1
|
Casao A, Peña-Delgado V, Pérez-Pe R. From spermatogenesis to fertilisation: the role of melatonin on ram spermatozoa. Domest Anim Endocrinol 2025; 91:106916. [PMID: 39823652 DOI: 10.1016/j.domaniend.2025.106916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
This review presents recent findings on the effect of melatonin on ram spermatozoa. This hormone regulates seasonal reproduction in the ovine species through the hypothalamic-pituitary-gonadal axis, but it also exerts direct effects on spermatogenesis, seminal quality and fertility. In the testis, melatonin stimulates blood flow to this organ, but it also appears to be involved in the differentiation of spermatogonial stem cells and the secretion of testosterone through the MT1 and MT2 receptors. In the epididymis, this hormone modulates sperm maturation and the secretory activity of epidydimal epithelial cells. In addition, the antioxidant activity of melatonin may protect spermatozoa from oxidative damage during their formation in the testis and their maturation in the epididymis. After ejaculation, the melatonin present in seminal plasma may also protect sperm from oxidative damage and premature capacitation and may improve seminal quality. Finally, once the sperm begins its transit through the female genital tract, melatonin may modulate sperm capacitation. Thus, melatonin could have a bimodal activity in ram sperm capacitation, so high concentrations, such as those in seminal plasma, have a decapacitating effect. In contrast, low concentrations, such as those present in the female reproductive tract, may promote it, likely through interaction with MT2 receptors. In addition, melatonin could also be involved in chemotaxis and fertilisation, although further studies are needed to elucidate the specific role of melatonin in these processes. Finally, the effect of latitude and melatonin receptor gene polymorphisms in ram reproduction is also discussed.
Collapse
Affiliation(s)
- Adriana Casao
- BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Victoria Peña-Delgado
- BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Rosaura Pérez-Pe
- BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
2
|
Su X, He Y, Li H, Yu T, Sun Q, Chen M, Zhang B, Wang W, Ju S, Li Q. Melatonin protects porcine oocytes from gossypol-induced meiosis defects via regulation of SIRT1-mediated mitophagy. Food Chem Toxicol 2025; 195:115122. [PMID: 39571718 DOI: 10.1016/j.fct.2024.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Cottonseed meal (CSM) is an ideal source of protein feed ingredients. However, the gossypol contained in it has toxic effects on animals, limiting its use in livestock production. The underlying mechanisms remain largely unknown. This study aimed to investigate the adverse effects of gossypol exposure and assess whether melatonin, a natural antioxidant, could alleviate oocyte damage induced by gossypol. Porcine cumulus oocyte complexes (COCs) were treated with gossypol alone or co-treated with melatonin for 44 h during in vitro maturation. The results demonstrated that gossypol exposure induced oxidative stress and mitochondrial dysfunction, leading to oocyte maturation failure. Conversely, melatonin co-treatment mitigated these detrimental effects, by promoting oocyte mitophagy, as evidenced by the upregulation of PINK1, Parkin, and LC3 expressions, along with the downregulation of P62. Further investigation revealed that gossypol treatment significantly decreased SIRT1 protein expression, while melatonin co-treatment markedly increased it. Using the SIRT1 inhibitor Ex527 confirmed that melatonin enhances mitophagy through SIRT1, improving mitochondrial function and rescuing oocyte maturation. This study revealed the potential harm of gossypol on mammalian reproductive health, provided experimental reference for the protective effect of melatonin, and provided theoretical basis for the effective prevention and treatment of reproductive damage caused by gossypol.
Collapse
Affiliation(s)
- Xiaoli Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yijing He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Heran Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianhang Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinfeng Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Miaoyu Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Biao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weihan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiqiang Ju
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Wanta A, Noguchi K, Sugawara T, Sonoda K, Somsuan K, Wakayama T. Short-Term Treatment of Melatonin Improves the Expression of Cell Adhesion Molecules in the Testis of the Mouse Cryptorchidism Model. J Histochem Cytochem 2024; 72:623-640. [PMID: 39301779 PMCID: PMC11483776 DOI: 10.1369/00221554241279505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/26/2024] [Indexed: 09/22/2024] Open
Abstract
Melatonin plays a major role in regulating the sleep-wake cycle and enhancing testosterone production. We investigated the short-term effects of melatonin treatment for 14 consecutive days in the cryptorchidism model. We categorized experimental mice into Sham (S), Orchiopexy (O), Melatonin (Mel), and Orchiopexy + Melatonin (OMel) groups. Surgery involved inducing cryptorchidism in the left testis for seven days, followed by orchiopexy. The Mel group's testes did not descend, but they received melatonin injections after seven days of cryptorchidism. The OMel group underwent both orchiopexy and melatonin treatment. Both O and Mel groups exhibited decreased sperm and round-headed sperm in the epididymis. Significant increases were observed in the numbers of giant cells and negative Nectin-3 cells at p-value<0.05. The pattern of Cadm1 expression changed, and Nectin-2 and Nectin-3 co-expression was lacking in abnormal spermatids. Sertoli cell cytoplasm in both O and Mel groups exhibited autophagosomes and multivesicular bodies, which correlated with increased cyclooxygenase-2 expression. However, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cell numbers increased significantly in all treatment groups compared to the S group. Our study found that the combination of orchiopexy and melatonin positively influenced the expression of cell adhesion molecules (Cadm1, Nectin-2, and Nectin-3) involved in spermatogenesis, while reducing giant cells, autophagosomes, and apoptosis.
Collapse
Affiliation(s)
- Arunothai Wanta
- School of Medicine and Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, Thailand
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Noguchi
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugawara
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keerakarn Somsuan
- School of Medicine and Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, Thailand
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
Li Q, Tang Y, Chen Y, Li B, Wang H, Liu S, Adeniran SO, Zheng P. Melatonin Regulates the Expression of VEGF and HOXA10 in Bovine Endometrial Epithelial Cells through the SIRT1/PI3K/AKT Pathway. Animals (Basel) 2024; 14:2771. [PMID: 39409719 PMCID: PMC11475476 DOI: 10.3390/ani14192771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Melatonin plays a critical role in regulating embryo attachment in ruminants. While numerous studies have investigated its effects on early embryo development in vitro, the precise mechanisms by which melatonin influences the receptivity of endometrial epithelial cells in dairy cows remain unclear. The prerequisite for embryo implantation is the specific physiological condition of the endometrium that allows the embryo to implant, also known as endometrial receptivity. In addition to this, endometrial cells undergo processes such as proliferation, differentiation, and renewal, which makes the embryo more easily implanted. In this study, bovine endometrial epithelial cells were cultured and treated with melatonin, Silent Information Regulator 1 (SIRT1) inhibitor (EX527), and protein kinase B (AKT) phosphorylation inhibitor (periposine). RT-qPCR, Western blot, and immunofluorescence analysis were performed to investigate the effects of melatonin on the expression of target gene (SIRT1); cell proliferative genes, phosphatidylinositol-4,5-bisphosphate 3-Kinase (PI3K), AKT, cyclinD1, cyclinE1; and receptive genes (Leukemia Inhibitory Factor (LIF), Vascular Endothelial Growth Factor (VEGF), Homeobox Structure Gene 10 (HOXA10)). Additionally, microRNA (miRNA) mimics and inhibitors were used to transfect the cells to study the regulatory relationship between miRNA and receptive genes. Results indicated that melatonin activates the PI3K/AKT signaling pathway, upregulates cyclinD1 and cyclinE1, and promotes the proliferation of bovine endometrial epithelial cells. Melatonin also upregulated the expression of VEGF and HOXA10 and downregulated the expression of bta-miR-497 and bta-miR-27a-3p through SIRT1/PI3K/AKT signaling pathway. Further, bta-miR-497 and bta-miR-27a-3p were found to negatively regulate VEGF and HOXA10, respectively. Therefore, melatonin regulates the expression of VEGF and HOXA10 through the SIRT1/PI3K/AKT pathway and promotes the establishment of receptivity in bovine endometrial epithelial cells.
