1
|
Jiang Q, Zhao L, Lei J, Geng X, Zhong X, Zhang B. Interaction between energy level and starch:fat ratio on intestinal energy metabolism of layer pullets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:211-225. [PMID: 39967696 PMCID: PMC11833784 DOI: 10.1016/j.aninu.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 02/20/2025]
Abstract
During the growing period, the gastrointestinal tract of layer pullets is not yet well developed and may be susceptible to dietary energy level. The energy level and composition might impact the intestinal energy metabolism of layer pullets. To test this hypothesis, a total of 480 "Jing Tint 6" layer pullets were used in an 8-week study and allocated to 4 groups, each consisting of 8 replicates, with 15 birds per replicate. Pullets were treated with low or high starch:fat ratios (LS, 10:1; HS, 20:1) in a 2 × 2 factorial arrangement with regular energy (RE, 11.85 and 11.68 MJ/kg for birds from 6 to 10 weeks of age and 11-14 weeks of age, respectively) or low energy (LE, 0.55 MJ/kg lower than RE) levels. A significant interaction (P < 0.05) showed that HS increased glandular stomach weight and the jejunal villus length to crypt depth ratio (VCR) in LE diets, but decreased these parameters in RE diets. Dietary energy reduction impaired energy metabolism in the ileum (P < 0.05) mainly via decreasing the gene expression of enzymes involved in the tricarboxylic acid (TCA) cycle (α-ketoglutarate dehydrogenase complex [α-KGDH]; isocitrate dehydrogenase (NAD (+) [IDH] catalytic; citrate synthase [CS]) and adenosine triphosphate (ATP) synthesis, reducing contents of phosphoenolpyruvate (PEP) and adenylate energy charges (AEC) and down-regulating the adenosine monophosphate-activated protein kinase (AMPK) pathway. HS stimulated AMPKα phosphorylation, increased protein abundance of peroxisome proliferator activated-receptor gamma coactivator 1α (PGC1α) and improved contents of amino acids (aspartate, glutamate, glutamine, alanine and threonine) and malate in the ileum regardless of energy levels (P < 0.05). By an interaction (P < 0.05), the transition from LS to HS diets up-regulated ileal gene expression of AMPKα1 and decreased content of adenosine monophosphate (AMP), accompanied by higher AEC but only in birds fed with LE diets. Collectively, these results suggest that low energy feeding may not be enough for maintaining intestinal energy homeostasis in layer pullets and emphasizes the importance of a relatively high starch:fat ratio in restoring energy metabolism in the ileum.
Collapse
Affiliation(s)
- Qiuyu Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihua Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangfei Geng
- Beijing Lab Animal Science Technology Development Co., Ltd., Beijing 100094, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Adebowale T, Jiang Q, Yao K. Dietary fat and high energy density diet: Influence on intestinal health, oxidative stress and performance of weaned piglets. J Anim Physiol Anim Nutr (Berl) 2024; 108:978-986. [PMID: 38403923 DOI: 10.1111/jpn.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/08/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
The utilization of dietary components to support gut function and the health of young animals is an important factor for improved performance. The influence of high dietary fat levels in a low or high energy density diet on the performance of weaned piglets in relation to intestinal absorptive function, amino acid utilization, oxidative stress, and microbial metabolites was assessed in this study. The study examined the effect of two different diets containing either a low energy density/high-fat level or a high energy density/high-fat level. A total of 16 healthy weaners (9.60 ± 0.13 kg) were allocated to one of the two dietary treatments. There were eight weaners per treatment. Results showed that feed intake and body weight gain of weaners were increased by the diet of high energy density/high-fat level (p < 0.05), but the feed efficiency showed an increased tendency of significance (p = 0.05). In the duodenum, the villus height (VH) and VH/crypt depth (CD) ratio (VH:CD) were increased by dietary high energy density/high fat. In the jejunum and ileum, the CD was increased by low energy density/high-fat diet, while the goblet cell count and VH:CD were increased by dietary high energy density/high-fat level. Methionine, lysine and phenylalanine concentrations were increased by high energy density/high-fat diet while low energy density/high-fat diet showed an increased tendency to increase citrulline and ornithine concentrations in the piglet. Oxidative stress marker, lactase enzyme activity and serum calcium concentration were increased by a high energy density/high-fat diet. Increased dietary fat in all diets induced diarrhoea in the weaners (p < 0.01). It was concluded that a dietary high energy density/high-fat diet seems to positively modulate gut absorptive function, serum amino acid (methionine and lysine), calcium levels and increased oxidative stress markers in the weaned piglets.
