1
|
Huber C, Callegari E, Paez D, Li X, Wang H. Impaired 26S proteasome causes learning and memory deficiency and induces neuroinflammation mediated by NF-κB in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579699. [PMID: 38405714 PMCID: PMC10888903 DOI: 10.1101/2024.02.09.579699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A reduction in proteasome activity, loss of synapses and increased neuroinflammation in the brain are hallmarks of aging and many neurodegenerative disorders, including Alzheimer disease (AD); however, whether proteasome dysfunction is causative to neuroinflammation remains less understood. In this study, we investigated the impact of 26S proteasome deficiency on neuroinflammation in the Psmc1 knockout (KO) mice deficient in a 19S proteasome subunit limited to the forebrain region. Our results revealed that impaired 26S proteasome led to reduced learning and memory capability and overt neuroinflammation in the synapses of the Psmc1 KO brain at eight weeks of age. Moreover, pronounced neuroinflammation was also found in the whole brain cortex, which was confirmed by increased levels of several key immune response-related proteins, including Stat1, Trem2 and NF-κB, and by activation of astrocytes and microglia in the KO brain. To validate NF-κB mediating neuroinflammation, we administered a selective NF-κB inhibitor to the KO animals at 5 weeks of age for three weeks, and then, animal behaviors and neuroinflammation were assessed when they reached eight weeks of age. Following the treatment, the KO mice exhibited improved behaviors and reduced neuroinflammation compared to the control animals. These data indicate that impaired 26S proteasome causes AD-like cognitive deficiency and induces neuroinflammation mediated largely by NF-κB. These results may aid development of effective therapeutics and better understanding of the pathogenesis of AD and many other neurodegenerative disorders where impaired proteasome is consistently coupled with neuroinflammation.
Collapse
|
2
|
He H, Zhang X, He H, Xu G, Li L, Yang C, Liu Y, You Z, Zhang J. Microglial priming by IFN-γ involves STAT1-mediated activation of the NLRP3 inflammasome. CNS Neurosci Ther 2024; 30:e70061. [PMID: 39392762 PMCID: PMC11468839 DOI: 10.1111/cns.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Inflammatory and immune responses in the brain that contribute to various neuropsychiatric disorders may begin as microglial "priming". Interferon (IFN)-γ is known to cause microglial priming, but the mechanism is unclear. METHODS We examined the effects of IFN-γ on gene expression, microglial activation, inflammatory and immune responses and activity of the NLRP3 inflammasome in primary microglia and in the brains of mice. RESULTS Our results showed that treating microglial cultures with IFN-γ induced a hedgehog-like morphology and upregulated markers of microglial activation (CD86, CD11b) and pro-inflammatory molecules (IL-1β, IL-6, TNF-α, iNOS), while downregulating markers of microglial homeostasis (CX3CR1, CD200R1), anti-inflammatory molecules (MCR1, Arg-1) and neurotrophic factors (IGF-1, BDNF). IFN-γ also upregulated markers of NLRP3 inflammasome activation (NLRP3, caspase-1, gasdermin D, IL-18). This particular transcriptional profiling makes IFN-γ-primed microglia with exaggerated responses upon lipopolysaccharide (LPS) stimulation. The level of NLRP3, caspase-1, gasdermin D, IL-1β, IL-18, TNF-α and iNOS in microglia cultures treated with both IFN-γ and LPS were highest than with either one alone. Injecting IFN-γ into the lateral ventricle of mice induced similar morphological and functional changes in hippocampal microglia as in primary microglial cultures. The effects of IFN-γ on NLRP3 inflammasome and microglia from cultures or hippocampus were abolished when STAT1 was inhibited using fludarabin. Injecting mice with IFN-γ alone or together with LPS induced anxiety- and depression-like behaviors and impaired hippocampus-dependent spatial memory; these effects were mitigated by fludarabin. CONCLUSIONS IFN-γ primes microglia by activating STAT1, which upregulates genes that activate the NLRP3 inflammasome. Inhibiting the IFN-γ/STAT1 axis may be a way to treat neurodegenerative diseases and psychiatric disorders that involve microglial priming.