Collapse
Affiliation(s)
- Qi Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.L.); (Y.T.); (Y.C.); (B.L.); (H.W.); (S.L.)
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Tang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.L.); (Y.T.); (Y.C.); (B.L.); (H.W.); (S.L.)
| | - Yanru Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.L.); (Y.T.); (Y.C.); (B.L.); (H.W.); (S.L.)
| | - Bo Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.L.); (Y.T.); (Y.C.); (B.L.); (H.W.); (S.L.)
| | - Hongzhan Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.L.); (Y.T.); (Y.C.); (B.L.); (H.W.); (S.L.)
| | - Shicheng Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.L.); (Y.T.); (Y.C.); (B.L.); (H.W.); (S.L.)
| | - Samson O. Adeniran
- Biotechnology Unit, Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Ibafo 110115, Nigeria;
| | - Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.L.); (Y.T.); (Y.C.); (B.L.); (H.W.); (S.L.)
| |
Collapse
|
5
|
Liu S, Wu J, Zhao X, Yu M, Taniguchi M, Bao H, Kang K. Recent Progress of Induced Spermatogenesis In Vitro. Int J Mol Sci 2024; 25:8524. [PMID: 39126092 PMCID: PMC11313507 DOI: 10.3390/ijms25158524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Sperm, a crucial gamete for reproduction in sexual reproduction, is generated through the proliferation, differentiation, and morphological transformations of spermatogonial stem cells within the specialized microenvironment of the testes. Replicating this environment artificially presents challenges. However, interdisciplinary advancements in physics, materials science, and cell engineering have facilitated the utilization of innovative materials, technologies, and structures for inducing in vitro sperm production. This article offers a comprehensive overview of research progress on inducing in vitro sperm production by categorizing techniques into two major systems based on matrix-based and non-matrix-based approaches, respectively. Detailed discussions are provided for both types of technology systems through comparisons of their similarities and differences, as well as research advancements. The aim is to provide researchers in this field with a comprehensive panoramic view while presenting our own perspectives and prospects.
Collapse
Affiliation(s)
- Siqi Liu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| | - Jiang Wu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Masayasu Taniguchi
- Department of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-0841, Japan
| | - Huimingda Bao
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| | - Kai Kang
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| |
Collapse
|
6
|
Navid S, Saadatian Z, Talebi A, Toolee H, Seyedi S. The effect of biological mechanisms of melatonin on the proliferation of spermatogonial stem cells: a systematic review. Anat Cell Biol 2024; 57:163-171. [PMID: 38590095 PMCID: PMC11184433 DOI: 10.5115/acb.23.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 04/10/2024] Open
Abstract
In the last decade, melatonin has gained recognition as a potent scavenger and an effective antioxidant capable of neutralizing free radicals, including reactive oxygen species. Additionally, it exhibits anti-apoptotic properties. In this review, we will examine a compilation of articles that explore the cellular signaling function of melatonin on spermatogonial stem cells (SSCs) and adjacent cells such as Sertoli and Leydig cells. These cells play a crucial role in the proliferation of SSCs both in vitro and in vivo. In this review, we analyze the function of melatonin in the proliferation of SSCs from other aspects. For this purpose, we examine the articles based on the presence of melatonin on SSCs in four groups: As a supplement in SSCs medium culture, SSCs three-dimensional culture system, SSCs freezing medium, and as a therapeutic factor in vivo. Mechanisms of growth and proliferation of SSCs were considered. The purpose of this study is to investigate the potential effects of melatonin as a powerful antioxidant or growth stimulant for SSCs, both in vivo and in vitro.
Collapse
Affiliation(s)
- Shadan Navid
- Department of Anatomy, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Zahra Saadatian
- Department of Anatomy, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Heidar Toolee
- Department of Anatomy, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saba Seyedi
- Department of Medical Laboratory Sciences, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
7
|
Zhao Y, Deng S, Li C, Cao J, Wu A, Chen M, Ma X, Wu S, Lian Z. The Role of Retinoic Acid in Spermatogenesis and Its Application in Male Reproduction. Cells 2024; 13:1092. [PMID: 38994945 PMCID: PMC11240464 DOI: 10.3390/cells13131092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogenesis in mammalian testes is essential for male fertility, ensuring a continuous supply of mature sperm. The testicular microenvironment finely tunes this process, with retinoic acid, an active metabolite of vitamin A, serving a pivotal role. Retinoic acid is critical for various stages, including the differentiation of spermatogonia, meiosis in spermatogenic cells, and the production of mature spermatozoa. Vitamin A deficiency halts spermatogenesis, leading to the degeneration of numerous germ cells, a condition reversible with retinoic acid supplementation. Although retinoic acid can restore fertility in some males with reproductive disorders, it does not work universally. Furthermore, high doses may adversely affect reproduction. The inconsistent outcomes of retinoid treatments in addressing infertility are linked to the incomplete understanding of the molecular mechanisms through which retinoid signaling governs spermatogenesis. In addition to the treatment of male reproductive disorders, the role of retinoic acid in spermatogenesis also provides new ideas for the development of male non-hormone contraceptives. This paper will explore three facets: the synthesis and breakdown of retinoic acid in the testes, its role in spermatogenesis, and its application in male reproduction. Our discussion aims to provide a comprehensive reference for studying the regulatory effects of retinoic acid signaling on spermatogenesis and offer insights into its use in treating male reproductive issues.
Collapse
Affiliation(s)
- Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Chongyang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China;
| | - Jingchao Cao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Aowu Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Mingming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Xuehai Ma
- Xinjiang Key Laboratory of Mental Development and Learning Science, College of Psychology, Xinjiang Normal University, Urumqi 830017, China
| | - Sen Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| |
Collapse
|
8
|
Lee WY, Sim HW, Park HJ. Effects of melatonin on a d-galactose-induced male reproductive aging mouse model. Theriogenology 2023; 206:181-188. [PMID: 37224707 DOI: 10.1016/j.theriogenology.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Abstract
Understanding the aging mechanism of the male reproductive system and developing anti-aging interventions are essential for preventing age-related male infertility. The pineal hormone melatonin has been effectively used as an antioxidant and anti-apoptotic molecule in various cells and tissues. However, the effects of melatonin on d-galactose (D-gal)-induced aging have not been studied with regards to testicular function. Thus, we investigated whether melatonin suppresses the dysfunction of male reproductive function induced by D-gal treatment. The mice were divided into the following four groups receiving treatments for six weeks: phosphate-buffered saline (PBS) group, d-galactose (200 mg/kg) group, melatonin (20 mg/kg) group, and d-galactose (200 mg/kg)+ melatonin (20 mg/kg) group. At six weeks of treatments, sperm parameters, body and testes weight, gene and protein expression of germ cell and spermatozoa marker were analyzed. Our results showed that melatonin suppressed the decrease in body weight, sperm vitality, motility, and gene expression levels of spermatozoa markers such as Protamine 1, PGK2, Camk4, TP1, and Crem in the testis of D-gal-induced aging models. However, the gene expression levels of the pre-meiotic and meiotic markers in the testes did not change in the D-gal-injected model. The injection of D-gal impaired the decreased expression of steroidogenic enzyme genes, such as HSD3b1, Cyp17a1, and Cyp11a1, but melatonin inhibited the decrease in the expression of these genes. In addition, protein levels of spermatozoa and germ cell markers were evaluated by immunostaining and immunoblotting. Consistent with the qPCR results, PGK2 protein levels were decreased by d-galactose treatment. A decrease in PGK2 protein levels by D-gal was inhibited by melatonin treatment. In conclusion, melatonin administration improves testicular function with age.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju-si, 54874, Republic of Korea
| | - Heyon Woo Sim
- Department of Animal Biotechnology, Sangji University, Wonju-Si, 26339, Republic of Korea
| | - Hyun Jung Park
- Department of Animal Biotechnology, Sangji University, Wonju-Si, 26339, Republic of Korea.