Collapse
Affiliation(s)
- Tolulope Adebowale
- Department of Animal Nutrition, Federal University of Agriculture, Abeokuta, Nigeria
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Qian Jiang
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Kang Yao
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
3
|
Dong Z, Liu Z, Xu Y, Tan B, Sun W, Ai Q, Yang Z, Zeng J. Potential for the development of Taraxacum mongolicum aqueous extract as a phytogenic feed additive for poultry. Front Immunol 2024; 15:1354040. [PMID: 38529273 PMCID: PMC10961442 DOI: 10.3389/fimmu.2024.1354040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Taraxacum mongolicum (TM) is a kind of medicinal and edible homologous plant which is included in the catalogue of feed raw materials in China. It is rich in polyphenols, flavonoids, polysaccharides and other active substances, and shows many benefits to livestock, poultry and aquatic products. The study aimed to assess the potential of TM aqueous extract (TMAE) as a substitute for poultry AGPs. Methods A total of 240 one-day-old Arbor Acker broilers were randomly assigned to four groups and fed a basal diet (Con) supplemented with 500, 1000, and 2000 mg/kg TMAE (Low, Medium, and High groups). The growth performance of the broilers was measured on day 21 and day 42. At the end of the trial, the researchers measured slaughter performance and collected serum, liver, spleen, ileum, and intestinal contents to investigate the effects of TMAE on serum biochemistry, antioxidant capacity, immune function, organ coefficient, intestinal morphology, flora composition, and short-chain fatty acids (SCFAs). Results The results showed that broilers treated with TMAE had a significantly higher average daily gain from 22 to 42 days old compared to the Con group. Various doses of TMAE resulted in different levels of improvement in serum chemistry. High doses increased serum alkaline phosphatase and decreased creatinine. TMAE also increased the antioxidant capacity of serum, liver, and ileum in broilers. Additionally, middle and high doses of TMAE enhanced the innate immune function of the liver (IL-10) and ileum (Occludin) in broilers. Compared to the control group, the TMAE treatment group exhibited an increase in the ratio of villi length to villi crypt in the duodenum. TMAE increased the abundance of beneficial bacteria, such as Alistipes and Lactobacillus, while reducing the accumulation of harmful bacteria, such as Colidextracter and Sellimonas. The cecum's SCFAs content increased with a medium dose of TMAE. Supplementing broiler diets with TMAE at varying doses enhanced growth performance and overall health. The most significant benefits were observed at a dose of 1000 mg/kg, including improved serum biochemical parameters, intestinal morphology, antioxidant capacity of the liver and ileum, immune function of the liver and ileum, and increased SCFAs content. Lactobacillus aviarius, norank_f_norank_o__Clostridia_UCG-014, and Flavonifractor are potentially dominant members of the intestinal microflora. Conclusion In conclusion, TMAE is a promising poultry feed additive and 1000 mg/kg is an effective reference dose.
Collapse
Affiliation(s)
- Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zhiqin Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yufeng Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Bin Tan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Wenqing Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qin Ai
- DHN Business Division, Wens Foodstuff Group Co., Ltd., Zhaoqing, China
| | - Zihui Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
4
|
Chang SC, Wang CM, Chang JS, Lin LJ, Lin MJ, Peng SY, Lee TT. Effects of Antrodia cinnamomea solid culture mycelium by-products on growth performance and immune response in weaning black piglets. Anim Sci J 2024; 95:e13964. [PMID: 38831612 DOI: 10.1111/asj.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
This study evaluated the effects of supplementation with Antrodia cinnamomea mycelium by-product (ACBP) on growth performance and immune response in weaning piglets. Total available content and antioxidant capacity of ACBP were determined. Ninety-six black pigs were randomly distributed to 24 pens. Study compared four groups which were supplemented with ACBP at 0%, 2.5%, 5%, or 10% for 6 weeks after weaning at 4 weeks. Results showed that ACBP on total phenolic, total flavonoid, and total triterpenoids contents were 13.68 mg GAE/g DW, 1.67 μg QE/g DW, and 15.6 mg/g, respectively. Weaning piglets fed 2.5% ACBP showed a significant decreased body weight gain compared with those supplemented with 5% ACBP, 10% ACBP, and control groups. Results showed that all ACBP groups increased the villi height of jejunum significantly. Incidence of diarrhea in 11 weeks with supplementation with 5% and 10% ACBP diets were lower than in control group. The 10% ACBP group showed significantly lower expression of immune response genes (IL-1β, IL-6, IL-8, TNF-α, and IFN-γ) than the 2.5% and 5% ACBP groups. Based on results, dietary supplementation with 10% ACBP did not significantly affect body weight but could decrease piglet diarrhea condition and expression of IL-1β and IL-6 genes.
