1
|
Petroll R, West JA, Ogden M, McGinley O, Craig RJ, Coelho SM, Borg M. The expanded Bostrychia moritziana genome unveils evolution in the most diverse and complex order of red algae. Curr Biol 2025:S0960-9822(25)00508-1. [PMID: 40345196 DOI: 10.1016/j.cub.2025.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Red algae are an ancient eukaryotic lineage that were among the first to evolve multicellularity. Although they share a common origin with modern-day plants and display complex multicellular development, comprehensive genome data from the most highly evolved red algal groups remain scarce. Here, we present a chromosome-level genome assembly of Bostrychia moritziana, a complex red seaweed in the Rhodomelaceae family of the Ceramiales-the largest and most diverse order of red algae. Contrary to the view that red algal genomes are typically small, we report significant genome size expansion in Bostrychia and other Ceramiales, which represents one of at least three independent expansion events in red algal evolution. Our analyses suggest that these expansions do not involve polyploidy or ancient whole-genome duplications, but in Bostrychia rather stem from the proliferation of a single lineage of giant Plavaka DNA transposons. Consistent with its enlarged genome, Bostrychia has an increased gene content shaped by de novo gene emergence and amplified gene families in common with other Ceramiales, providing insight into the genetic adaptations underpinning this successful and species-rich order. Finally, our sex-specific assemblies resolve the UV sex chromosomes in Bostrychia, which feature expanded gene-rich sex-linked regions. Notably, each sex chromosome harbors a three amino acid loop extension homeodomain (TALE-HD) transcription factor orthologous to ancient regulators of haploid-diploid transitions in other multicellular lineages. Together, our findings offer a unique perspective of the genomic adaptations driving red algal diversity and demonstrate how this red seaweed lineage can provide insight into the evolutionary origins and universal principles underpinning complex multicellularity.
Collapse
Affiliation(s)
- Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - John A West
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Ogden
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Owen McGinley
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rory J Craig
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany.
| |
Collapse
|
2
|
Peixoto WFS, Pereira RC, Azevedo EDSS, Dos Santos FM, Coutinho R, de Oliveira LS. The molecular complexity of terpene biosynthesis in red algae: current state and future perspectives. Nat Prod Rep 2025. [PMID: 39991778 DOI: 10.1039/d4np00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Covering the period 1998-2024Red algae are the largest group of seaweeds and rich sources of bioactive terpenes with broad and significant biotechnological potential. However, the main obstacle to the economic exploitation of these compounds is the difficulty of obtaining them on an industrial and sustainable scale. Genetic engineering and heterologous biosynthesis are promising tools for overcoming this limitation, but little is known about red algal terpene biosynthetic routes. In general, terpene biosynthesis relies on complex mechanisms that produce a wide array of chemically diverse compounds. In this article, we review the main processes that contribute to such chemical diversity of terpenes, which are divided into four biosynthetic steps: (i) biosynthesis of isoprenoid precursors, (ii) linear condensation of precursors to produce polyisoprenyl diphosphate intermediary molecules, (iii) terpene synthase-catalyzed chemical/structural modifications, and (iv) additional chemical/structural modifications on the basic terpene carbon skeleton. Terpene synthase evolution in algae and topics that have only recently been explored, such as terpene synthase catalytic and substrate promiscuity, have also been analyzed in detail. We present a detailed analysis of terpenoid metabolism in red algae, highlighting the mechanisms that generate their chemical diversity and identifying knowledge gaps. Additionally, we provide perspectives to guide future studies, aiming to advance the heterologous biosynthesis of terpenes from red algae for biotechnological development and application.
Collapse
Affiliation(s)
- Wanessa Francesconi Stida Peixoto
- Department of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira - IEAPM, Arraial do Cabo, 28930-000, RJ, Brazil.
- Marine Biotecnology Graduate Program, Instituto de Estudos do Mar Almirante Paulo Moreia - IEAPM, Federal Fluminense University - UFF, Brazil
| | - Renato Crespo Pereira
- Marine Biotecnology Graduate Program, Instituto de Estudos do Mar Almirante Paulo Moreia - IEAPM, Federal Fluminense University - UFF, Brazil
- Departament of Marine Biology, Biology Institute, Federal Fluminense University - UFF, Niterói, RJ, 21941-590, Brazil
| | - Esthfanny Dos Santos Souza Azevedo
- Department of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira - IEAPM, Arraial do Cabo, 28930-000, RJ, Brazil.
| | - Fernando Martins Dos Santos
- Departamento of Organic Chemistry, Chemistry Institute, Federal Fluminense University - UFF, Niterói, RJ, 24.020-141, Brazil
| | - Ricardo Coutinho
- Department of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira - IEAPM, Arraial do Cabo, 28930-000, RJ, Brazil.