| |
Collapse
|
9
|
Goszczynski DE, Navarro M, Mutto AA, Ross PJ. Review: Embryonic stem cells as tools for in vitro gamete production in livestock. Animal 2023; 17 Suppl 1:100828. [PMID: 37567652 DOI: 10.1016/j.animal.2023.100828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 08/13/2023] Open
Abstract
The goal of in vitro gametogenesis is to reproduce the events of sperm and oocyte development in the laboratory. Significant advances have been made in the mouse in the last decade, but evolutionary divergence from the murine developmental program has prevented the replication of these advances in large mammals. In recent years, intensive work has been done in humans, non-human primates and livestock to elucidate species-specific differences that regulate germ cell development, due to the number of potential applications. One of the most promising applications is the use of in vitro gametes to optimize the spread of elite genetics in cattle. In this context, embryonic stem cells have been posed as excellent candidates for germ cell platforms. Here, we present the most relevant advances in in vitro gametogenesis of interest to livestock science, including new types of pluripotent stem cells with potential for germline derivation, characterization of the signaling environment in the gonadal niche, and experimental systems used to reproduce different stages of germ cell development in the laboratory.
Collapse
Affiliation(s)
- D E Goszczynski
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - M Navarro
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - A A Mutto
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - P J Ross
- Department of Animal Science, University of California Davis, Davis, CA, USA; STgenetics, Navasota, TX, USA.
| |
Collapse
|
10
|
Nazeri T, Hedayatpour A, Kazemzadeh S, Safari M, Safi S, Khanehzad M. Antioxidant Effect of Melatonin on Proliferation, Apoptosis, and Oxidative Stress Variables in Frozen-Thawed Neonatal Mice Spermatogonial Stem Cells. Biopreserv Biobank 2022; 20:374-383. [PMID: 35984941 DOI: 10.1089/bio.2021.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cryopreservation of spermatogonial stem cells (SSCs) is an important method to restore and maintain fertility in preadolescent children suffering from cancer. For protection of SSCs from cryoinjury, various antioxidant agents have been used. The aim of this study was to assess the antiapoptotic and antioxidant effects of melatonin in frozen-thawed SSCs. SSCs were isolated from testes of neonatal mice (3-6 days old) and their purities were measured by flow cytometry with promyelocytic leukemia zinc finger protein. After culturing, the cells were frozen in two groups (1) control and (2) melatonin (100 μM) and stored for 1 month. Finally, the cell viability, colonization rate, expression of Bcl-2 and BAX gene, and intracellular reactive oxygen species (ROS) were evaluated after freezing-thawing. Melatonin increased the viability and colonization of SSCs and Bcl-2 gene expression. It also diminished BAX gene expression and intracellular ROS. The results of this study show that melatonin with antioxidant and antiapoptotic effects can be used as an additive for freezing and long-term storage of cells and infertility treatment in the clinic.
Collapse
Affiliation(s)
- Tahoora Nazeri
- Department of Biology, Islamic Azad University of SariBranch, Mazandaran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Shokoofeh Kazemzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mahmoud Safari
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Samiullah Safi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Khanehzad
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Kazemzadeh S, Mohammadpour S, Madadi S, Babakhani A, Shabani M, Khanehzad M. Melatonin in cryopreservation media improves transplantation efficiency of frozen-thawed spermatogonial stem cells into testes of azoospermic mice. Stem Cell Res Ther 2022; 13:346. [PMID: 35883101 PMCID: PMC9327150 DOI: 10.1186/s13287-022-03029-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Cryostorage of spermatogonial stem cells (SSCs) is an appropriate procedure for long-term storage of SSCs for fertility preservation. However, it causes damage to cellular structures through overproduction of ROS and oxidative stress. In this study, we examined the protective effect of melatonin as a potent antioxidant in the basic freezing medium to establish an optimal cryopreservation method for SSCs. Methods SSCs were obtained from the testes of neonatal male mice aged 3–6 days. Then, 100 μM melatonin was added to the basic freezing medium containing DMSO for cryopreservation of SSCs. Viability, apoptosis-related markers (BAX and BCL2), and intracellular ROS generation level were measured in frozen–thawed SSCs before transplantation using the MTT assay, immunocytochemistry, and flow cytometry, respectively. In addition, Western blotting and immunofluorescence were used to evaluate the expression of proliferation (PLZF and GFRα1) and differentiation (Stra8 and SCP3) proteins in frozen–thawed SSCs after transplantation into recipient testes. Results The data showed that adding melatonin to the cryopreservation medium markedly increased the viability and reduced intracellular ROS generation and apoptosis (by decreasing BAX and increasing BCL2) in the frozen–thawed SSCs (p < 0.05). The expression levels of proliferation (PLZF and GFRα1) and differentiation (Stra8 and SCP3) proteins and resumption of spermatogenesis from frozen–thawed SSCs followed the same pattern after transplantation. Conclusions The results of this study revealed that adding melatonin as an antioxidant to the cryopreservation medium containing DMSO could be a promising strategy for cryopreservation of SSCs to maintain fertility in prepubertal male children who suffer from cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03029-1.
Collapse
Affiliation(s)
- Shokoofeh Kazemzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Mohammadpour
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Soheila Madadi
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Azar Babakhani
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Khanehzad
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
12
|
Chen Y, Shan X, Jiang H, Guo Z. Exogenous Melatonin Directly and Indirectly Influences Sheep Oocytes. Front Vet Sci 2022; 9:903195. [PMID: 35720845 PMCID: PMC9203153 DOI: 10.3389/fvets.2022.903195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding whether and how melatonin (MT) may impact sheep oocyte development competence is central to our ability to predict how sheep oocytes will respond to artificially regulated estrus. Implanting MT can make sheep enter estrus during the non-breeding season. One study found that the blastocyst rate increased under MT treatment, while another found that the blastocyst rate decreased. Therefore, we conducted a meta-analysis of MT directly and indirectly influencing sheep oocytes. A total of 433 articles were collected from which 20 articles and 34 treatments were finally selected. A method for estimating the default value was established for the litter size analysis. We found that exogenous MT add into in vitro maturation medium was positively related to the blastocyst rate in the lab. However, subcutaneous implanting MT did not affect the in vivo ovulation rate, fertilization rate, blastocyst rate, or pregnancy rate at farm. MT did not affect the in vitro cleavage rate. However, MT improved the in vivo cleavage rate. We hypothesized that implanted MT could increase the concentration of MT in oviduct fluid in vivo, and also that in vitro MT could increase the early cleavage rate of sheep zygotes without affecting the total cleavage rate. In the analysis of oocyte apoptosis caused by injury, the results suggested that pyroptosis would be more suitable for further research. MT produces responses in all body organs, and thus implanting of MT during non-breeding seasons should consider the effect on animal welfare.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xuesong Shan
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huaizhi Jiang
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhenhua Guo
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Harbin, China
| |
Collapse
|
13
|
Hu X, Wang H, Tian GG, Hou C, Xu B, Zhao X, Zhao Y, Fang Q, Li X, He L, Chen X, Li S, Wu J. Offspring production of haploid spermatid-like cells derived from mouse female germline stem cells with chromatin condensation. Cell Biosci 2022; 12:5. [PMID: 34983631 PMCID: PMC8729121 DOI: 10.1186/s13578-021-00697-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022] Open
Abstract
Background During male meiosis, the Y chromosome can form perfect pairing with the X chromosome. However, it is unclear whether mammalian Female germline stem cells (FGSCs) without a Y chromosome can transdifferentiate into functional haploid spermatid-like cells (SLCs). Results We found that spermatogenesis was restarted by transplanting FGSCs into Kitw/wv mutant testes. Complete meiosis and formation of SLCs was induced in vitro by testicular cells of Kitw/wv mutant mice, cytokines and retinoic acid. Healthy offspring were produced by sperm and SLCs derived from the in vivo and in vitro transdifferentiation of FGSCs, respectively. Furthermore, high-throughput chromosome conformation capture sequencing(Hi-C-seq) and “bivalent” (H3K4me3-H3K27me3) micro chromatin immunoprecipitation sequencing (μChIP-seq) experiments showed that stimulated by retinoic acid gene 8 (STRA8)/protamine 1 (PRM1)-positive transdifferentiated germ cells (tGCs) and male germ cells (mGCs) display similar chromatin dynamics and chromatin condensation during in vitro spermatogenesis. Conclusion This study demonstrates that sperm can be produced from FGSCs without a Y chromosome. This suggests a strategy for dairy cattle breeding to produce only female offspring with a high-quality genetic background. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00697-z.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Hu Wang
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Geng G Tian
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Changliang Hou
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Bo Xu
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xinyan Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Yongqiang Zhao
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Qian Fang
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xinyue Li
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Lin He
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China. .,Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Ji Wu
- Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China. .,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China. .,Shanghai Key Laboratory of Reproductive Medicine, Shanghai, 200025, China.
