1
|
Luo C, Ai C, Yu Y, Yuan J. Optimizing broiler growth performance through balanced net energy, standard ileal digestible lysine, and amylose/amylopectin ratios: a Box-Behnken response surface approach. Poult Sci 2025; 104:105287. [PMID: 40398308 DOI: 10.1016/j.psj.2025.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025] Open
Abstract
This study investigated the effects of net energy (NE), standard ileal digestible lysine (SID Lys), and amylose/amylopectin (AM/AP) ratios on broiler growth performance using a Box-Behnken design. A total of 936 male Arbor Acres Plus broilers (15-35 days post-hatch) were allocated to thirteen treatments with three factors at three levels including NE (2,000, 2,250, 2,500 kcal/kg), SID Lys (1.00 %, 1.20 %, 1.40 %), and AM/AP ratios (0.17, 0.22, 0.27, composed of different ratios of pea starch and waxy corn starch). Growth performance was measured weekly. At the growth stage of 15-20 d, quadratic relationships between dietary NE (P = 0.038), SID Lys (P = 0.010), AM/AP ratios (P = 0.021), and broiler 20 d body weight (BW), with optimization occurring at 2,303 kcal/kg NE, 1.24 % SID Lys, and an AM/AP ratio of 0.22. The 15-25 d feed-to-gain ratio (F/G) decreased linearly with increasing dietary NE (P = 0.038) and SID Lys (P = 0.010). At the growth stage of 21-27 d, linear increases in broiler 27 d BW (P = 0.007) and 21-27 d body weight gain (BWG) (P = 0.013) were observed with higher dietary SID Lys levels, reaching a peak at 2,500 kcal/kg NE, 1.40 % SID Lys, and an AM/AP ratio of 0.17. The 21-27 d F/G decreased linearly with increasing dietary NE (P < 0.001) and SID Lys (P < 0.001) levels. At the 28-35 d growth stage, a significant interaction between NE and SID Lys levels was observed for 35 d BW (P = 0.016) and 28-35 d BWG (P = 0.007). At 2,500 kcal/kg NE, both 35 d BW and 28-35 d BWG increased with higher SID Lys, whereas at 2,000 kcal/kg NE, they initially increased and then decreased as SID Lys levels rose. There was a significant interaction effect of NE and AM/AP ratio on broiler 28-35 d BWG (P = 0.017). Further quadratic curve fitting of 28-35 d BWG and 15-35 d BWG against dietary SID Lys/NE ratio revealed that 28-35 d BWG and 15-35 d BWG were optimized at dietary SID Lys/NE of 5.68 and 5.80 mg/kcal, respectively. These data indicate balancing dietary NE and SID Lys can optimize broiler growth, while lowering the dietary AM/AP ratio further enhances growth performance, likely due to improved starch digestibility and energy release dynamics. This study provides actionable insights for precision nutrition strategies in broiler production.
