1
|
Lu C, Lin Q, Guo X, Luo T, Zhou H, Cai Z, Peng C, Yang G, Wang W. Melatonin modulates mitochondrial function and inhibits atherosclerosis progression through NRF2 activation and OPA1 inhibition. Int Immunopharmacol 2025; 160:114960. [PMID: 40449269 DOI: 10.1016/j.intimp.2025.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/12/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
BACKGROUND Atherosclerosis (AS), a major cardiovascular disease, is characterized by chronic inflammation and oxidative stress. Melatonin (MLT) has emerged as a potential therapeutic agent due to its anti-inflammatory and antioxidant properties, although the specific mechanisms underlying its action, especially as far as mitochondrial function in AS is concerned, have yet to be fully elucidated. METHODS In this study, ApoE-/- mice were fed a high-fat diet with or without MLT treatment. Aortic tissues were analyzed using hematoxylin and eosin, Masson staining, qPCR, and immunofluorescence. Oxidized low-density lipoprotein-treated RAW264.7 macrophages were assessed for AS progression, mitochondrial function, and oxidative stress using electron microscopy, Seahorse analysis, and molecular docking. RESULTS MLT treatment significantly reduced atherosclerotic plaque formation, systemic and mitochondrial oxidative stress, and inflammation. MLT treatment was found to enhance mitochondrial function through upregulating the expression of key regulators of mitochondrial biogenesis and the activity of mitochondrial respiratory chain complexes, whereas markers of mitochondrial fusion [for example, optic atrophy protein 1 (OPA1)] were downregulated. Mechanistically, MLT was shown to directly interact with nuclear factor erythroid 2-related factor 2 (NRF2), thereby activating its antioxidant pathway, which in turn regulated mitochondrial function. Additionally, OPA1 was identified as a downstream target of MLT, and its inhibition improved mitochondrial function and reduced inflammation. CONCLUSION This study is the first to elucidate that MLT synergistically ameliorates mitochondrial dysfunction through dual mechanisms-activating the NRF2 antioxidant pathway and suppressing OPA1-mediated mitochondrial fusion-providing novel therapeutic targets for AS.
Collapse
Affiliation(s)
- Chengbo Lu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, China; Department of Cardiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210018, Jiangsu, China
| | - Quan Lin
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150060, China
| | - Xiaoli Guo
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Tan Luo
- Department of Cardiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, China
| | - Han Zhou
- Department of Cardiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, China
| | - Ziteng Cai
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Chaonan Peng
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Guangyuan Yang
- Clinical Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Weiqun Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, China.
| |
Collapse
|
2
|
Dong J, Li Z, Fu C, Yang D, Yang H, Lin L, Liang XJ, Chen Z, Chen L, Guo W. Cardiosplenic axis-targeted immunomodulatory liposome for myocardial ischemia-reperfusion injury treatment. J Control Release 2025; 383:113799. [PMID: 40324533 DOI: 10.1016/j.jconrel.2025.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/02/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Monocyte/macrophage (Mo/Mϕ) infiltration is critical in myocardial ischemia-reperfusion injury (MIRI). However, the complex composition of the myocardium severely hinders drug accumulation and makes it challenging to modulate the Mo/Mϕ immune response at the MIRI site. The spleen, acting as a Mo/Mϕ reservoir, plays a crucial role in the development of MIRI along the cardiosplenic axis. Compared to directly delivering medications to the MIRI site, targeting the spleen for Mo/Mϕ immunomodulation provides an alternative strategy to modulate the immunological phenotype on-site. Therefore, we developed a melatonin-loaded liposome (ST-MT@lipo2) that specifically targets the spleen and can effectively regulate the immunological response of splenic monocytes and macrophages, consequently enhancing their immune response at the site of MIRI. Additionally, the splenectomy mouse model revealed that ST-MT@lipo2 regulated MIRI's immune response through the cardiosplenic axis by regulating the MCP-1/CCR2 pathway to reduce circulating inflammatory monocyte migration from the spleen to the MIRI site. Moreover, pathological staining and echocardiography showed that ST-MT@lipo2 reduced myocardial damage and improved cardiac function in MIRI mice. This study demonstrates the crucial importance of modulating the immune response in the cardiosplenic axis for treating MIRI, which also inspired the treatments for inflammatory diseases by controlling the spleen immunological milieu.