| |
Collapse
|
14
|
Bendarska-Czerwińska A, Zmarzły N, Morawiec E, Panfil A, Bryś K, Czarniecka J, Ostenda A, Dziobek K, Sagan D, Boroń D, Michalski P, Pallazo-Michalska V, Grabarek BO. Endocrine disorders and fertility and pregnancy: An update. Front Endocrinol (Lausanne) 2022; 13:970439. [PMID: 36733805 PMCID: PMC9887196 DOI: 10.3389/fendo.2022.970439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
It is estimated that more and more couples suffer from fertility and pregnancy maintenance disorders. It is associated with impaired androgen secretion, which is influenced by many factors, ranging from genetic to environmental. It is also important to remember that fertility disorders can also result from abnormal anatomy of the reproductive male and female organ (congenital uterine anomalies - septate, unicornuate, bicornuate uterus; acquired defects of the uterus structure - fibroids, polyps, hypertrophy), disturbed hormonal cycle and obstruction of the fallopian tubes resulting from the presence of adhesions due to inflammation, endometriosis, and surgery, abnormal rhythm of menstrual bleeding, the abnormal concentration of hormones. There are many relationships between the endocrine organs, leading to a chain reaction when one of them fails to function properly. Conditions in which the immune system is involved, including infections and autoimmune diseases, also affect fertility. The form of treatment depends on infertility duration and the patient's age. It includes ovulation stimulation with clomiphene citrate or gonadotropins, metformin use, and weight loss interventions. Since so many different factors affect fertility, it is important to correctly diagnose what is causing the problem and to modify the treatment regimen if necessary. This review describes disturbances in the hormone secretion of individual endocrine organs in the context of fertility and the maintenance of pregnancy.
Collapse
Affiliation(s)
- Anna Bendarska-Czerwińska
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- American Medical Clinic, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Emilia Morawiec
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Microbiology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Agata Panfil
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Kamil Bryś
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Justyna Czarniecka
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | | | | | - Dorota Sagan
- Medical Center Dormed Medical SPA, Busko-Zdroj, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
| | | | | | - Beniamin Oskar Grabarek
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| |
Collapse
|
15
|
Zhang Y, Cong P, Tong C, Jin H, Liu Y, Hou M. Melatonin pretreatment alleviates blast-induced oxidative stress in the hypothalamic-pituitary-gonadal axis by activating the Nrf2/HO-1 signaling pathway. Life Sci 2021; 280:119722. [PMID: 34153300 DOI: 10.1016/j.lfs.2021.119722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 01/14/2023]
Abstract
Although melatonin has been demonstrated to exert a potent antioxidant effect, the ability of melatonin to alleviate blast-induced oxidative stress in the hypothalamic-pituitary-gonadal (HPG) axis remains unclear. This study aimed to elucidate the effects and underlying mechanism of melatonin pretreatment on the HPG axis disrupted by blast injury. Sixty C57BL/6 mice were randomly divided into control, blast, and blast + melatonin groups for behavioral experiments. The elevated maze experiment, open field experiment, and Morris Water Maze experiment were carried out on the 7th, 14th and 28th day after the blast injury. Fifty Sprague Dawley rats were randomly divided into control, blast, blast + melatonin, and blast + melatonin + luzindole groups for hormone assays and molecular and pathological experiments. Blood samples were used for HPG axis hormone detection and ELISA assays, and tissue samples were used to detect oxidative stress, inflammation, apoptosis, and stress-related protein levels. The results showed that melatonin pretreatment alleviated blast-induced behavioral abnormalities in mice and maintained the HPG axis hormone homeostasis in rats. Additionally, melatonin significantly reduced MDA5 expression and increased the expression of Nrf2/HO-1. Moreover, melatonin significantly inhibited NF-κB expression and upregulated IL-10 expression, and it reversed the blast-induced high expression of caspase-3 and Bax and the low expression of Bcl-2. Furthermore, luzindole counteracted melatonin inhibition of NF-κB and upregulated Nrf2/HO-1. Melatonin significantly alleviated blast-induced HPG axis hormone dyshomeostasis, behavioral abnormalities, oxidative stress, inflammation, and apoptosis, which may be achieved by upregulating the Nrf2/HO-1 signaling pathway. Our study suggested that melatonin pretreatment is a potential treatment for blast-induced HPG axis hormonal and behavioral abnormalities.
Collapse
Affiliation(s)
- Yin Zhang
- Graduate School, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Peifang Cong
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, Shenyang, Liaoning Province 116044, China
| | - Changci Tong
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, Shenyang, Liaoning Province 116044, China
| | - Hongxu Jin
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, Shenyang, Liaoning Province 116044, China
| | - Yunen Liu
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, No. 20 Beijiu Road, Heping District, Shenyang 110001, China; Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| | - Mingxiao Hou
- Graduate School, Dalian Medical University, Dalian, Liaoning Province 116044, China; Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, Shenyang, Liaoning Province 116044, China.
| |
Collapse
|
16
|
Jiang Z, Shen H. Mitochondria: emerging therapeutic strategies for oocyte rescue. Reprod Sci 2021; 29:711-722. [PMID: 33712995 DOI: 10.1007/s43032-021-00523-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
As the vital organelles for cell energy metabolism, mitochondria are essential for oocyte maturation, fertilization, and embryo development. Abnormalities in quantity, quality, and function of mitochondria are closely related to poor fertility and disorders, such as decreased ovarian reserve (DOR), premature ovarian aging (POA), and ovarian aging, as well as maternal mitochondrial genetic disease caused by mitochondrial DNA (mtDNA) mutations or deletions. Mitochondria have begun to become a therapeutic target for infertility caused by factors such as poor oocyte quality, oocyte aging, and maternal mitochondrial genetic diseases. Mitochondrial replacement therapy (MRT) has attempted to use heterologous or autologous mitochondria to rebuild healthy state of oocyte by increasing the amount of mitochondria (e.g., partial ooplasm transfer, autologous mitochondrial transfer), or to stop the transmission of mtDNA diseases by replacing abnormal maternal mitochondria (e.g., pronuclei transfer, spindle transfer, polar body transfer). Among them, autologous mitochondrial transfer is the most promising therapeutic technology as of today which does not involve using a third party, but its clinical efficacy is controversial due to many factors such as the aging phenomenon of germ line cells, the authenticity of the existence of ovarian stem cells (OSC), and secondary damage caused by invasive surgery to patients with poor ovarian function. Therefore, the research of optimal autologous cell type that can be applied in autologous mitochondrial transfer is an area worthy of further exploration. Besides, the quality of germ cells can also be probably improved by the use of compounds that enhance mitochondrial activity (e.g., coenzyme Q10, resveratrol, melatonin), or by innovative gene editing technologies which have shown capability in reducing the risk of mtDNA diseases (e.g., CRISPR/Cas9, TALENTs). Though the current evidences from animal and clinical trials are not sufficient, and some solutions of technical problems are still needed, we believe this review will guide a new direction in the possible clinical applied mitochondrial-related therapeutic strategies in reproductive medicine.