- Marine Biotecnology Graduate Program, Instituto de Estudos do Mar Almirante Paulo Moreia - IEAPM, Federal Fluminense University - UFF, Brazil
| | - Louisi Souza de Oliveira
- Department of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira - IEAPM, Arraial do Cabo, 28930-000, RJ, Brazil.
- Marine Biotecnology Graduate Program, Instituto de Estudos do Mar Almirante Paulo Moreia - IEAPM, Federal Fluminense University - UFF, Brazil
| |
Collapse
|
3
|
Hunt D, Dewar A, Dal Molin F, Willey N. Does it run in the family? - Improving radiological risk assessment in the coastal environment using taxonomic and phylogenetic perspectives in macroalgae species. MARINE POLLUTION BULLETIN 2024; 207:116863. [PMID: 39213886 DOI: 10.1016/j.marpolbul.2024.116863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Marine macroalgae are widely used indicator species for monitoring environmental radioactivity. Empirical studies have demonstrated a range in radionuclide transfer coefficients, or concentration ratios (CRs), between taxonomic groups, however the CR values used for dose estimation assume that macroalgae are a homogenous group, represented by a single CR. This study demonstrates the presence of a taxonomic signal in macroalgae CRs for multiple anthropogenic and naturally occurring radionuclides (137Cs, 241Am, 239+240Pu, 210Po) based on a collation of available data. A Residual Maximum Likelihood (REML) mixed model was applied, producing relative estimate CRs specific to each species within the datasets. The collated data was also analysed for a phylogenetic signal, but only a weak signal was found for one radionuclide in one group (239+240Pu in Phaeophyceae). A theoretical case study using the estimated CRs and the ERICA tool was carried out to demonstrate the implications of these findings in a real-world scenario.
Collapse
Affiliation(s)
- D Hunt
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK; Centre for Research In Bioscience, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK.
| | - A Dewar
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - F Dal Molin
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - N Willey
- Centre for Research In Bioscience, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| |
Collapse
|
4
|
Barz S, Hofmann K, Reggiori F, Kraft C. Beyond the C-terminal Glycine of ATG8 Proteins - The Story of Some Neglected Amino Acids. J Mol Biol 2024; 436:168588. [PMID: 38663545 DOI: 10.1016/j.jmb.2024.168588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
ATG8 proteins form a family of small ubiquitin-like modifiers, well-known for their importance in both macroautophagy and autophagy-independent processes. A unique feature of this protein family is their conjugation to membrane lipids through the covalent attachment of a glycine residue at the C-terminus of ATG8 proteins. Notably, most ATG8 proteins are expressed with additional amino acids at their C-terminus, shielding the key glycine residue. Consequently, lipidation requires the activation of the ATG8 precursors through proteolytic cleavage, known as priming. ATG4 proteases catalyze this priming process, and under physiological conditions, unprimed forms of ATG8 are not detected. This raises the question about the purpose of the C-terminal extension of ATG8 proteins. While the roles of lipidated and free, primed ATG8 proteins have been extensively studied, the potential function of their precursor form or the priming process itself remains largely unexplored. Here, we summarize information from existing literature and our own experiments to contribute to the understanding of these neglected amino acids.
Collapse
Affiliation(s)
- Saskia Barz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
5
|
K. Raval P, MacLeod AI, Gould SB. A molecular atlas of plastid and mitochondrial proteins reveals organellar remodeling during plant evolutionary transitions from algae to angiosperms. PLoS Biol 2024; 22:e3002608. [PMID: 38713727 PMCID: PMC11135702 DOI: 10.1371/journal.pbio.3002608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/29/2024] [Accepted: 03/28/2024] [Indexed: 05/09/2024] Open
Abstract
Algae and plants carry 2 organelles of endosymbiotic origin that have been co-evolving in their host cells for more than a billion years. The biology of plastids and mitochondria can differ significantly across major lineages and organelle changes likely accompanied the adaptation to new ecological niches such as the terrestrial habitat. Based on organelle proteome data and the genomes of 168 phototrophic (Archaeplastida) versus a broad range of 518 non-phototrophic eukaryotes, we screened for changes in plastid and mitochondrial biology across 1 billion years of evolution. Taking into account 331,571 protein families (or orthogroups), we identify 31,625 protein families that are unique to primary plastid-bearing eukaryotes. The 1,906 and 825 protein families are predicted to operate in plastids and mitochondria, respectively. Tracing the evolutionary history of these protein families through evolutionary time uncovers the significant remodeling the organelles experienced from algae to land plants. The analyses of gained orthogroups identifies molecular changes of organelle biology that connect to the diversification of major lineages and facilitated major transitions from chlorophytes en route to the global greening and origin of angiosperms.