Collapse
Affiliation(s)
- Jiankai Dong
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou 250001, China
| | - Zechuan Li
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510260, China
| | - Chenxing Fu
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510260, China
| | - Ding Yang
- Department of Radiology, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing 100142, China
| | - Huijie Yang
- Department of Neurology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510260, China
| | - Li Lin
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou 250001, China
| | - Xing-Jie Liang
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510260, China; Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhaoyang Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou 250001, China.
| | - Lianglong Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou 250001, China.
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
3
|
Peng X, Zhao L, Wang J, Zhang Y, Liu Z, Wang K, Zhang L. Melatonin Alleviates Oxidative Stress-Induced Mitochondrial Dysfunction Through Ameliorating NAD + Homeostasis of hDPSCs for Cell-Based Therapy. J Pineal Res 2025; 77:e70058. [PMID: 40391773 DOI: 10.1111/jpi.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 03/29/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025]
Abstract
Human dental pulp stem cells (hDPSCs) exhibit amazing therapeutic abilities in a variety of diseases due to their remarkable self-renewal capacity and multi-differentiation potential. However, their therapeutic potential could be weakened by various factors such as oxidative stress in cell survival microenvironment In Vivo. Here, we explored the protective effect and mechanism of melatonin (Mel) on hDPSCs transplanted in a type 1 diabetes mellitus (T1DM) rat model. Nicotinamide adenine dinucleotide (NAD+) metabolism and mitochondrial function were remarkably impaired in T1DM rats caused by oxidative stress, while the combination of Mel and post-hDPSCs transplantation could rebalance NAD+ homeostasis through regulating NAMPT-NAD+-SIRT1 axis. Furthermore, Mel significantly reduced intracellular and mitochondrial reactive oxygen species, and alleviated cell senescence and apoptosis of hDPSCs exposed to hydrogen peroxide through ameliorating NAD+ depletion and mitochondrial dysfunction. The protective role of Mel could be extremely essential to stem cells in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xiu Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiale Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yinmo Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zihan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Luo Z, Tang YY, Zhou L. Melatonin as an adjunctive therapy in cardiovascular disease management. Sci Prog 2024; 107:368504241299993. [PMID: 39574322 PMCID: PMC11585022 DOI: 10.1177/00368504241299993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, is a neuroendocrine hormone secreted by the pineal gland. This pleiotropic indoleamine possesses amphiphilic properties, allowing it to penetrate most biological barriers and exert its effects at the subcellular level. Importantly, melatonin also plays a crucial role in regulating the body's response to circadian rhythms, adapting to internal and external environmental cues. Melatonin functions as a powerful antioxidant and free radical scavenger, protecting cells from oxidative damage. Its diverse physiological roles include maintaining the functional integrity of endothelial cells, thereby preventing atherosclerosis, a major contributor to cardiovascular disease. Additionally, melatonin exhibits antioxidant and free radical scavenging properties, potentially improving metabolic disorders. These combined effects suggest a unique adjunctive therapeutic potential for melatonin in treating cardiovascular diseases. This review aims to explore the mechanisms by which melatonin interacts with the cardiovascular system and investigates its potential use as an adjunctive therapeutic agent in managing cardiovascular disease.
Collapse
Affiliation(s)
- Zan Luo
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Yuan Tang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Zhou
- Department of Cardiovascular Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Clinical Medicine, Hangzhou, China
| |
Collapse
|
5
|
Zhang C, Shi Y, Liu C, Sudesh SM, Hu Z, Li P, Liu Q, Ma Y, Shi A, Cai H. Therapeutic strategies targeting mechanisms of macrophages in diabetic heart disease. Cardiovasc Diabetol 2024; 23:169. [PMID: 38750502 PMCID: PMC11097480 DOI: 10.1186/s12933-024-02273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.