Collapse
Affiliation(s)
- Haili He
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Xiaomei Zhang
- School of Life Science and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hui He
- School of Life Science and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Gaojie Xu
- School of Life Science and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Liangyuan Li
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Chengyan Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Yu‐e Liu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Zili You
- School of Life Science and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jinqiang Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| |
Collapse
|
3
|
Spišská V, Kubištová A, Novotný J, Bendová Z. Impact of Prenatal LPS and Early-life Constant Light Exposure on Circadian Gene Expression Profiles in Various Rat Tissues. Neuroscience 2024; 551:17-30. [PMID: 38777136 DOI: 10.1016/j.neuroscience.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Exposure to lipopolysaccharide (LPS) during prenatal development leads to various changes in neurobiological and behavioural patterns. Similarly, continuous exposure to constant light (LL) during the critical developmental period of the circadian system affects gene expression in various tissues in adulthood. Given the reciprocal nature of the interaction between the circadian and the immune systems, our study primarily investigated the individual effects of both interventions and, more importantly, their combined effect. We aimed to explore whether there might be a potential synergistic effect on circadian rhythms and their parameters, focussing on the expression of clock genes, immune-related genes, and specific genes in the hippocampus, pineal gland, spleen and adrenal gland of rats at postnatal day 30. Our results show a significant influence of prenatal LPS and postnatal LL on the expression profiles of all genes assessed. However, the combination of prenatal LPS and postnatal LL only revealed an enhanced negative effect in a minority of the comparisons. In most cases, it appeared to attenuate the changes induced by the individual interventions, restoring the measured parameters to values closer to those of the control group. In particular, genes such as Nr1d1, Aanat and Tph1 showed increased amplitude in the pineal gland and spleen, while the kynurenine enzymes Kynu and KatII developed circadian rhythmicity in the adrenal glands only after the combined interventions. Our data suggest that a mild immunological challenge during prenatal development may play a critical role in triggering an adaptive response of the circadian clock later in life.
Collapse
Affiliation(s)
- Veronika Spišská
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Aneta Kubištová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
4
|
Liu J, Jiang J, Xu Q, Xu Y, Guo M, Hu Y, Wang Y, Wang Y. Xuanfu Daizhe Tang alleviates reflux esophagitis in rats by inhibiting the STAT1/TREM-1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117903. [PMID: 38342154 DOI: 10.1016/j.jep.2024.117903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reflux esophagitis (RE) is a common chronic inflammatory disease of the esophageal mucosa with a high prevalence and recurrence rate, for which a satisfactory therapeutic strategy is still lacking. Chinese medicine has its characteristics and advantages in treating RE, and the clinical application of Xuanfu Daizhe Tang (XDT) in treating RE has achieved sound therapeutic effects. However, there needs to be more research on its mechanism of action. AIM OF THE STUDY The present work aimed to investigate the mechanism of XDT action in RE through the Signal Transducer and Activator of Transcription 1 (STAT1)/Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) pathway. MATERIALS AND METHODS The main active components of XDT were analyzed by ultra-performance liquid chromatography-mass spectrometer (UPLC-MS). The effect of XDT on RE was evaluated in a rat model of RE induced by "Cardioplasty + pyloric ligation + Roux-en-Y esophagojejunostomy". Each administration group was treated by gavage. The degree of damage to the esophageal mucosa was evaluated by visual observation, and the Potential of Hydrogen (PH) method and Hematoxylin-eosin staining (HE) staining were performed. Serum levels of Interleukin-1β (IL-1β), Interleukin-6 (IL-6), Tumor Necrosis Factor alpha (TNF-α), and Inducible Nitric Oxide Synthase (iNOS) were measured by ELISA. Quantitative Real-time PCR (qPCR), Western Blot (WB), and Immunofluorescence (IF) methods were used to detect Claudin-4, Claudin-5, TREM-1, and p-STAT1 in esophageal tissues for studying the mechanism of action and signaling pathway of XDT. Immunohistochemistry (IHC) analysis was used to detect the expression of TREM-1 and CD68 in esophageal tissues. Flow Cytometry (FC) was used to detect the polarization of macrophages in the blood. After conducting preliminary experiments to verify our hypothesis, we performed molecular docking between the active component of XDT and STAT1 derived from rats and parallel experiments with STAT1 inhibitor. The selective increaser of STAT1 transcription (2-NP) group was used to validate the mechanism by which XDT acts. RESULTS XDT alleviated esophageal injury and attenuated histopathological changes in RE rats. XDT also inhibited the inflammatory response and decreased serum IL-1β, IL-6, TNF-α, and iNOS levels in RE rats. qPCR and WB results revealed that XDT inhibited the expression of Claudin-4, Claudin-5, TREM-1, and STAT1 in the esophageal mucosa of RE rats. IHC and FC results showed that XDT reduced TREM-1 levels in esophageal tissues and polarized macrophages toward M2. The molecular docking results showed that rat-derived STAT1 can strongly bind to Isochronogenic acid A in XDT. The parallel experimental results of STAT1 inhibitor showed that XDT has anti-inflammatory effects similar to STAT1 inhibitors. The 2-NP group confirmed that XDT exerts its therapeutic effect on reflux esophagitis through the STAT1/TREM-1 pathway, with STAT1 as the upstream protein. CONCLUSIONS This study suggests that XDT may treat reflux esophagitis by modulating the STAT1/TREM-1 pathway.
Collapse
Affiliation(s)
- Ju Liu
- Office of Science and Technology Administration, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Jiaxin Jiang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qianfei Xu
- Department of Spleen, Stomach and Hepatobiliary, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yunyan Xu
- Preventive Treatment Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Manman Guo
- Pharmaceutical Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yun Hu
- Department of Spleen, Stomach and Hepatobiliary, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yan Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yi Wang
- Pharmaceutical Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.
| |
Collapse
|
5
|
Córdoba-Moreno MO, Santos GC, Muxel SM, Dos Santos-Silva D, Quiles CL, Sousa KDS, Markus RP, Fernandes PACM. IL-10-induced STAT3/NF-κB crosstalk modulates pineal and extra-pineal melatonin synthesis. J Pineal Res 2024; 76:e12923. [PMID: 37990784 DOI: 10.1111/jpi.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Immune-pineal axis activation is part of the assembly of immune responses. Proinflammatory cytokines inhibit the pineal synthesis of melatonin while inducing it in macrophages by mechanisms dependent on nuclear factor-κB (NF-κB) activation. Cytokines activating the Janus kinase/signal transducer and activator of transcription (STAT) pathways, such as interferon-gamma (IFN-γ) and interleukin-10 (IL-10), modulate melatonin synthesis in the pineal, bone marrow (BM), and spleen. The stimulatory effect of IFN-γ upon the pineal gland depends on STAT1/NF-κB interaction, but the mechanisms controlling IL-10 effects on melatonin synthesis remain unclear. Here, we evaluated the role of STAT3 and NF-κB activation by IL-10 upon the melatonin synthesis of rats' pineal gland, BM, spleen, and peritoneal cells. The results show that IL-10-induced interaction of (p)STAT3 with specific NF-κB dimmers leads to different cell effects. IL-10 increases the pineal's acetylserotonin O-methyltransferase (ASMT), N-acetylserotonin, and melatonin content via nuclear translocation of NF-κB/STAT3. In BM, the nuclear translocation of STAT3/p65-NF-κB complexes increases ASMT expression and melatonin content. Increased pSTAT3/p65-NF-κB nuclear translocation in the spleen enhances phosphorylated serotonin N-acetyltransferase ((p)SNAT) expression and melatonin content. Conversely, in peritoneal cells, IL-10 leads to NF-κB p50/p50 inhibitory dimmer nuclear translocation, decreasing (p)SNAT expression and melatonin content. In conclusion, IL-10's effects on melatonin production depend on the NF-κB subunits interacting with (p)STAT3. Thus, variations of IL-10 levels and downstream pathways during immune responses might be critical regulatory factors adjusting pineal and extra-pineal synthesis of melatonin.