Collapse
Affiliation(s)
- Shen Chang Chang
- Southern Region Branch, Taiwan Livestock Research Institute, Ministry of Agriculture, Executive Yuan, Pingtung, Taiwan
| | - Chun Ming Wang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Jhih Siang Chang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Pin-Guan Modern Livestock Co., Ltd, Taichung, Taiwan
| | - Li Jen Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Min Jung Lin
- Bachelor of Program in Scientific Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shao Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Smart Sustainable New Agriculture Research Center (SMARTer), National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
5
|
Jiang Q, Wu W, Wan Y, Wei Y, Kawamura Y, Li J, Guo Y, Ban Z, Zhang B. Energy values evaluation and improvement of soybean meal in broiler chickens through supplemental mutienzyme. Poult Sci 2022; 101:101978. [PMID: 35793599 PMCID: PMC9260631 DOI: 10.1016/j.psj.2022.101978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
This study measured the metabolizable energy of soybean meal (SBM) and evaluated effects of soybean meal specific enzymes supplementation in corn-soybean diets on growth performance, intestinal digestion properties and energy values of 28-day-old broilers. A total of 336 one-day-old male AA broiler chickens were distributed to 7 groups in a completely random design. The birds were given 7 diets containing 6 diets with different combined soybean meals and a fasting treatment, 8 replicates per treatment and 6 birds per replicate (Trial 1). A total of 672 one-day-old male AA broiler chickens were randomly allocated to 7 dietary treatments including a control diet and 6 diets supplemented with 300 mg/kg α-galactosidase, 200 mg/kg β-mannanase, and 300 mg/kg protease individually or in combination (Trial 2). Apparent metabolizable energy (AME) of broilers was measured from d 25 to 27 in both trial 1 and trial 2. The results showed that AME values of combined soybean meals averaged 2,894 kcal/kg. Dietary β-mannanase and protease supplementation increased body weight gain (P < 0.05) during d 0 to 14, whereas did not affect the growth performance (P > 0.05) during d 14 to 28. Addition of β-mannanase in combination with other enzymes significantly increased lipase and trypsin content (P < 0.05) in ileum. In addition, dietary β-mannanase and protease supplementation individually or in combination enhanced trypsin enzyme content in jejunum (P < 0.05). The β-mannanase enzyme enhanced villus height and villus height to crypt depth ratio (P < 0.05) of ileum compared with control diet. Moreover, supplementation of enzyme except for protease enhanced raffinose and stachyose degradation ratio (P < 0.05). Dietary β-mannanase supplementation individually or in combination enhanced AME and AMEn values (P < 0.05). This study demonstrated that dietary enzyme supplementation especially β-mannanase improved intestinal digestion properties and contributed to high energy values.