Collapse
Affiliation(s)
- Caiwei Luo
- Department of Animal Nutrition and Feed Science, Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chunxiao Ai
- Department of Animal Nutrition and Feed Science, Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao Yu
- Department of Animal Nutrition and Feed Science, Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianmin Yuan
- Department of Animal Nutrition and Feed Science, Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Shen J, Chen J, Chen Y, Yang Z, Yang H, Wang Z. Effects of different protein levels and starch-to-fat ratios in diets on growth performance, slaughter performance, and nutrient digestibility of geese. Poult Sci 2025; 104:104961. [PMID: 40036935 PMCID: PMC11926698 DOI: 10.1016/j.psj.2025.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
The study was performed to explore the impacts of varying protein levels and starch-to-fat ratios (SFR) in diets on the growth performance, slaughter performance, and nutrient digestibility of geese. Three hundred sixty healthy 28-day-old geese with similar weight were selected and divided into 6 groups, with 6 replicates of 10 geese in each group. A 2 × 3 two-factor complete randomized design was applied, and the geese were fed diets with the same apparent metabolizable energy, two protein levels, and three starch-to-fat ratios. The protein levels were 16.5% (HP) and 14.5% (LP), and starch-to-fat ratios were 20:1, 11:1, and 5:1 respectively. The findings reveal the following: 1) The body weight (BW) of 63-day-old geese in the SFR5:1 group was significantly higher than in the other two groups (P < 0.05). The average daily gain (ADG) from 28 to 63 days in the SFR5:1 and SFR11:1 groups was significantly higher than that in the SFR20:1 group, and the average daily feed intake (ADFI) was notably lower than that in the SFR20:1 group (P < 0.05). The feed-to-gain ratio (F/G) from 28 to 63 days in the SFR5:1 group was significantly lower than in the other two groups (P < 0.05). 2) The skin and subcutaneous fat thickness (SSFT) was increased significantly in the SFR5:1 group compared to SFR20:1 and SFR11:1 groups (P < 0.05). 3) The digestibility of phosphorus was significantly higher in the 14.5% protein level group than that in the 16.5% protein level group, while crude ash digestibility showed the opposite trend. The digestibility of crude fat was significantly higher in the SFR11:1 and SFR5:1 groups compared to SFR20:1 group (P < 0.05). Moreover, the SFR5:1 group significantly reduced the digestibility of crude ash, calcium, energy, and dry matter (P < 0.05). In conclusion, a diet with a starch-to-fat ratio of 11:1 and a protein level of 14.5% is recommended for formulating feed for geese aged 28-63 days.
Collapse
Affiliation(s)
- Jie Shen
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Jinpeng Chen
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Yuanjing Chen
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Zhi Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Luo C, Wang J, Jiang W, Yin D, Meng G, Wang J, Xu J, Yuan J. Different starch sources and amino acid levels on growth performance, starch and amino acids digestion, absorption and metabolism of 0- to 3-week-old broilers fed low protein diet. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:277-290. [PMID: 39995521 PMCID: PMC11847748 DOI: 10.1016/j.aninu.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/26/2024] [Accepted: 11/07/2024] [Indexed: 02/26/2025]
Abstract
The synchronized absorption of amino acids and glucose in the gut is essential for amino acid utilization and protein synthesis in the body. The study aimed to investigate how the starch digestion rate and amino acid levels impact the growth and intestinal starch and amino acid digestion, transport, and metabolism in juvenile broilers. The experiment was conducted with 702 Arbor Acres Plus broilers at 1 d old, which were randomly divided into 9 treatments with 6 replicates of 13 chickens each. The treatments included 3 different starch sources (corn, waxy corn, and tapioca) with 3 different apparent ileal digestible lysine (AID Lys) levels (1.08%, 1.20%, and 1.32%). A notable interaction was noted for dietary starch sources and AID Lys levels in the feed-to-gain ratio (F/G) and distal ileal starch digestibility (P < 0.01). The tapioca starch and waxy corn starch diets with 1.32% of AID Lys significantly decreased F/G compared with corn starch (P < 0.01). There was no significant difference in F/G of broilers among waxy corn starch diet with 1.08% AID Lys level, tapioca starch diet with 1.20% AID Lys level, and corn starch diet with 1.32% AID Lys level (P > 0.05). The 1.32% AID Lys level and the waxy corn starch both improved the body weight (BW) of broilers from 0 to 3 weeks of age, intestinal starch digestibility, and intestinal villi height or the ratio of villi height to crypt depth (P < 0.05). Compared with the corn starch diet, waxy corn starch and tapioca starch diets significantly elevated the AID of Met, Glu, Lys, Arg, Asp, His, Ile, Tyr, Gly, and Val levels (P < 0.05). The carbon metabolomics results revealed that the waxy corn starch diet significantly reduced malic acid and cis-aconitic acid levels (P < 0.05) in the tricarboxylic acid cycle compared to the corn starch diet. It was concluded that a waxy corn starch diet improves the growth performance of broilers by improving intestinal morphology, increasing the absorption and transport of amino acids, reducing the amino acid oxidation for energy supply in the intestinal mucosa, and promoting protein synthesis in muscles, which not only reduces the need for dietary AID Lys but also saves on production costs.