Collapse
Affiliation(s)
| | | | - Sandra M Muxel
- Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Caroline L Quiles
- Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Kassiano D S Sousa
- Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Regina P Markus
- Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
6
|
Li T, Li L, Peng R, Hao H, Zhang H, Gao Y, Wang C, Li F, Liu X, Chen F, Zhang S, Zhang J. Abrocitinib Attenuates Microglia-Mediated Neuroinflammation after Traumatic Brain Injury via Inhibiting the JAK1/STAT1/NF-κB Pathway. Cells 2022; 11:cells11223588. [PMID: 36429017 PMCID: PMC9688110 DOI: 10.3390/cells11223588] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuroinflammation has been shown to play a critical role in secondary craniocerebral injury, leading to poor outcomes for TBI patients. Abrocitinib, a Janus kinase1 (JAK1) selective inhibitor approved to treat atopic dermatitis (AD) by the Food and Drug Administration (FDA), possesses a novel anti-inflammatory effect. In this study, we investigated whether abrocitinib could ameliorate neuroinflammation and exert a neuroprotective effect in traumatic brain injury (TBI) models. METHODS First, next-generation sequencing (NGS) was used to select genes closely related to neuroinflammation after TBI. Then, magnetic resonance imaging (MRI) was used to dynamically observe the changes in traumatic focus on the 1st, 3rd, and 7th days after the induction of fluid percussion injury (FPI). Moreover, abrocitinib's effects on neurobehaviors were evaluated. A routine peripheral blood test was carried out and Evans blue dye extravasation, cerebral cortical blood flow, the levels of inflammatory cytokines, and changes in the numbers of inflammatory cells were evaluated to investigate the function of abrocitinib on the 1st day post-injury. Furthermore, the JAK1/signal transducer and activator of transcription1 (STAT1)/nuclear factor kappa (NF-κB) pathway was assessed. RESULTS In vivo, abrocitinib treatment was found to shrink the trauma lesions. Compared to the TBI group, the abrocitinib treatment group showed better neurological function, less blood-brain barrier (BBB) leakage, improved intracranial blood flow, relieved inflammatory cell infiltration, and reduced levels of inflammatory cytokines. In vitro, abrocitinib treatment was shown to reduce the pro-inflammatory M1 microglia phenotype and shift microglial polarization toward the anti-inflammatory M2 phenotype. The WB and IHC results showed that abrocitinib played a neuroprotective role by restraining JAK1/STAT1/NF-κB levels after TBI. CONCLUSIONS Collectively, abrocitinib treatment after TBI is accompanied by improvements in neurological function consistent with radiological, histopathological, and biochemical changes. Therefore, abrocitinib can indeed reduce excessive neuroinflammation by restraining the JAK1/STAT1/NF-κB pathway.
Collapse
Affiliation(s)
- Tuo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Lei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
| | - Ruilong Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
| | - Hongying Hao
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300000, China
- Department of Neurology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Hejun Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
- Department of Neurosurgery, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Yalong Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
| | - Cong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
| | - Fanjian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Graduate School, Tianjin Medical University, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
| | - Xilei Liu
- Tianjin Neurological Institute, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
- Correspondence: (S.Z.); (J.Z.)