Collapse
Affiliation(s)
- Zhixin Jiang
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Huan Shen
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China.
| |
Collapse
|
17
|
Kazemzadeh S, Rastegar T, Zangi BM, Malekzadeh M, Khanehzad M, Khanlari P, Madadi S, Bashghareh A, Hedayatpour A. Effect of a Freezing Medium Containing Melatonin on Markers of Pre-meiotic and Post-meiotic Spermatogonial Stem Cells (SSCs) After Transplantation in an Azoospermia Mouse Model Due to Testicular Torsion. Reprod Sci 2021; 28:1508-1522. [PMID: 33481217 DOI: 10.1007/s43032-020-00447-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/27/2020] [Indexed: 01/07/2023]
Abstract
Spermatogonial stem cells (SSCs) are essential to the initiation of spermatogenesis. Cryopreservation, long-term maintenance, and auto-transplantation of SSCs could be a new treatment for infertility. The aim of this study was to add melatonin to the basic freezing medium and to evaluate its effect on the efficiency of the thawed SSCs after transplantation into the testicles of azoospermic mice. SSCs were isolated from newborn NMRI mice, and the cells were enriched to assess morphological features. The thawed SSCs were evaluated for survival, apoptosis, and ROS level before transplantation, and the proliferation (MVH and ID4) and differentiation (c-Kit, SCP3, TP1, TP2, and Prm1) markers of SSCs were examined using immunofluorescence, western blot, and quantitative real-time polymerase chain reaction (PCR) after transplantation. It was found that the survival rate of SSCs after thawing was significantly higher in the melatonin group compared with the cryopreservation group containing basic freezing medium, and the rate of apoptosis and level of ROS production also decreased significantly in the cryopreservation group with melatonin (p < 0.05). The expression of proliferation and differentiation markers after transplantation was significantly higher in the cryopreservation group with melatonin compared to the cryopreservation group (p < 0.05). The results suggest that adding melatonin to the basic freezing medium can effectively protect the SSCs by increasing the viability and reducing the ROS production and apoptosis and improve the transplantation efficiency of SSCs after cryopreservation, which will provide a significant suggestion for fertility protection in the clinic.
Collapse
Affiliation(s)
- Shokoofeh Kazemzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Minaei Zangi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoush Malekzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Khanehzad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Khanlari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Madadi
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Alieh Bashghareh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Deng SL, Zhang BL, Reiter RJ, Liu YX. Melatonin Ameliorates Inflammation and Oxidative Stress by Suppressing the p38MAPK Signaling Pathway in LPS-Induced Sheep Orchitis. Antioxidants (Basel) 2020; 9:antiox9121277. [PMID: 33327643 PMCID: PMC7765110 DOI: 10.3390/antiox9121277] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Gram-negative bacterial infections of the testis can lead to infectious orchitis, which negatively influences steroid hormone synthesis and spermatogenesis. Lipopolysaccharide (LPS), a major component of the Gram-negative bacterial cell wall, acts via toll like receptors 4 (TLR4) to trigger innate immune responses and activate nuclear factor kappa B signaling. The protective mechanisms of melatonin on LPS-induced infectious orchitis have not been reported. Herein, we developed an LPS-induced sheep infectious orchitis model. In this model, the phagocytic activity of testicular macrophages (TM) was enhanced after melatonin treatment. Moreover, we found that melatonin suppressed secretion of TM pro-inflammatory factors by suppressing the p38MAPK pathway and promoting Leydig cell testosterone secretion. Expressions of GTP cyclohydrolase-I and NADPH oxidase-2 were reduced by melatonin while heme oxygenase-1 expression was up-regulated. Thus, melatonin reduced the severity of LPS-induced orchitis by stimulating antioxidant activity. The results of this study provide a reference for the treatment of acute infectious orchitis.
Collapse
Affiliation(s)
- Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Bao-Lu Zhang
- Marine Consulting Center of Natural Resources of the People’s Republic of China, Beijing 100071, China;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
- Correspondence: (R.J.R.); (Y.-X.L.); Tel.: +35-210-567-3859 (R.J.R.); +86-010-84097698 (Y.-X.L.)
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (R.J.R.); (Y.-X.L.); Tel.: +35-210-567-3859 (R.J.R.); +86-010-84097698 (Y.-X.L.)
| |
Collapse
|
19
|
Protective effects of melatonin on male fertility preservation and reproductive system. Cryobiology 2020; 95:1-8. [DOI: 10.1016/j.cryobiol.2020.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/25/2020] [Indexed: 12/17/2022]
|
20
|
Moradi M, Karimi I, Ahmadi S, Mohammed LJ. The necessity of antioxidant inclusion in caprine and ovine semen extenders: A systematic review complemented with computational insight. Reprod Domest Anim 2020; 55:1027-1043. [PMID: 32597508 DOI: 10.1111/rda.13754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 11/28/2022]
Abstract
The inclusion of antioxidants (AOXs) has been proposed in various protocols to conserve the normal physiology of spermatozoa during (cryo) preservation. The main aim of this review was to understand the necessity of AOXs inclusion in semen extenders of caprine and ovine semen samples and to decipher physico-chemical space of AOXs used in semen extenders till now. A total 27 full-text relevant articles were finally discussed here. This systematic review showed that the inclusion of AOXs may improve the success of semen cryopreservation although at least three studies could not support this finding. AOXs have been not added after assaying total antioxidant capacity of the sample of interest, and this is principal measurement bias of all papers. Furthermore, no rational dose-response curve and precise posology have been considered in comparable studies. Furthermore, new methodologies are requested to detect the oxidative status of semen specimens before AXOs fortification and new methodologies like imaging are also needed to detect various injuries of sperms during semen (cryo)preservation. Defining computational chemical and physical spaces of AOXs which used in semen (cryo)preservation would be an interdisciplinary effort to hasten deciphering epoch-making compounds. In conclusion, more in-depth analytical, toxicological and pharmacological methodologies should be pursued in supplementation or addition of AOXs during caprine and ovine semen (cryo)preservation after determining the oxidative status of semen samples.
Collapse
Affiliation(s)
- Mojtaba Moradi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Isaac Karimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Shirin Ahmadi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Layth J Mohammed
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
21
|
Yu K, Zhang Y, Zhang BL, Wu HY, Jiang WQ, Wang ST, Han DP, Liu YX, Lian ZX, Deng SL. In-vitro differentiation of early pig spermatogenic cells to haploid germ cells. Mol Hum Reprod 2020; 25:507-518. [PMID: 31328782 DOI: 10.1093/molehr/gaz043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/26/2019] [Indexed: 01/06/2023] Open
Abstract
Spermatogonial stem cells (SSCs) self-renew and contribute genetic information to the next generation. Pig is wildly used as a model animal for understanding reproduction mechanisms of human being. Inducing directional differentiation of porcine SSCs may be an important strategy in exploring the mechanisms of spermatogenesis and developing better treatment methods for male infertility. Here, we established an in-vitro culture model for porcine small seminiferous tubule segments, to induce SSCs to differentiate into single-tail haploid spermatozoa. The culture model subsequently enabled spermatozoa to express the sperm-specific protein acrosin and oocytes to develop to blastocyst stage after round spermatid injection. The addition of retinoic acid (RA) to the differentiation media promoted the efficiency of haploid differentiation. RT-PCR analysis indicated that RA stimulated the expression of Stra8 but reduced the expression of NANOS2 in spermatogonia. Genes involved in post-meiotic development, transition protein 1 (Tnp1) and protamine 1 (Prm1) were upregulated in the presence of RA. The addition of an RA receptor (RAR) inhibitor, BMS439, showed that RA enhanced the expression of cAMP responsive-element binding protein through RAR and promoted the formation of round spermatids. We established an efficient culture system for in-vitro differentiation of pig SSCs. Our study represents a model for human testis disease and toxicology screening. Molecular regulators of SSC differentiation revealed in this study might provide a therapeutic strategy for male infertility.