Collapse
Affiliation(s)
- Caiwei Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinping Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Jiang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dafei Yin
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Gang Meng
- Ningxia Eppen Biotech Co., Ltd., Yinchuan 750100, China
| | - Jiwei Wang
- Ningxia Eppen Biotech Co., Ltd., Yinchuan 750100, China
| | - Jing Xu
- Ningxia Eppen Biotech Co., Ltd., Yinchuan 750100, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Zhou H, Mahmood T, Wu W, Chen Y, Yu Y, Yuan J. High amylose to amylopectin ratios in nitrogen-free diets decrease the ileal endogenous amino acid losses of broiler chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:111-120. [PMID: 37388164 PMCID: PMC10300069 DOI: 10.1016/j.aninu.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 03/15/2023] [Indexed: 07/01/2023]
Abstract
This study explored the variation of ileal endogenous amino acid (IEAA) losses and its influencing factors in chickens offered nitrogen-free diets (NFD) containing different ratios of amylose to amylopectin (AM/AP). A total of 252 broiler chickens at 28 d old were randomly allocated into 7 treatment groups for a 3-d trial. The dietary treatments included a basal diet (control), a NFD containing corn starch (CS), and 5 NFD with AM/AP ratios of 0.20, 0.40, 0.60, 0.80, and 1.00, respectively. As the AM/AP ratio increased, the IEAA losses of all AAs, starch digestibility and maltase activity linearly decreased (P < 0.05), but the DM digestibility linearly and quadratically decreased (P < 0.05). Compared with the control, the NFD increased the number of goblet cells and its regulatory genes mucin-2 and krüppel-like factor 4 (KLF-4) while decreasing serum glucagon and thyroxine concentrations, ileal villus height, and crypt depth (P < 0.05). Additionally, NFD with lower AM/AP ratios (0.20 and 0.40) decreased the ileal microbiota species richness (P < 0.05). In all NFD groups, the number of Proteobacteria increased whereas the abundance of Firmicutes dropped (P < 0.05). However, the broilers in the AM/AP 0.60 group were closer to the digestive physiological state of chickens fed the control diet, with no significant change in maltase activity and mucin-2 expression (P < 0.05). In conclusion, increasing AM/AP ratio in a NFD decreased the IEAA losses and the apparent ileal digestibility of starch but inevitably resulted in malnutrition and disruption of gut microbiota homeostasis. This study recommends AM/AP in NFD at 0.60 to measure IEAA of broiler chickens.
Collapse
Affiliation(s)
- Huajin Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tahir Mahmood
- Adisseo Animal Nutrition, DMCC, Dubai 00000, United Arab Emirates
| | - Wei Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanhong Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao Yu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Luo C, Chen Y, Yin D, Yuan J. Effects of Different Dietary Starch Sources and Digestible Lysine Levels on Carcass Traits, Serum Metabolites, Liver Lipid and Breast Muscle Protein Metabolism in Broiler Chickens. Animals (Basel) 2023; 13:2104. [PMID: 37443902 DOI: 10.3390/ani13132104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
This study investigated the effects of digestible lysine (dLys) in different dietary starch sources on liver lipid metabolism and breast muscle protein metabolism in broiler chickens. The experimental design was a 3 × 3 two-factor completely randomized design. A total of 702 one-day-old male Arbor Acres Plus broilers were randomly divided into nine treatments of six replicate cages with thirteen birds each. The treatments consisted of three different starch sources (corn, cassava and waxy corn) with three different dLys levels (1.08%, 1.20% and 1.32%). The trial lasted from 1 to 21 days. Carcass traits, serum metabolites, breast muscle protein and liver lipid metabolism were evaluated. A significant interaction effect (p < 0.05) for dietary starch sources and dLys levels was noted in the percentage of abdominal fat and gene expression related to breast muscle protein metabolism throughout the experimental period. The waxy corn starch diet and a 1.08% dLys level in the diet increased both the percentage of abdominal fat (p < 0.01) and blood total cholesterol (p < 0.05) in the broilers. The waxy corn starch diet significantly upregulated the mRNA expressions of Eif4E, AMPK, FABP1, ACC and CPT1 (p < 0.05). The 1.32% dLys level significantly upregulated the mRNA expressions of mTOR, S6K1, Eif4E, AMPK and PPARα (p < 0.05) and significantly downregulated the mRNA expressions of MuRF and Atrogin-1 (p < 0.05). In summary, the waxy corn starch diet resulted in significantly higher expression levels of fat-synthesis-related genes than lipolysis-related genes, leading to abdominal fat deposition in broilers. Increasing the level of dLys in the diet increased the protein content in muscle by promoting protein synthesis and inhibiting protein degradation and also promoted the expression of lipolysis-related genes, thereby degrading the generation of abdominal fat in broilers. Our findings signify that increasing the dLys level to 1.32% when using the waxy corn starch diet could improve carcass traits.