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, China
- Tianjin Neurological Institute, Tianjin 300000, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300000, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300000, China
- Correspondence: (S.Z.); (J.Z.)
| |
Collapse
|
7
|
Muñoz EM. Microglia in Circumventricular Organs: The Pineal Gland Example. ASN Neuro 2022; 14:17590914221135697. [PMID: 36317305 PMCID: PMC9629557 DOI: 10.1177/17590914221135697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The circumventricular organs (CVOs) are unique areas within the central nervous system. They serve as a portal for the rest of the body and, as such, lack a blood-brain barrier. Microglia are the primary resident immune cells of the brain parenchyma. Within the CVOs, microglial cells find themselves continuously challenged and stimulated by local and systemic stimuli, even under steady-state conditions. Therefore, CVO microglia in their typical state often resemble the activated microglial forms found elsewhere in the brain as they are responding to pathological conditions or other stressors. In this review, I focus on the dynamics of CVO microglia, using the pineal gland as a specific CVO example. Data related to microglia heterogeneity in both homeostatic and unhealthy environments are presented and discussed, including those recently generated by using advanced single-cell and single-nucleus technology. Finally, perspectives in the CVO microglia field are also included.Summary StatementMicroglia in circumventricular organs (CVOs) continuously adapt to react differentially to the diverse challenges they face. Herein, I discuss microglia heterogeneity in CVOs, including pineal gland. Further studies are needed to better understand microglia dynamics in these unique brain areas. .
Collapse
Affiliation(s)
- Estela M. Muñoz
- Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos (IHEM), Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina,Estela M. Muñoz, IHEM-UNCuyo-CONICET, Parque General San Martin, Ciudad de Mendoza, M5502JMA, Mendoza, Argentina.
or
| |
Collapse
|
8
|
Padmanabhan S, Gaire B, Zou Y, Uddin MM, DeLeon D, Vancurova I. IFNγ induces JAK1/STAT1/p65 NFκB-dependent interleukin-8 expression in ovarian cancer cells, resulting in their increased migration. Int J Biochem Cell Biol 2021; 141:106093. [PMID: 34626802 PMCID: PMC8639749 DOI: 10.1016/j.biocel.2021.106093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 01/05/2023]
Abstract
Interferon-γ (IFNγ) is a pleiotropic cytokine that has a crucial role in immune response and tumor immunity. Because of its anti-tumor effects, IFNγ has been used in cancer treatment. However, IFNγ also has tumor-promoting functions that are less well understood. Here, we show that IFNγ induces expression of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8) in ovarian cancer (OC) cells. The IFNγ-induced IL-8 expression is dependent on JAK1, STAT1, and p65 NFκB, and is associated with an increased occupancy of K314/315 acetylated p65 NFκB and Ser-727 phosphorylated STAT1 at the IL-8 promoter. Neutralization of IL-8 using anti-IL-8 antibody reduces IFNγ-induced migration of OC cells, and their invasion ability in 3D spheroids. Together, these findings identify IL-8 as a novel target induced by IFNγ/JAK1/STAT1/p65 NFκB signaling, and indicate that the IFNγ-induced IL-8 contributes to IFNγ pro-tumorigenic effects in ovarian cancer cells.
Collapse
Affiliation(s)
- Sveta Padmanabhan
- Department of Biological Sciences, St. John's University, NY 11439, USA
| | - Bijaya Gaire
- Department of Biological Sciences, St. John's University, NY 11439, USA
| | - Yue Zou
- Department of Biological Sciences, St. John's University, NY 11439, USA
| | - Mohammad M Uddin
- Department of Biological Sciences, St. John's University, NY 11439, USA
| | - Daniel DeLeon
- Department of Biological Sciences, St. John's University, NY 11439, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, NY 11439, USA.
