, anti-inflammatory, anticancer, antidiabetic, antiulcer, hepatoprotective, analgesic, antiamoebic, antihelminthic, antiarthritic, antihypertensive, antiviral properties and toxicity of extracts, in addition inhibition of acetylcholinesterase activity and biosynthesis of nanoparticles, of the plant and seed extracts of species belonging to Barleria. Studies have reported that bioactive compounds such as flavonoids, quinones, iridoids, phenylethanoid glycosides, the immunostimulant protein “Sankaranin”, and antibiotics isolated from Barleria species are resposnsible for the above biological activities. Traditionally, the genus Barleria has significant medicinal potential; however, there is a scarcity of information on various species that are yet to be evaluated. This review provides a comprehensive report on existing literature, concerning the phytochemistry and biological activities of the genus Barleria.
Collapse
Affiliation(s)
- Serisha Gangaram
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (S.G.); (Y.N.)
| | - Yougasphree Naidoo
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (S.G.); (Y.N.)
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Department of Horticulture, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Correspondence: author:
| | - Salah El-Hendawy
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Department of Agronomy, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
5
|
Genomic characterization of two novel viruses infecting Barleria cristata L. from the genera Orthotospovirus and Polerovirus. Arch Virol 2021; 166:2615-2618. [PMID: 34196795 DOI: 10.1007/s00705-021-05150-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/06/2021] [Indexed: 01/11/2023]
Abstract
Barleria cristata L. has become naturalized in South Africa, where it is commonly used as an ornamental. In 2019, plants of B. cristata showing putative viral symptoms were collected from two locations in Gauteng, South Africa. RNAtag-seq libraries were prepared and sequenced using an Illumina HiSeq 2500 platform. De novo assembly of the resulting data revealed the presence of a novel member of the family Tospoviridae associated with the plants from both locations, and this virus was given the tentative name "barleria chlorosis-associated virus". Segments L, M, and S have lengths of 8752, 4760, and 2906 nt, respectively. Additionally, one of the samples was associated with a novel polerovirus, provisionally named "barleria polerovirus 1", with a complete genome length of 6096 nt. This is the first study to show the association of viruses with a member of the genus Barleria.
Collapse
|
6
|
Ansari MN, Saeedan AS, Bajaj S, Singh L. Evaluation of antidiabetic and hypolipidemic activity of Barleria cristata Linn. leaves in alloxan-induced diabetic rats. 3 Biotech 2021; 11:170. [PMID: 33927962 DOI: 10.1007/s13205-021-02728-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 01/12/2023] Open
Abstract
The present study was undertaken to evaluate the antidiabetic and hypolipidemic action of leaf extract of Barleria cristata Linn in rats. Diabetes was induced in the rats by a single intraperitoneal (IP) injection of alloxan (150 mg/kg) and randomly divided into 7 groups. Animals were treated with low (250 mg/kg) and high (500 mg/kg) doses of ethyl acetate leaf extract (EALE) and hydro-alcoholic leaf extract (HALE) up to 21 days. The body weight and blood glucose level (BGL) were measured on weekly basis. The rats were killed under mild ether anesthesia on 21st day, blood and the vital organ were collected to estimate biochemical parameters and to study histopathological changes. A single-dose administration of alloxan induced hyperglycemia in all the groups. A regular increase in BGL was observed in toxic control groups when compared with the normal control. Daily oral administration of rats with extracts (HALE and EALE) and standard drug (Glimepiride, 5 mg/kg), reduced elevated BGL significantly (p < 0.001), and body weight was regained in diabetic rats. The extract treatment also improved the normal functioning of the liver and kidneys as evidenced by the restoration of the biochemical profile. The study revealed that B. cristata possesses promising antidiabetic and hypolipidemic activity.
Collapse
Affiliation(s)
- Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sakshi Bajaj
- Department of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana India
| | - Lakhveer Singh
- Department of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana India
| |
Collapse
|
7
|
Thaviligadu DJ, Labarrière L, Moncomble A, Cornard JP. Spectroscopic and theoretical study of the pH effect on the optical properties of the calcium-morin system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117492. [PMID: 31487563 DOI: 10.1016/j.saa.2019.117492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Morin (2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one) is an abundant flavonoid with various pharmacological and biological activities. Considering the ubiquitous presence of calcium cations in biological systems, it seems relevant to study the interaction of this ion with morin and the influence of pH on this system. In a first step, among the four hypothetical chelation sites, the preferential fixing site, its protonation state and the Ca environment have been determined by combining electronic spectroscopies and density functional theory (DFT) and time-dependent DFT calculations. Then, using the same methodology, the fate of the formed complex with the variation of pH was studied. Calcium chelation occurs with the 3-hydroxy-4-keto site with deprotonation of the hydroxyl group. The coordination number of CaII does not seem to be a determining parameter insofar whatever the number of solvent molecules present in the coordination sphere of the metal, the calculation of the electronic transitions leads to the same results. With the increase in pH, a first deprotonation of the complex occurs at the level of a solvent molecule in the metal coordination sphere, followed by a deprotonation of the hydroxyl function in position 7.
Collapse
Affiliation(s)
- Diksha Jani Thaviligadu
- Univ. Lille, CNRS, UMR 8516 - LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France
| | - Luc Labarrière
- Univ. Lille, CNRS, UMR 8516 - LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France
| | - Aurélien Moncomble
- Univ. Lille, CNRS, UMR 8516 - LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France
| | - Jean-Paul Cornard
- Univ. Lille, CNRS, UMR 8516 - LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France.
| |
Collapse
|