Collapse
Affiliation(s)
- Caiwei Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanhong Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dafei Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Chen X, Zhang GM, Wang WW, Liu GH, Cai HY, Purba A, Zheng AJ. Compound non-starch polysaccharide enzymes improve growth performance, slaughter performance, immune function, and apparent utilization rate of nutrients in broiler chickens fed a low-metabolizable energy diet. Front Vet Sci 2023; 10:1162811. [PMID: 37303727 PMCID: PMC10249433 DOI: 10.3389/fvets.2023.1162811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 06/13/2023] Open
Abstract
This study aimed to investigate the effects of compound non-starch polysaccharide (NSP) enzymes on growth performance, slaughter performance, immune function, and apparent utilization of nutrients in broiler chickens fed a low-metabolizable energy diet. A total of 240 healthy 1-day-old AA broilers (Arbor Acres, 47.2 ± 0.31 g) were randomly divided into four treatment groups, each with six replicate groups and 10 broilers per replicate. The control group was fed a basal diet; the EL-H group was fed the basal diet supplemented with 200 mg/kg compound NSP enzyme, including β-mannanase 5,000 IU/g, β-glucanase 2000 IU/g, xylanase 10,000 IU/g, and cellulase 500 IU/g. The EL-M group was fed the basal diet with 50 kcal/kg metabolizable energy removed, supplemented with 200 mg/kg compound NSP enzyme. Finally, the EL-L group was fed the basal diet with 100 kcal/kg metabolizable energy removed, supplemented with 200 mg/kg compound NSP enzyme. The results showed that feeding with a low-metabolizable energy diet supplemented with compound NSP enzymes did not significantly affect the growth performance of broilers (p > 0.05). Compared with the control group, the abdominal fat rate of broilers in the EL-L group was significantly reduced, and that of broilers in the EL-M group was significantly increased (p < 0.05). Apparent utilization of dry matter, crude protein, and energy in the diet was lower in the control group than in the EL-L group, but significantly higher in the control group than in the EL-H group (p < 0.05). In addition, apparent utilization of crude fiber was significantly increased in the EL-H, EL-M, and EL-L groups compared with the control group (p < 0.05). In conclusion, this experiment showed that the addition of 200 mg/kg compound NSP enzyme enabled maintenance of the normal growth and development of broiler chickens fed a low-metabolizable energy diet (replacing 50-100 kcal/kg metabolizable energy). This study provides a theoretical basis for the application of the compound NSP enzyme in broiler chickens.