| |
Collapse
|
9
|
Moravcová S, Filipovská E, Spišská V, Svobodová I, Novotný J, Bendová Z. The Circadian Rhythms of STAT3 in the Rat Pineal Gland and Its Involvement in Arylalkylamine-N-Acetyltransferase Regulation. Life (Basel) 2021; 11:1105. [PMID: 34685476 PMCID: PMC8541109 DOI: 10.3390/life11101105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
In rodents, the melatonin production by the pineal gland is controlled through adrenergic signaling from the suprachiasmatic nuclei and regulation of the principal enzyme in its synthesis, arylalkylamine-N-acetyltransferase (AANAT). In the present study, we identified increased isoprenaline-induced aa-nat expression and nocturnal AANAT activity in the pineal glands in response to the silencing of the signal transducer and activator of transcription 3 (STAT3) with siRNA or STAT3 inhibitors WP1066 and AZD1480. This AANAT activity enhancement in vivo did not interfere with light-induced AANAT suppression. Systemic or in vitro lipopolysaccharide (LPS) administration markedly increased Stat3 expression and STAT3 phosphorylation, but it did not significantly affect AANAT expression or activity. Simultaneous LPS administration and Stat3 silencing enhanced the aa-nat transcription and AANAT activity to a similar extent as Stat3 inhibition without LPS co-administration. Furthermore, we describe the circadian rhythmicity in Stat3 expression and the phosphorylated form of STAT3 protein in the rat pineal gland. Our data suggest that the higher nocturnal endogenous level of STAT3 in the pineal gland decelerates or hampers the process of NA-induced AANAT activation or affects the AANAT enzyme stability.
Collapse
Affiliation(s)
- Simona Moravcová
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic; (S.M.); (E.F.); (V.S.); (J.N.)
- Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, 250 67 Klecany, Czech Republic
| | - Eva Filipovská
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic; (S.M.); (E.F.); (V.S.); (J.N.)
| | - Veronika Spišská
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic; (S.M.); (E.F.); (V.S.); (J.N.)
| | - Irena Svobodová
- Laboratory of Pain Research, Institute of Physiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic;
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic; (S.M.); (E.F.); (V.S.); (J.N.)
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic; (S.M.); (E.F.); (V.S.); (J.N.)
- Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, 250 67 Klecany, Czech Republic
| |
Collapse
|
10
|
Anderson G, Carbone A, Mazzoccoli G. Tryptophan Metabolites and Aryl Hydrocarbon Receptor in Severe Acute Respiratory Syndrome, Coronavirus-2 (SARS-CoV-2) Pathophysiology. Int J Mol Sci 2021; 22:ijms22041597. [PMID: 33562472 PMCID: PMC7915649 DOI: 10.3390/ijms22041597] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The metabolism of tryptophan is intimately associated with the differential regulation of diverse physiological processes, including in the regulation of responses to severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) infection that underpins the COVID-19 pandemic. Two important products of tryptophan metabolism, viz kynurenine and interleukin (IL)4-inducible1 (IL41)-driven indole 3 pyruvate (I3P), activate the aryl hydrocarbon receptor (AhR), thereby altering the nature of immune responses to SARS-CoV-2 infection. AhR activation dysregulates the initial pro-inflammatory cytokines production driven by neutrophils, macrophages, and mast cells, whilst AhR activation suppresses the endogenous antiviral responses of natural killer cells and CD8+ T cells. Such immune responses become further dysregulated by the increased and prolonged pro-inflammatory cytokine suppression of pineal melatonin production coupled to increased gut dysbiosis and gut permeability. The suppression of pineal melatonin and gut microbiome-derived butyrate, coupled to an increase in circulating lipopolysaccharide (LPS) further dysregulates the immune response. The AhR mediates its effects via alterations in the regulation of mitochondrial function in immune cells. The increased risk of severe/fatal SARS-CoV-2 infection by high risk conditions, such as elderly age, obesity, and diabetes are mediated by these conditions having expression levels of melatonin, AhR, butyrate, and LPS that are closer to those driven by SARS-CoV-2 infection. This has a number of future research and treatment implications, including the utilization of melatonin and nutraceuticals that inhibit the AhR, including the polyphenols, epigallocatechin gallate (EGCG), and resveratrol.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PX, UK