Collapse
Affiliation(s)
- Qiuyu Jiang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Wei Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yan Wan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yi Wei
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | | | - Junyou Li
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhibin Ban
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China; Laboratory of Animal Nutrition Metabolism, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Akinyemi FT, Adewole DI. Effect of dietary folic acid and energy density on immune response, gut morphology, and oxidative status in blood and breast muscle of broiler chickens. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2021-0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Folic acid (FA) plays essential roles in many metabolic functions and has been reported to have antioxidant effects. Therefore, dietary supplementation with high levels of FA may improve gut health and prevent potential oxidative stress caused by feeding a high energy density diet to broiler chickens. Broiler chickens were assigned into eight treatments, consisting of either a normal energy (NE) or high energy (HE) density diet, and four FA levels (2.2, 5, 10, and 15 ppm). Data were analyzed by SAS 16 GLM procedure. Birds-fed HE diets had increased (P < 0.05) plasma concentrations of calcium and albumin but reduced (P < 0.005) weights of ceca and bursa compared with those fed NE diets. Dietary supplementation with 10 ppm FA significantly increased (P < 0.05) birds’ heart weight and bile acid concentration. Folic acid and energy density interactions were significant for jejunal villus height (VH; P = 0.0226), villus width (VW; P < 0.0001), and crypt depth (CD; P = 0.0332). Among the NE group, birds fed 5–15 ppm FA had reduced (P < .0001) VW, while in the HE groups, 15 ppm FA supplementation resulted in an increased jejunal VH (P = 0.0317) compared with other treatments. In conclusion, dietary supplementation with increased levels of FA in HE diets could be beneficial for the intestinal health of broiler chickens.
Collapse
Affiliation(s)
- Fisayo T. Akinyemi
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Deborah I. Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
7
|
Salahuddin M, Hiramatsu K, Tamura K, Kita K. Dietary carbohydrate effects on histological features of ileal mucosa in White Leghorn chicken. J Vet Med Sci 2021; 83:952-956. [PMID: 33883363 PMCID: PMC8267207 DOI: 10.1292/jvms.21-0157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
White Leghorn chickens were divided into the control, low-carbohydrate (CHO), and
CHO-free groups to investigate dietary CHO’s significance on histological features of
chicken ileal mucosa. Paraffin sections of distal ileum from each chicken were stained by
periodic acid-Schiff reaction and subjected to morphometrical analysis. Most villi in the
control group had a fingerlike shape but those of the experimental groups showed irregular
shapes. Villus height, crypt depth and the number of mitotic cells per crypt were
significantly lower in the CHO-free group than in the control group. The density of goblet
cells also showed a significant decreasing trend with a reduction in dietary CHO level. In
conclusion, dietary CHO positively affects the proliferation of epithelial cells in the
chicken ileum.
Collapse
Affiliation(s)
- Md Salahuddin
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Kohzy Hiramatsu
- Laboratory of Animal Functional Anatomy (LAFA), Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Kento Tamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Kazumi Kita
- Laboratory of Animal Nutrition, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
8
|
Gut Microbiota Dynamics, Growth Performance, and Gut Morphology in Broiler Chickens Fed Diets Varying in Energy Density with or without Bacitracin Methylene Disalicylate (BMD). Microorganisms 2021; 9:microorganisms9040787. [PMID: 33918770 PMCID: PMC8070028 DOI: 10.3390/microorganisms9040787] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
High-energy-density diet could increase body weight at the expense of the intestinal health of the animals. In order to optimize production without negatively influencing the gut health of chickens, dietary supplementation with bacitracin methylene disalicylate (BMD) is a common feeding strategy adopted to enhance production performance and intestinal health. Studies have suggested that BMD could improve chicken growth performance and gut health through modulation of the gut microbiota. The current study investigated the effect of BMD supplementation in a normal-energy (NE) or high-energy (HE) diet on growth performance, organ weights, jejunal morphology, and gut microbiota of broiler chickens at different growth stages. Birds were allocated to four treatments: normal-energy basal diet (NE-BAS), normal-energy BMD diet (NE-BMD), high-energy basal diet (HE-BAS), and high-energy BMD diet (HE-BMD). In the starter phase, body weight and body weight gain were reduced significantly (p < 0.05) in chickens fed HE diets compared to those fed NE diets. The FCR was significantly higher (p < 0.05) in birds fed HE-BMD diets in the starter phase but lower (p < 0.05) during the grower phase when compared to other treatments. Moreover, the relative bursa weight increased significantly (p = 0.0220) among birds that received HE diets. Birds fed HE-BMD had greater villus height (p = 0.054) than NE-BMD group. Among the chickens fed the HE diets, those that received BMD treatment had a significantly increased (p = 0.003) villus width (13.3% increase) compared to those that received the basal diet. Improved population of Firmicutes was observed in chickens fed HE-BMD diet when compared to HE-BAS. Our results imply that BMD may be more effective in improving intestinal health when supplemented in a high-energy diet for broiler chickens.
Collapse
|