Collapse
|
7
|
Zurak D, Vlajsović D, Duvnjak M, Salajpal K, Kljak K. Factors affecting starch digestibility rate of maize grain in poultry. WORLD POULTRY SCI J 2023. [DOI: 10.1080/00439339.2023.2163043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- D. Zurak
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - D. Vlajsović
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - M. Duvnjak
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - K. Salajpal
- Department of Animal Science, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - K. Kljak
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| |
Collapse
|
8
|
Jiang Q, Wu W, Wan Y, Wei Y, Kawamura Y, Li J, Guo Y, Ban Z, Zhang B. Energy values evaluation and improvement of soybean meal in broiler chickens through supplemental mutienzyme. Poult Sci 2022; 101:101978. [PMID: 35793599 PMCID: PMC9260631 DOI: 10.1016/j.psj.2022.101978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
This study measured the metabolizable energy of soybean meal (SBM) and evaluated effects of soybean meal specific enzymes supplementation in corn-soybean diets on growth performance, intestinal digestion properties and energy values of 28-day-old broilers. A total of 336 one-day-old male AA broiler chickens were distributed to 7 groups in a completely random design. The birds were given 7 diets containing 6 diets with different combined soybean meals and a fasting treatment, 8 replicates per treatment and 6 birds per replicate (Trial 1). A total of 672 one-day-old male AA broiler chickens were randomly allocated to 7 dietary treatments including a control diet and 6 diets supplemented with 300 mg/kg α-galactosidase, 200 mg/kg β-mannanase, and 300 mg/kg protease individually or in combination (Trial 2). Apparent metabolizable energy (AME) of broilers was measured from d 25 to 27 in both trial 1 and trial 2. The results showed that AME values of combined soybean meals averaged 2,894 kcal/kg. Dietary β-mannanase and protease supplementation increased body weight gain (P < 0.05) during d 0 to 14, whereas did not affect the growth performance (P > 0.05) during d 14 to 28. Addition of β-mannanase in combination with other enzymes significantly increased lipase and trypsin content (P < 0.05) in ileum. In addition, dietary β-mannanase and protease supplementation individually or in combination enhanced trypsin enzyme content in jejunum (P < 0.05). The β-mannanase enzyme enhanced villus height and villus height to crypt depth ratio (P < 0.05) of ileum compared with control diet. Moreover, supplementation of enzyme except for protease enhanced raffinose and stachyose degradation ratio (P < 0.05). Dietary β-mannanase supplementation individually or in combination enhanced AME and AMEn values (P < 0.05). This study demonstrated that dietary enzyme supplementation especially β-mannanase improved intestinal digestion properties and contributed to high energy values.
Collapse
Affiliation(s)
- Qiuyu Jiang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Wei Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yan Wan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yi Wei
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | | | - Junyou Li
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhibin Ban
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China; Laboratory of Animal Nutrition Metabolism, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Córdova-Noboa HA, Oviedo-Rondón EO, Matta Y, Ortiz A, Buitrago GD, Martinez JD, Yanquen J, Hoyos S, Castellanos AL, Sorbara JOB. Corn kernel hardness, drying temperature and amylase supplementation affect live performance and nutrient utilization of broilers. Poult Sci 2021; 100:101395. [PMID: 34455310 PMCID: PMC8403585 DOI: 10.1016/j.psj.2021.101395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Drying temperature (DT) of corn can influence its nutritional quality, but whether this is influenced by endosperm hardness is not clear. Two parallel experiments were conducted to investigate the effects of 2 yellow dent corn hybrids with average and hard kernel hardness, dried at 3 temperatures (35, 80, and 120°C), and 2 supplementation levels of an exogenous amylase (0, 133 g/ton of feed) on live performance, starch and protein digestibility, and energy utilization of Ross 708 male broilers. Twelve dietary treatments consisting of a 2 × 3 × 2 factorial arrangement were evaluated using 3-way ANOVA in a randomized complete block design. In Experiment 1, a total of 1,920 male-chicks were randomly allocated to 96 floor pens, whereas 480 day-old chicks were distributed among 96 cages for Experiment 2. At 40 d, interaction effects (P < 0.05) were detected on BWG, FCR, and flock uniformity. Supplementation with exogenous amylase resulted in heavier broilers, better FCR and flock uniformity, only in the diets based on corn dried at 35°C. Additionally, interaction effects were observed on FCR due to kernel hardness and DT (P < 0.01), kernel hardness and amylase supplementation (P < 0.001), and DT and amylase supplementation (P < 0.05). Exogenous amylase addition to the diets based on corn with an average hardness improved FCR up to 2 points (1.49 vs. 1.51 g:g) whereas there was no effect of amylase on FCR of broilers fed diets based on corn with hard endosperm. Total tract retention of starch was increased (P < 0.05) in broilers fed diets based on corn with average kernel hardness compared to hard kernel. Corn dried at 80 and 120°C had up to 1.21% points less starch total tract retention than the one dried at 35°C. Supplementing alpha-amylase resulted in beneficial effects for broiler live performance, energy utilization, and starch total tract digestibility results. Treatment effects on starch characteristics were explored. Corn endosperm hardness, DT and exogenous amylase can influence the live performance of broilers. However, these factors are not independent and so must be manipulated strategically to improve broiler performance.