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
11
|
Anderson G. Tumour Microenvironment: Roles of the Aryl Hydrocarbon Receptor, O-GlcNAcylation, Acetyl-CoA and Melatonergic Pathway in Regulating Dynamic Metabolic Interactions across Cell Types-Tumour Microenvironment and Metabolism. Int J Mol Sci 2020; 22:E141. [PMID: 33375613 PMCID: PMC7795031 DOI: 10.3390/ijms22010141] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
This article reviews the dynamic interactions of the tumour microenvironment, highlighting the roles of acetyl-CoA and melatonergic pathway regulation in determining the interactions between oxidative phosphorylation (OXPHOS) and glycolysis across the array of cells forming the tumour microenvironment. Many of the factors associated with tumour progression and immune resistance, such as yin yang (YY)1 and glycogen synthase kinase (GSK)3β, regulate acetyl-CoA and the melatonergic pathway, thereby having significant impacts on the dynamic interactions of the different types of cells present in the tumour microenvironment. The association of the aryl hydrocarbon receptor (AhR) with immune suppression in the tumour microenvironment may be mediated by the AhR-induced cytochrome P450 (CYP)1b1-driven 'backward' conversion of melatonin to its immediate precursor N-acetylserotonin (NAS). NAS within tumours and released from tumour microenvironment cells activates the brain-derived neurotrophic factor (BDNF) receptor, TrkB, thereby increasing the survival and proliferation of cancer stem-like cells. Acetyl-CoA is a crucial co-substrate for initiation of the melatonergic pathway, as well as co-ordinating the interactions of OXPHOS and glycolysis in all cells of the tumour microenvironment. This provides a model of the tumour microenvironment that emphasises the roles of acetyl-CoA and the melatonergic pathway in shaping the dynamic intercellular metabolic interactions of the various cells within the tumour microenvironment. The potentiation of YY1 and GSK3β by O-GlcNAcylation will drive changes in metabolism in tumours and tumour microenvironment cells in association with their regulation of the melatonergic pathway. The emphasis on metabolic interactions across cell types in the tumour microenvironment provides novel future research and treatment directions.
Collapse
Affiliation(s)
- George Anderson
- Clinical Research Communications (CRC) Scotland & London, Eccleston Square, London SW1V 6UT, UK
| |
Collapse
|
12
|
Prenatal exposure to lipopolysaccharide induces changes in the circadian clock in the SCN and AA-NAT activity in the pineal gland. Brain Res 2020; 1743:146952. [DOI: 10.1016/j.brainres.2020.146952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 11/20/2022]
|
13
|
Fu Z, Mui D, Zhu H, Zhang Y. Exenatide inhibits NF-κB and attenuates ER stress in diabetic cardiomyocyte models. Aging (Albany NY) 2020; 12:8640-8651. [PMID: 32392536 PMCID: PMC7244034 DOI: 10.18632/aging.103181] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Exenatide is used to treat patients with type-2 diabetes and it also exerts cardioprotective effects. Here, we tested whether Exenatide attenuates hyperglycemia-related cardiomyocyte damage by inhibiting endoplasmic reticulum (ER) stress and the NF-κB signaling pathway. Our results demonstrated that hyperglycemia activates the NF-κB signaling pathway, eliciting ER stress. We also observed cardiomyocyte contractile dysfunction, inflammation, and cell apoptosis induced by hyperglycemia. Exenatide treatment inhibited inflammation, improved cardiomyocyte contractile function, and rescued cardiomyocyte viability. Notably, re-activation of the NF-κB signaling pathway abolished Exenatide's protective effects on hyperglycemic cardiomyocytes. Taken together, our results demonstrate that Exenatide directly reduces hyperglycemia-induced cardiomyocyte damage by inhibiting ER stress and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhenhong Fu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - David Mui