Collapse
Affiliation(s)
- Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Yi Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China.,Department of Medicine, Panzhihua University, Sichuan, Sichuan, People's Republic of China
| | - Bao-Lu Zhang
- Marine Consulting Center of MNR, Oceanic Counseling Center, Ministry of Natural Resources of the People's Republic of China, Feng-tai District, Beijing, People's Republic of China
| | - Han-Yu Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Wu-Qi Jiang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Su-Tian Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Xiangfang District, People's Republic of China
| | - De-Ping Han
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| |
Collapse
|
22
|
Sayed RKA, Mokhtar DM, Fernández-Ortiz M, Fernández-Martínez J, Aranda-Martínez P, Escames G, Acuña-Castroviejo D. Lack of retinoid acid receptor-related orphan receptor alpha accelerates and melatonin supplementation prevents testicular aging. Aging (Albany NY) 2020; 12:12648-12668. [PMID: 32644943 PMCID: PMC7377884 DOI: 10.18632/aging.103654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
The role of retinoid acid receptor-related orphan receptor alpha (RORα) on male reproductive functions during aging is unclear. Here, we analyze the morphological changes in the testis of both young and aged RORα-deficient mice, with and without melatonin supplementation. Young mutants showed vacuolation, degeneration and pyknosis of spermatogenic epithelium and Sertoli cells. Aged mutants showed atrophy of the seminiferous tubules and absence of mitotic spermatogenic cells. Absence of sperms in many tubules, loss of acrosomal cap, vacuolation and hypertrophy of Sertoli cells were detected in aged mice, with a significant reduction in the number of seminiferous tubules and a significant increase in the number of Leydig cells and telocytes. Repair in seminiferous tubules and interstitial tissues with enhancement of spermatogenesis was observed in melatonin-treated aged mice. Young mutants overexpressed VEGF that was weaker in aged animals and observed only in the spermatocytes, while melatonin increased VEGF expression in spermatocytes and spermatids. Caspase 3 increased in both young and aged mutant mice in all seminiferous tubules and interstitium; caspase 3 immunostaining in seminiferous tubules, however, showed a normal pattern of apoptosis with melatonin supplementation. The present study reports that age-dependent testicular changes in RORα mutant mice were recovered by melatonin treatment.
Collapse
Affiliation(s)
- Ramy K A Sayed
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Marisol Fernández-Ortiz
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - José Fernández-Martínez
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - Paula Aranda-Martínez
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - Germaine Escames
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain.,CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, Granada 18016, Spain
| | - Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain.,CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, Granada 18016, Spain
| |
Collapse
|
23
|
Melatonin concentration in peripheral blood and melatonin receptors (MT1 and MT2) in the testis and epididymis of male roe deer during active spermatogenesis. Theriogenology 2020; 149:25-37. [DOI: 10.1016/j.theriogenology.2020.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
|
24
|
Goszczynski DE, Cheng H, Demyda-Peyrás S, Medrano JF, Wu J, Ross PJ. In vitro breeding: application of embryonic stem cells to animal production†. Biol Reprod 2020; 100:885-895. [PMID: 30551176 DOI: 10.1093/biolre/ioy256] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass of preimplantation blastocysts. For decades, attempts to efficiently derive ESCs in animal livestock species have been unsuccessful, but this goal has recently been achieved in cattle. Together with the recent reconstitution of the germ cell differentiation processes from ESCs in mice, these achievements open new avenues for the development of promising technologies oriented toward improving health, animal production, and the environment. In this article, we present a strategy that will notably accelerate genetic improvement in livestock populations by reducing the generational interval, namely in vitro breeding (IVB). IVB combines genomic selection, a widely used strategy for genetically improving livestock, with ESC derivation and in vitro differentiation of germ cells from pluripotent stem cells. We also review the most recent findings in the fields on which IVB is based. Evidence suggests this strategy will be soon within reach.
Collapse
Affiliation(s)
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, California, USA
| | - Sebastian Demyda-Peyrás
- Instituto de Genetica Veterinaria, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, California, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
25
|
Zhang P, Zheng Y, Lv Y, Li F, Su L, Qin Y, Zeng W. Melatonin protects the mouse testis against heat-induced damage. Mol Hum Reprod 2020; 26:65-79. [DOI: 10.1093/molehr/gaaa002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
Spermatogenesis, an intricate process occurring in the testis, is responsible for ongoing production of spermatozoa and thus the cornerstone of lifelong male fertility. In the testis, spermatogenesis occurs optimally at a temperature 2–4°C lower than that of the core body. Increased scrotal temperature generates testicular heat stress and later causes testicular atrophy and spermatogenic arrest, resulting in a lower sperm yield and therefore impaired male fertility. Melatonin (N-acetyl-5-methoxytryptamine), a small neuro-hormone synthesized and secreted by the pineal gland and the testis, is widely known as a potent free-radical scavenger; it has been reported that melatonin protects the testis against inflammation and reactive oxygen species generation thereby playing anti-inflammatory, -oxidative and -apoptotic roles in the testis. Nevertheless, the role of melatonin in the testicular response to heat stress has not been studied. Here, by employing a mouse model of testicular hyperthermia, we systematically investigated the testicular response to heat stress as well as the occurrence of autophagy, apoptosis and oxidative stress in the testis. Importantly, we found that pre-treatment with melatonin attenuated heat-induced apoptosis and oxidative stress in the testis. Also, post-treatment with melatonin promoted recovery of the testes from heat-induced damage, probably by maintaining the integrity of the Sertoli cell tight-junction. Thus, we for the first time provide the proof of concept that melatonin can protect the testis against heat-induced damage, supporting the potential future use of melatonin as a therapeutic drug in men for sub/infertility incurred by various testicular hyperthermia factors.
Collapse
Affiliation(s)
- Pengfei Zhang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yinghua Lv
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuyuan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lihong Su
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuwei Qin
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
26
|
Melatonin Improves the Fertilization Capacity of Sex-Sorted Bull Sperm by Inhibiting Apoptosis and Increasing Fertilization Capacitation via MT1. Int J Mol Sci 2019; 20:ijms20163921. [PMID: 31409031 PMCID: PMC6720564 DOI: 10.3390/ijms20163921] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022] Open
Abstract
Little information is available regarding the effect of melatonin on the quality and fertilization capability of sex-sorted bull sperm, and even less about the associated mechanism. Sex-sorted sperm from three individual bulls were washed twice in wash medium and incubated in a fertilization medium for 1.5 h, and each was supplemented with melatonin (0, 10−3 M, 10−5 M, 10−7 M, and 10−9 M). The reactive oxygen species (ROS) and endogenous antioxidant activity (glutathione peroxidase (GPx); superoxide dismutase (SOD); catalase (CAT)), apoptosis (phosphatidylserine [PS] externalization; mitochondrial membrane potential (Δψm)), acrosomal integrity events (malondialdehyde (MDA) level; acrosomal integrity), capacitation (calcium ion [Ca2+]i level; cyclic adenosine monophosphate (cAMP); capacitation level), and fertilization ability of the sperm were assessed. Melatonin receptor 1 (MT1) and 2 (MT2) expression were examined to investigate the involvement of melatonin receptors on sex-sorted bull sperm capacitation. Our results show that treatment with 10−5 M melatonin significantly decreased the ROS level and increased the GPx, SOD, and CAT activities of sex-sorted bull sperm, which inhibited PS externalization and MDA levels, and improved Δψm, acrosomal integrity, and fertilization ability. Further experiments showed that melatonin regulates sperm capacitation via MT1. These findings contribute to improving the fertilization capacity of sex-sorted bull sperm and exploring the associated mechanism.