Collapse
Affiliation(s)
- Chaoyue Zhang
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunke Shi
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Changzhi Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shivon Mirza Sudesh
- Faculty of Medicine, St. George University of London, London, UK
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus
| | - Zhao Hu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pengyang Li
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Qi Liu
- Wafic Said Molecular Cardiology Research Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Yiming Ma
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ao Shi
- Faculty of Medicine, St. George University of London, London, UK.
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus.
| | - Hongyan Cai
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
6
|
Chen T, Wu Z, Hou Q, Mei Y, Yang K, Xu J, Wang L. The Dual Angiogenesis Effects via Nrf2/HO-1 Signaling Pathway of Melatonin Nanocomposite Scaffold on Promoting Diabetic Bone Defect Repair. Int J Nanomedicine 2024; 19:2709-2732. [PMID: 38510794 PMCID: PMC10954026 DOI: 10.2147/ijn.s449290] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Purpose Given the escalating prevalence of diabetes, the demand for specific bone graft materials is increasing, owing to the greater tendency towards bone defects and more difficult defect repair resulting from diabetic bone disease (DBD). Melatonin (MT), which is known for its potent antioxidant properties, has been shown to stimulate both osteogenesis and angiogenesis. Methods MT was formulated into MT@PLGA nanoparticles (NPs), mixed with sodium alginate (SA) hydrogel, and contained within a 3D printing polycaprolactone/β-Tricalcium phosphate (PCL/β-TCP) scaffold. The osteogenic capacity of the MT nanocomposite scaffold under diabetic conditions was demonstrated via in vitro and in vivo studies and the underlying mechanisms were investigated. Results Physicochemical characterization experiments confirmed the successful fabrication of the MT nanocomposite scaffold, which can achieve long-lasting sustained release of MT. The in vitro and in vivo studies demonstrated that the MT nanocomposite scaffold exhibited enhanced osteogenic capacity, which was elucidated by the dual angiogenesis effects activated through the NF-E2-related factor 2/Heme oxygenase 1 (Nrf2/HO-1) signaling pathway, including the enhancement of antioxidant enzyme activity to reduce the oxidative stress damage of vascular endothelial cells (VECs) and directly stimulating vascular endothelial growth factor (VEGF) production, which reversed the angiogenesis-osteogenesis uncoupling and promoted osteogenesis under diabetic conditions. Conclusion This study demonstrated the research prospective and clinical implications of the MT nanocomposite scaffold as a novel bone graft for treating bone defect and enhancing bone fusion in diabetic individuals.
Collapse
Affiliation(s)
- Tingting Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Zimei Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Qiaodan Hou
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yixin Mei
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Kunkun Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Jing Xu
- Southern University of Science and Technology Hospital, Shenzhen, People’s Republic of China
| | - Lin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
- Southern University of Science and Technology Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
7
|
Gu P, Wu Y, Lu W. New Perspectives on the Role and Therapeutic Potential of Melatonin in Cardiovascular Diseases. Am J Cardiovasc Drugs 2024; 24:171-195. [PMID: 38436867 DOI: 10.1007/s40256-024-00631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. It is essential to develop novel interventions to prevent/delay CVDs by targeting their fundamental cellular and molecular processes. Melatonin is a small indole molecule acting both as a hormone of the pineal gland and as a local regulator molecule in various tissues. It has multiple features that may contribute to its cardiovascular protection. Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiological barriers. Additionally, this indoleamine also serves as a safe exogenous therapeutic agent. Increasing evidence has demonstrated the beneficial effects of melatonin in preventing and improving cardiovascular risk factors. Exogenous administration of melatonin, as a result of its antioxidant and anti-inflammatory properties, has been reported to decrease blood pressure, protect against atherosclerosis, attenuate molecular and cellular damage resulting from cardiac ischemia/reperfusion, and improve the prognosis of myocardial infarction and heart failure. This review aims to summarize the beneficial effects of melatonin against these conditions, the possible protective mechanisms of melatonin, and its potential clinical applicability in CVDs.