Collapse
Affiliation(s)
- Hernan A Córdova-Noboa
- Prestage Department of Poultry Science, North Carolina State University, Campus Box 7608, Scott Hall, Raleigh, NC 27695-7608, USA
| | - Edgar O Oviedo-Rondón
- Prestage Department of Poultry Science, North Carolina State University, Campus Box 7608, Scott Hall, Raleigh, NC 27695-7608, USA.
| | - Yilmar Matta
- Prestage Department of Poultry Science, North Carolina State University, Campus Box 7608, Scott Hall, Raleigh, NC 27695-7608, USA; University of Tolima, College of Veterinary Medicine and Zootechnia, 730006299 Ibagué, Tolima, Colombia
| | - Andrés Ortiz
- Prestage Department of Poultry Science, North Carolina State University, Campus Box 7608, Scott Hall, Raleigh, NC 27695-7608, USA; University of Tolima, College of Veterinary Medicine and Zootechnia, 730006299 Ibagué, Tolima, Colombia
| | - Gherly D Buitrago
- Prestage Department of Poultry Science, North Carolina State University, Campus Box 7608, Scott Hall, Raleigh, NC 27695-7608, USA; University of Tolima, College of Veterinary Medicine and Zootechnia, 730006299 Ibagué, Tolima, Colombia
| | - Juan D Martinez
- Prestage Department of Poultry Science, North Carolina State University, Campus Box 7608, Scott Hall, Raleigh, NC 27695-7608, USA; University of Tolima, College of Veterinary Medicine and Zootechnia, 730006299 Ibagué, Tolima, Colombia
| | - Jose Yanquen
- Prestage Department of Poultry Science, North Carolina State University, Campus Box 7608, Scott Hall, Raleigh, NC 27695-7608, USA; University of Tolima, College of Veterinary Medicine and Zootechnia, 730006299 Ibagué, Tolima, Colombia
| | - Sebastian Hoyos
- Prestage Department of Poultry Science, North Carolina State University, Campus Box 7608, Scott Hall, Raleigh, NC 27695-7608, USA; University of Tolima, College of Veterinary Medicine and Zootechnia, 730006299 Ibagué, Tolima, Colombia
| | - Angie Lorena Castellanos
- Prestage Department of Poultry Science, North Carolina State University, Campus Box 7608, Scott Hall, Raleigh, NC 27695-7608, USA; University of Tolima, College of Veterinary Medicine and Zootechnia, 730006299 Ibagué, Tolima, Colombia
| | | |
Collapse
|
10
|
Giacobbo FCN, Eyng C, Nunes RV, de Souza C, Teixeira LV, Pilla R, Suchodolski JS, Bortoluzzi C. Influence of Enzyme Supplementation in the Diets of Broiler Chickens Formulated with Different Corn Hybrids Dried at Various Temperatures. Animals (Basel) 2021; 11:ani11030643. [PMID: 33671022 PMCID: PMC7997286 DOI: 10.3390/ani11030643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary The use of exogenous enzymes is a common nutrition strategy of the poultry industry. However, the influence of this additive on the microbiota and its efficiency when the diets are formulated with different hybrids of corn dried under high temperature are still unclear. From a practical point of view, evaluating the mode of action of enzymes in different situations is crucial to ensure competitive performance results with low production costs. The current study confirmed that regardless of corn hybrids and drying temperature, dietary supplementation with amylase, xylanase, and protease was beneficial for intestinal morphology and allowed a modulation of the cecal microbiota. This influence may have changed the digestive process and use of nutrients by the broilers, resulting in better animal performance. Abstract We evaluated the influence of enzymatic supplementation on the growth performance and cecal microbiota of broilers. A total of 2160 1-day-old male chicks were used in a 3 × 2 × 2 factorial arrangement (three corn hybrids, two drying temperatures −80 and 110 °C, with or without the inclusion of an enzymatic blend (amylase, xylanase, and protease) (20 birds/pen, n = 9). For all performance and digestibility parameters, we observed, in general, isolated effects of the corn hybrids and drying temperature. Birds that received the enzymatic blend in the diet showed better weight gain from 1 to 21 days (d) and better digestibility coefficients of nutrients at 42 d. Birds fed diets with corn dried at 80 °C showed a better feed conversion ratio from 1 to 42 d. At 21 d of age, enzymatic supplementation had positive effects on jejunum morphology. Enzyme supplementation increased the abundance of the phylum Tenericutes, class Bacilli and Mollicutes, reduced Clostridia, and increased the abundances of the families Lactobacillaceae, Anaeroplasmataceae, and O_RF39;F. In conclusion, the addition of amylase, xylanase, and protease led to a better nutrient digestibility, performance, and intestinal morphology. In addition, enzyme supplementation changed the diversity, composition, and predicted function of the cecal microbiota at d 21.