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hang Zhu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Rhythmic expression of the melatonergic biosynthetic pathway and its differential modulation in vitro by LPS and IL10 in bone marrow and spleen. Sci Rep 2020; 10:4799. [PMID: 32179854 PMCID: PMC7075864 DOI: 10.1038/s41598-020-61652-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Daily oscillation of the immune system follows the central biological clock outputs control such as melatonin produced by the pineal gland. Despite the literature showing that melatonin is also synthesized by macrophages and T lymphocytes, no information is available regarding the temporal profile of the melatonergic system of immune cells and organs in steady-state. Here, the expression of the enzymes arylalkylamine-N-acetyltransferase (AA-NAT), its phosphorylated form (P-AA-NAT) and acetylserotonin-O-methyltransferase (ASMT) were evaluated in phagocytes and T cells of the bone marrow (BM) and spleen. We also determined how the melatonergic system of these cells is modulated by LPS and the cytokine IL-10. The expression of the melatonergic enzymes showed daily rhythms in BM and spleen cells. Melatonin rhythm in the BM, but not in the spleen, follows P-AA-NAT daily variation. In BM cells, LPS and IL10 induced an increase in melatonin levels associated with the increased expressions of P-AA-NAT and ASMT. In spleen cells, LPS induced an increase in the expression of P-AA-NAT but not of melatonin. Conversely, IL10 induced a significant increase in melatonin production associated with increased AA-NAT/P-AA-NAT expressions. In conclusion, BM and spleen cells present different profiles of circadian production of local melatonin and responses to immune signals.
Collapse
|
15
|
Tian Y, Song H, Jin D, Hu N, Sun L. MST1-Hippo pathway regulates inflammation response following myocardial infarction through inhibiting HO-1 signaling pathway. J Recept Signal Transduct Res 2020; 40:231-236. [PMID: 32054389 DOI: 10.1080/10799893.2020.1726954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Context: Mammalian STE20-like protein kinases 1 (MST1) has been found to be associated with cardiomyocyte damage following acute myocardial infarction.Aim: The aim of our study is to explore the influence of MST1 in inflammation response following myocardial infarction.Methods: Cardiomyocyte cell line was used in vitro with hypoxia treatment to establish myocardial infarction model. ELISA, qPCR, Western blots, and siRNA technology were used to analyze the role of MST1 in inflammation response following myocardial infarction.Results: The transcription and expression of MST1 was significantly elevated following myocardial infarction. Loss of MST1 attenuated the levels of inflammation response and thus contributed to the survival of cardiomyocyte in vitro. Mechanistically, MST1 deletion reversed the activity of heme oxygenase-1 (HO-1) and thus reduced hypoxia-mediated cardiomyocyte death.Conclusions: Altogether, in this study, we found that MST1-Hippo pathway is activated in myocardial infarction and contributes to the inflammation response in cardiomyocytes through inhibiting the HO-1 signaling pathway. This finding would provide a potential target to reverse cardiomyocyte viability and reduce inflammation response in myocardial infarction.
Collapse
Affiliation(s)
- Yanan Tian
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, P. R. China
| | - Haijiu Song
- The First Department of Medicine, Chengde City Hospital of traditional Chinese Medicine, Chengde, P. R. China
| | - Dapeng Jin
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, P. R. China
| | - Na Hu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, P. R. China
| | - Lixian Sun
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, P. R. China
| |
Collapse
|
16
|
Li P, Hu F, Cao X, Luo L, Tu Q. Melatonin receptor protects cardiomyocyte against oxidative stress-induced apoptosis through the MAPK-ERK signaling pathway. J Recept Signal Transduct Res 2020; 40:117-125. [PMID: 31986953 DOI: 10.1080/10799893.2020.1719151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Li
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Fang Hu
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Xin Cao
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Liyun Luo
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Qiuyun Tu
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| |
Collapse
|