Collapse
Affiliation(s)
- Pengchen Gu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Yuxin Wu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Weiwei Lu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China.
| |
Collapse
|
8
|
Wang Z, Lin D, Cui B, Zhang D, Wu J, Ma J. Melatonin protects against myocardial ischemia-reperfusion injury by inhibiting excessive mitophagy through the Apelin/SIRT3 signaling axis. Eur J Pharmacol 2024; 963:176292. [PMID: 38128867 DOI: 10.1016/j.ejphar.2023.176292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Excessive or uncontrolled mitophagy may result in a drastic shortage of healthy mitochondrial for ATP supply after reperfusion, leading to irreversible myocardial damage. Melatonin, a hormone produced by the pineal gland, has been proven to ameliorate myocardial ischemia-reperfusion (I/R) injury via regulating mitophagy. However, its underlying mechanism has not been fully elucidated. The present study focused on the role of mitophagy in the cardioprotective effects of melatonin by using the myocardial I/R rat model. The rats were pretreated with or without the apelin inhibitor ML221, the sirtuin 3 (SIRT3) inhibitor 3-TYP and then subjected to I/R injury, with melatonin administrated 10 min before reperfusion. The effects of melatonin on myocardial infarct size, biomarkers of myocardial injury, oxidative stress, and mitochondrial function were detected, and the expression of apelin, SIRT3, and mitophagy-related proteins were also measured. Excessive mitophagy was activated after I/R injury and was correlated with oxidative stress and mitochondrial dysfunction. Melatonin pretreatment ameliorated myocardial injury by decreasing oxidative stress, restoring mitochondrial function, and inhibiting excessive mitophagy. However, ML221 or 3-TYP disrupted these beneficial effects of melatonin on I/R injury. Taken together, these results suggest that melatonin pretreatment ameliorates myocardial I/R injury through regulating the apelin/SIRT3 pathway to inhibit excessive mitophagy.
Collapse
Affiliation(s)
- Zhaoqi Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Boqun Cui
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Mubashshir M, Ahmad N, Negi T, Rawal R, Singhvi N, Khatoon H, Laxmi V, Dubey O, Sharma RB, Negi G, Ovais M. Therapeutic Benefits of Melatonin against COVID-19. Neuroimmunomodulation 2023; 30:196-205. [PMID: 37336193 PMCID: PMC10614475 DOI: 10.1159/000531550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
The assumption of the pineal hormone melatonin as a therapeutic use for COVID-19-affected people seems promising. Its intake has shown significant improvement in the patients' conditions. Higher melatonin titers in children may provide a protective shield against this disease. The hormone melatonin works as an anti-inflammatory, antioxidant, immunomodulator, and strategically slows down the cytokine release which is observed in the COVID-19 disease, thereby improving the overall health of afflicted patients. The medical community is expected shortly to use remedial attributes like anti-inflammatory, antioxidant, antivirals, etc., of melatonin in the successful prevention and cure of COVID-19 morbidity. Thus, the administration of melatonin seems auspicious in the cure and prevention of this COVID-19 fatality. Moreover, melatonin does not seem to reduce the efficiency of approved vaccines against the SARS-CoV-2 virus. Melatonin increases the production of inflammatory cytokines and Th1 and enhances both humoral and cell-mediated responses. Through the enhanced humoral immunity, melatonin exhibits antiviral activities by suppressing multiple inflammatory products such as IL-6, IL1β, and tumor necrosis factor α, which are immediately released during lung injury of severe COVID-19. Hence, the novel use of melatonin along with other antivirals as an early treatment option against COVID-19 infection is suggested. Here, we have chalked out the invasion mechanisms and appropriate implications of the latest findings concerned with melatonin against the virus SARS-CoV-2. Nevertheless, within the setting of a clinical intervention, the promising compounds must go through a series of studies before their recommendation. In the clinical field, this is done in a time-ordered sequence, in line with the phase label affixed to proper protocol of trials: phase I-phase II and the final phase III. Nevertheless, while medical recommendations can only be made on the basis of reassuring evidence, there are still three issues worth considering before implementation: representativeness, validity, and lastly generalizability.
Collapse
Affiliation(s)
- Muhammad Mubashshir
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Nabeel Ahmad
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Tripti Negi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Renu Rawal
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Hina Khatoon
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Vijya Laxmi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Om Dubey
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Renu Bala Sharma
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Ganga Negi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Mohd Ovais
- Department of Bio-Science, Barkatullah University, Bhopal, India
| |
Collapse
|