Collapse
Affiliation(s)
- Franciele C. N. Giacobbo
- Ciências Agrárias, Universidade Estadual do Oeste do Paraná, 85960-000 Mal. C. Rondon, Brazil; (F.C.N.G.); (R.V.N.); (C.d.S.)
| | - Cinthia Eyng
- Ciências Agrárias, Universidade Estadual do Oeste do Paraná, 85960-000 Mal. C. Rondon, Brazil; (F.C.N.G.); (R.V.N.); (C.d.S.)
- Correspondence: ; Tel.: +55-45-99800-0893
| | - Ricardo V. Nunes
- Ciências Agrárias, Universidade Estadual do Oeste do Paraná, 85960-000 Mal. C. Rondon, Brazil; (F.C.N.G.); (R.V.N.); (C.d.S.)
| | - Cleison de Souza
- Ciências Agrárias, Universidade Estadual do Oeste do Paraná, 85960-000 Mal. C. Rondon, Brazil; (F.C.N.G.); (R.V.N.); (C.d.S.)
| | | | - Rachel Pilla
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (R.P.); (J.S.S.)
| | - Jan S. Suchodolski
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (R.P.); (J.S.S.)
| | - Cristiano Bortoluzzi
- Department of Poultry Science, Texas A&M University, College Station, TX 77845, USA;
| |
Collapse
|
11
|
Wang Y, Wang Y, Lin X, Gou Z, Fan Q, Ye J, Jiang S. Potential Effects of Acidifier and Amylase as Substitutes for Antibiotic on the Growth Performance, Nutrient Digestion and Gut Microbiota in Yellow-Feathered Broilers. Animals (Basel) 2020; 10:E1858. [PMID: 33053884 PMCID: PMC7600580 DOI: 10.3390/ani10101858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to evaluate the effects of acidifier (benzoic acid, BA), amylase (AL) and their combination as substitutes for antibiotics on growth performance, antioxidation, nutrient digestion and gut microbiota of yellow-feathered broilers. A total of 1440 twenty-one-day-old broilers were randomly allocated to six treatments. Broilers in the control group (CON) were fed a basal diet, whereas birds in the other five groups were fed the basal diet supplemented with antibiotic (zinc bacitracin, AT, 40 mg/kg), BA (2000 mg/kg), low level AL (AL-L, 300 mg/kg), high level AL (AL-H, 500 mg/kg) and the combination of AL-H and BA (BA+AL-H). The experimental animals were killed at the end of the trial (21 day-63 day) then blood samples were collected from two birds per pen. Bird weight, feed intake and survival rate were recorded on pen basis. Growth performance was not significantly influenced by AT, BA, AL-L, AL-H or BA+AL-H. Plasma uric acid (UA) was decreased from CON by all treatments; the activity of AKP in plasma was also lowered by AT, BA, AL-H and BA+AL-H. Plasma activity of LDH was reduced by BA. In the jejunal mucosa, Na+K+-ATP activity was increased by BA, AL-L, AL-H and BA+AL-H. Mucosal activities of T-AOC and CAT were increased with AL-L and AT supplementation, respectively. Additionally, the relative abundance of Escherichia coli (E. coli) in the cecal contents was reduced by BA+AL-H and, with the exception of AL-H, all treatments increased the relative abundance of Lactobacillus. In conclusion, dietary AT, BA, AL-L, AL-H or BA+AL were effective in improving the antioxidant capacity, nutrient digestion and gut microbiota composition. No significant differences were observed in the tested variables between AT and other treatments, indicating that BA, AL and their combination may be alternatives to dietary inclusion of zinc bacitracin. Dietary addition of 500 mg/kg AL and 2000 mg/kg BA was an optimum supplementation dose.