Collapse
|
27
|
Wang X, Meng K, He Y, Wang H, Zhang Y, Quan F. Melatonin Stimulates STAR Expression and Progesterone Production via Activation of the PI3K/AKT Pathway in Bovine Theca Cells. Int J Biol Sci 2019; 15:404-415. [PMID: 30745830 PMCID: PMC6367557 DOI: 10.7150/ijbs.27912] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023] Open
Abstract
Melatonin is present in mammalian follicular fluid and plays an important role in regulating steroidogenesis in follicular cells. In this study, we report the effect of melatonin on steroidogenesis in the theca interna (TI) in small bovine follicles and theca cells (TCs) cultured in vitro. Treatment with melatonin significantly increased the expression of steroidogenic acute regulatory protein (STAR) and the production of progesterone in both TI and in TCs. Melatonin stimulated the phosphorylation of AKT but not ERK1/2, and the addition of luzindole (a nonspecific MT1 and MT2 inhibitor) or 4P-PDOT (specific MT2 inhibitor) reduced melatonin-induced STAR expression, progesterone secretion, and PI3K/AKT pathway activation. The effect of melatonin on the TI in follicles was more obvious than on the TCs in vitro. Results indicate that melatonin stimulates the steroidogenesis of TCs mainly via the activation of the PI3K/AKT pathway by MT1 and MT2.
Collapse
Affiliation(s)
- Xiaomei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Kai Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan He
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hengqin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Niu B, Li B, Wu C, Wu J, Yan Y, Shang R, Bai C, Li G, Hua J. Melatonin promotes goat spermatogonia stem cells (SSCs) proliferation by stimulating glial cell line-derived neurotrophic factor (GDNF) production in Sertoli cells. Oncotarget 2018; 7:77532-77542. [PMID: 27769051 PMCID: PMC5363602 DOI: 10.18632/oncotarget.12720] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022] Open
Abstract
Melatonin has been reported to be an important endogenous hormone for regulating neurogenesis, immunityand the biological clock. Recently, the effects of melatonin on neural stem cells (NSCs), mesenchymal stem cells(MSCs), and induced pluripotent stem cells(iPSCs) have been reported; however, the effects of melatonin on spermatogonia stem cells (SSCs) are not clear. Here, 1μM and 1nM melatonin was added to medium when goat SSCs were cultured in vitro, the results showed that melatonin could increase the formation and size of SSC colonies. Real-time quantitative PCR (QRT-PCR) and western blot analysis showed that the expression levels of SSC proliferation and self-renewal markers were up-regulated. Meanwhile, QRT-PCR results showed that melatonin inhibit the mRNA expression level of SSC differentiation markers. ELISA analysis showed an obvious increase in the concentration of GDNF (a niche factor secreted by Sertoli cells) in the medium when treated with melatonin. Meanwhile, the phosphorylation level of AKT, a downstream of GDNF-GFRa1-RET pathway was activated. In conclusion, melatonin promotes goat SSC proliferation by stimulating GDNF production in Sertoli cells.
Collapse
Affiliation(s)
- Bowen Niu
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bo Li
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chongyang Wu
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiang Wu
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuan Yan
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Shang
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunling Bai
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
29
|
Yu K, Deng SL, Sun TC, Li YY, Liu YX. Melatonin Regulates the Synthesis of Steroid Hormones on Male Reproduction: A Review. Molecules 2018; 23:molecules23020447. [PMID: 29462985 PMCID: PMC6017169 DOI: 10.3390/molecules23020447] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/10/2018] [Accepted: 02/14/2018] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a ubiquitous molecule and exhibits different effects in long-day and short-day breeding animals. Testosterone, the main resource of androgens in the testis, is produced by Leydig cells but regulated mainly by cytokine secreted by Sertoli cells. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular proliferation and energy metabolism and, consequently, can regulate steroidogenesis. These suggest melatonin as a key player in the regulation of steroidogenesis. However, the melatonin-induced regulation of steroid hormones may differ among species, and the literature data indicate that melatonin has important effects on steroidogenesis and male reproduction.
Collapse
Affiliation(s)
- Kun Yu
- National Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tie-Cheng Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
30
|
Li B, He X, Zhuang M, Niu B, Wu C, Mu H, Tang F, Cui Y, Liu W, Zhao B, Peng S, Li G, Hua J. Melatonin Ameliorates Busulfan-Induced Spermatogonial Stem Cell Oxidative Apoptosis in Mouse Testes. Antioxid Redox Signal 2018; 28:385-400. [PMID: 28027652 DOI: 10.1089/ars.2016.6792] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS Many men endure immunosuppressive or anticancer treatments that contain alkylating agents before the age of sexual maturity, especially the increasing number of preadolescent males who undergo busulfan treatment for myeloablative conditioning before hematopoietic stem cell transplantation. Before sperm production, there are no sperm available for cryopreservation. Thus, it is necessary to identify a solution to ameliorate the busulfan-induced damage of spermatogonial stem cells (SSCs). RESULTS In this study, we demonstrated that melatonin relieved the previously described SSC loss and apoptosis in mouse testes. Melatonin increased the expression of manganese superoxide dismutase (MnSOD), which regulated the production of busulfan-induced reactive oxygen species (ROS). Moreover, melatonin promoted sirtuin type 1 (SIRT1) expression. SIRT1 participated in the deacetylation of p53, which promotes p53 ubiquitin degradation. Decreased concentrations of deacetylated p53 resulted in spermatogonial cell resistance to apoptosis. Acute T cell leukemia cell assay demonstrated that melatonin does not affect busulfan-induced cancer cell apoptosis and ROS. INNOVATION The current evidence suggests that melatonin may alleviate the side effects of alkylating drugs, such as busulfan. CONCLUSION Melatonin promoted MnSOD and SIRT1 expression, which successfully ameliorated busulfan-induced SSC apoptosis caused by high concentrations of ROS and p53. Antioxid. Redox Signal. 28, 385-400.
Collapse
Affiliation(s)
- Bo Li
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Xin He
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Mengru Zhuang
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Bowen Niu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Chongyang Wu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Hailong Mu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Furong Tang
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Yanhua Cui
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Weishuai Liu
- 3 Department of Pathology, Yangling Demonstration Zone Hospital , Yangling, Shaanxi, China
| | - Baoyu Zhao
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Sha Peng
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Guangpeng Li
- 2 Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University , Hohhot, China
| | - Jinlian Hua
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| |
Collapse
|
31
|
Deng SL, Zhang Y, Yu K, Wang XX, Chen SR, Han DP, Cheng CY, Lian ZX, Liu YX. Melatonin up-regulates the expression of the GATA-4 transcription factor and increases testosterone secretion from Leydig cells through RORα signaling in an in vitro goat spermatogonial stem cell differentiation culture system. Oncotarget 2017; 8:110592-110605. [PMID: 29299171 PMCID: PMC5746406 DOI: 10.18632/oncotarget.22855] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Because androgen function is regulated by its receptors, androgen-androgen receptor signaling is crucial for regulating spermatogenesis. Androgen is mainly testosterone secreted by testis. Based on the results of early studies in goats, the administration of melatonin over an extended period of time increases steroid production, but the underlying mechanism remains unclear. Here, we report the expression of the melatonin membrane receptors MT1 and MT2 and the retinoic acid receptor-related orphan receptor-alpha (RORα) in the goat testis. An in vitro differentiation system using spermatogonial stem cells (SSCs) cultured in the presence of testicular somatic cells was able to support the formation of sperm-like cells with a single flagellum. The addition of 10-7 M melatonin to the in vitro culture system increased RORα expression and considerably improved the efficiency of haploid cell differentiation, and the addition of the RORα agonist CGP52608 significantly increased the testosterone concentration and expression of GATA binding factor 4 (GATA-4). Furthermore, inhibitors of melatonin membrane receptors and a RORα antagonist (T0901317) also led to a considerable reduction in the efficiency of haploid spermatid formation, which was coupled with the suppression of GATA-4 expression. Based on these results, RORα may play a crucial role in enhancing melatonin-regulated GATA-4 transcription and steroid hormone synthesis in the goat spermatogonial stem cell differentiation culture system.