Collapse
Affiliation(s)
- Yibing Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (Y.W.); (X.L.); (Z.G.); (Q.F.); (J.Y.)
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
| | - Xiajing Lin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (Y.W.); (X.L.); (Z.G.); (Q.F.); (J.Y.)
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (Y.W.); (X.L.); (Z.G.); (Q.F.); (J.Y.)
| | - Qiuli Fan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (Y.W.); (X.L.); (Z.G.); (Q.F.); (J.Y.)
| | - Jinling Ye
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (Y.W.); (X.L.); (Z.G.); (Q.F.); (J.Y.)
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (Y.W.); (X.L.); (Z.G.); (Q.F.); (J.Y.)
| |
Collapse
|
12
|
Zhang S, Zhong R, Gao L, Liu Z, Chen L, Zhang H. Effects of Optimal Carbohydrase Mixtures on Nutrient Digestibility and Digestible Energy of Corn- and Wheat-Based Diets in Growing Pigs. Animals (Basel) 2020; 10:ani10101846. [PMID: 33050555 PMCID: PMC7601035 DOI: 10.3390/ani10101846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to evaluate the effects of optimal carbohydrase mixture (OCM) on macronutrients and amino acid digestibility and the digestible energy (DE) in growing pigs fed the corn-soybean meal-based diet (CSM) and the wheat-soybean meal-based diet (WSM). A total of 36 ileal-cannulated pigs (50.9 ± 4.9 kg initial body weight) were allotted to four dietary treatments randomly, which included CSM and WSM diets, and two diets supplied with corresponding OCM. These OCMs were screened using an in vitro method from our previous study. After the five day adaptation period, fecal samples were collected from d six to seven, and ileal digesta samples were collected on d 8 and 10. Chromic oxide was added as an indigestible marker. The results show that the addition of OCM improved the apparent ileal digestibility (AID) of dry matter (DM), ash, carbohydrate (CHO), neutral detergent fiber, and gross energy (GE) and the apparent total tract digestibility (ATTD) of DM, CHO, and GE in CSM diet (p < 0.05), but reduced the apparent hindgut disappearance (AHD) of DM in CSM diet (p < 0.05). The ATTD of DM, crude protein (CP), ether extract (EE), ash, and GE and the AHD of DM, CP, EE, ash, CHO, and GE in WSM diet were improved by the OCM addition (p < 0.05), whereas the AID of DM, CP, ash, CHO, and GE were decreased (p < 0.05). The respective DE contents in CSM and WSM diets were increased from 15.45 to 15.74 MJ/kg and 15.03 to 15.49 MJ/kg under the effects of OCM (p < 0.05). Similar to the trend of AID of CP, the OCM addition increased the AID and standardized ileal digestibility (SID) of Ile, Thr, and Cys in CSM diet, but decreased the AID and SID of Ile, Phe, Thr, Val, Ala, Pro, Ser, and Tyr in WSM diet. In conclusion, the OCMs screened by an in vitro method could improve the total tract nutrient digestibility and DE for pigs fed corn-based diet or wheat-based diet but had inconsistent effects on the ileal digestibility of nutrients and energy.
Collapse
Affiliation(s)
| | | | | | | | - Liang Chen
- Correspondence: (L.C.); (H.Z.); Tel.: +86-10-62819432 (L.C.)
| | - Hongfu Zhang
- Correspondence: (L.C.); (H.Z.); Tel.: +86-10-62819432 (L.C.)
| |
Collapse
|