Collapse
Affiliation(s)
- Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Kun Yu
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - De-Ping Han
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Zheng-Xing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
32
|
Deng SL, Wang ZP, Jin C, Kang XL, Batool A, Zhang Y, Li XY, Wang XX, Chen SR, Chang CS, Cheng CY, Lian ZX, Liu YX. Melatonin promotes sheep Leydig cell testosterone secretion in a co-culture with Sertoli cells. Theriogenology 2017; 106:170-177. [PMID: 29073541 DOI: 10.1016/j.theriogenology.2017.10.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Leydig cells synthesize and secrete testosterone, and are regulated by Sertoli cells. These two cell types may work together to regulate testicular androgen production. Studies have shown that Leydig cell androgen synthesis can be dramatically enhanced by Sertoli cells in the presence of melatonin, which can regulate the secretory function of Leydig and Sertoli cells. However, the molecular mechanism of melatonin-regulated Leydig cell androgen production via Sertoli cells remains unclear. Here, we found that 10-7 M melatonin increased testosterone production in co-cultured Leydig and Sertoli cells isolated from sheep. Melatonin increased the expression of stem cell factor and insulin-like growth factor-1 and decreased estrogen synthesis in Sertoli cells. Melatonin promoted insulin-like growth factor-1 and decreased estrogen content via the membrane melatonin receptor 1. It also enhanced stem cell factor expression via the retinoic acid receptor-related orphan receptor alpha. Addition of PD98059, a MEK inhibitor, to Sertoli cell culture demonstrated that the melatonin upregulation of insulin-like growth factor-1 and downregulation of estrogen may be through the MEK/extracellular signal-regulated kinase pathway. Together, these results suggest that melatonin may function through modulating melatonin receptor 1-regulated insulin-like growth factor-1 expression, as well as melatonin receptor 1-induced suppression of estrogen synthesis to increase androgen production in co-cultured Leydig and Sertoli cells.
Collapse
Affiliation(s)
- Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhi-Peng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiao-Long Kang
- College of Agriculture, Ningxia University, Yinchuan 750021, PR China
| | - Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiao-Yu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chawn-Shang Chang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, NY 10065, USA
| | - Zheng-Xing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
33
|
Navid S, Abbasi M, Hoshino Y. The effects of melatonin on colonization of neonate spermatogonial mouse stem cells in a three-dimensional soft agar culture system. Stem Cell Res Ther 2017; 8:233. [PMID: 29041987 PMCID: PMC5646105 DOI: 10.1186/s13287-017-0687-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Melatonin is a pleiotropic hormone with powerful antioxidant activity both in vivo and in vitro. The present study aimed to investigate the effects of melatonin on the proliferation efficiency of neonatal mouse spermatogonial stem cells (SSCs) using a three-dimensional soft agar culture system (SACS) which has the capacity to induce development of SSCs similar to in vivo conditions. METHODS SSCs were isolated from testes of neonate mice and their purities were assessed by flow cytometry using PLZF antibody. Isolated testicular cells were cultured in the upper layer of the SACS in αMEM medium in the absence or presence of melatonin extract for 4 weeks. RESULTS The identity of colonies was confirmed by alkaline phosphatase staining and immunocytochemistry using PLZF and α6 integrin antibodies. The number and diameter of colonies of SSCs in the upper layer were evaluated at days 14 and 28 of culture. The number and diameter of colonies of SSCs were significantly higher in the melatonin group compared with the control group. The levels of expression of ID-4 and Plzf, unlike c-kit, were significantly higher in the melatonin group than in the control group. CONCLUSIONS Results of the present study show that supplementation of the culture medium (SACS) with 100 μM melatonin significantly decreased reactive oxygen species (ROS) production in the treated group compared with the control group, and increased SSC proliferation.
Collapse
Affiliation(s)
- Shadan Navid
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yumi Hoshino
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Kagamiyama 1-4-4, Hiroshima 739-8528 Japan
| |
Collapse
|
34
|
Li C, Zhu X, Chen S, Chen L, Zhao Y, Jiang Y, Gao S, Wang F, Liu Z, Fan R, Sun L, Zhou X. Melatonin promotes the proliferation of GC-1 spg cells by inducing metallothionein-2 expression through ERK1/2 signaling pathway activation. Oncotarget 2017; 8:65627-65641. [PMID: 29029459 PMCID: PMC5630359 DOI: 10.18632/oncotarget.20019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022] Open
Abstract
Synthesized by the pineal gland, melatonin is a neurohormone implicated in diverse physiological functions via several mechanisms. However, the role of melatonin in spermatogenesis and its underlying mechanisms have yet to be completely understood. In the present study, transcriptome sequencing was performed to characterize the mechanism of melatonin-induced GC-1 spg proliferation. Gene ontology (GO) enrichment and pathway analyses were also conducted to identify the signaling pathways and biological processes involved in differential mRNA expression. Results revealed 28 differential genes. Of these genes, 11 were upregulated and 17 were downregulated. Melatonin increased the expression of metallothionein-2 (Mt2), a gene that acts as a protector to sequester nonessential toxic heavy metals. Functional investigations demonstrated that Mt2 overexpression promoted the proliferation of GC-1 spg cells, but Mt2 knockdown significantly suppressed their proliferation and increased their apoptosis. Mechanistic analysis indicated that the extracellular-signal-regulated kinase 1/2 (ERK1/2) pathway participated in melatonin-promoted proliferation of GC-1 spg cells. Therefore, melatonin induces the proliferation of GC-spg 1 cells by stimulating Mt2 expression, and this process is mediated by the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Chunjin Li
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Xiaoling Zhu
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Shuxiong Chen
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Lu Chen
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yun Zhao
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yanwen Jiang
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Shan Gao
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Fengge Wang
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Zhuo Liu
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Rong Fan
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Liting Sun
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Xu Zhou
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin, 130062, P.R. China
| |
Collapse
|
35
|
Gholami M, Ahmadi SAY, Abaszadeh A, Khaki A. Protective effects of melatonin and ghrelin on spermatogenesis: A narrative review of the literature. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.5.265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
36
|
Faramarzi A, Khalili MA, Micara G, Agha- Rahimi A. Revealing the secret life of pre-implantation embryos by time-lapse monitoring: A review. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.5.257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
37
|
He B, Yin C, Gong Y, Liu J, Guo H, Zhao R. Melatonin‐induced increase of lipid droplets accumulation and in vitro maturation in porcine oocytes is mediated by mitochondrial quiescence. J Cell Physiol 2017; 233:302-312. [DOI: 10.1002/jcp.25876] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Bin He
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjing Agricultural UniversityNanjingP. R. China
| | - Chao Yin
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjing Agricultural UniversityNanjingP. R. China
| | - Yabin Gong
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjing Agricultural UniversityNanjingP. R. China
| | - Jie Liu
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjing Agricultural UniversityNanjingP. R. China
| | - Huiduo Guo
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjing Agricultural UniversityNanjingP. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjing Agricultural UniversityNanjingP. R. China
- Jiangsu Collaborative Innovation Center of Meat Production and ProcessingQuality and Safety ControlNanjingP. R. China
| |
Collapse
|
38
|
Fattahi A, Latifi Z, Ghasemnejad T, Nejabati HR, Nouri M. Insights into in vitro spermatogenesis in mammals: Past, present, future. Mol Reprod Dev 2017; 84:560-575. [DOI: 10.1002/mrd.22819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Amir Fattahi
- Institute for Stem Cell and Regenerative Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Zeinab Latifi
- Department of Clinical Biochemistry, Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Tohid Ghasemnejad
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamid Reza Nejabati
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|