Collapse
Affiliation(s)
- Parth K. Raval
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander I. MacLeod
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Lorković ZJ, Klingenbrunner M, Cho CH, Berger F. Identification of plants' functional counterpart of the metazoan mediator of DNA Damage checkpoint 1. EMBO Rep 2024; 25:1936-1961. [PMID: 38438802 PMCID: PMC11014961 DOI: 10.1038/s44319-024-00107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Induction of DNA damage triggers rapid phosphorylation of the histone H2A.X (γH2A.X). In animals, mediator of DNA damage checkpoint 1 (MDC1) binds γH2A.X through a tandem BRCA1 carboxyl-terminal (tBRCT) domain and mediates recruitment of downstream effectors of DNA damage response (DDR). However, readers of this modification in plants have remained elusive. We show that from the Arabidopsis BRCT domain proteome, BCP1-4 proteins with tBRCT domains are involved in DDR. Through its tBRCT domain BCP4 binds γH2A.X in vitro and localizes to DNA damage-induced foci in an H2A.X-dependent manner. BCP4 also contains a domain that interacts directly with NBS1 and thus acts as a functional counterpart of MDC1. We also show that BCP1, that contains two tBRCT domains, co-localizes with γH2A.X but it does not bind γH2A.X suggesting functional similarity with human PAXIP1. A phylogenetic analysis supports that PAXIP1 and MDC1 in metazoa and their plant counterparts evolved independently from common ancestors with tBRCT domains. Collectively, our study reveals missing components and provides mechanistic and evolutionary insights into plant DDR.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
| | - Michael Klingenbrunner
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Chung Hyun Cho
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
7
|
Prokina KI, Tikhonenkov DV, López-García P, Moreira D. Morphological and molecular characterization of a new member of the phylum Rhodelphidia. J Eukaryot Microbiol 2024; 71:e12995. [PMID: 37548159 DOI: 10.1111/jeu.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
Rhodelphidia is a recently discovered phylum within the supergroup Archaeplastida, comprising only two known representatives (Rhodelphis marinus and Rhodelphis limneticus). Despite its close phylogenetic relatedness to red algae, Rhodelphidia differ markedly by being nonphotosynthetic eukaryotrophic flagellates with gene- and intron-rich genomes. Here, we describe a new freshwater Rhodelphidia species, Rhodelphis mylnikovi sp. n., strain Rhod-M. It shows clear morphological differences with the two other Rhodelphis species, including larger cell body size, presence of two contractile vacuoles, short and blunt pseudopodia, absence of cysts, and tendency to cannibalism. 18S rRNA-based phylogenetic analysis placed it sister to the freshwater species R. limneticus.
Collapse
Affiliation(s)
- Kristina I Prokina
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Papanin Institute for Biology of Inland Waters Russian Academy of Science, Borok, Russia
| | - Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters Russian Academy of Science, Borok, Russia
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Yu X, Tang L, Tang X, Mao Y. Genome-Wide Identification and Analysis of MYB Transcription Factors in Pyropia yezoensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3613. [PMID: 37896076 PMCID: PMC10609806 DOI: 10.3390/plants12203613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
MYB transcription factors are one of the largest transcription factor families in plants, and they regulate numerous biological processes. Red algae are an important taxonomic group and have important roles in economics and research. However, no comprehensive analysis of the MYB gene family in any red algae, including Pyropia yezoensis, has been conducted. To identify the MYB gene members of Py. yezoensis, and to investigate their family structural features and expression profile characteristics, a study was conducted. In this study, 3 R2R3-MYBs and 13 MYB-related members were identified in Py. yezoensis. Phylogenetic analysis indicated that most red algae MYB genes could be clustered with green plants or Glaucophyta MYB genes, inferring their ancient origins. Synteny analysis indicated that 13 and 5 PyMYB genes were orthologous to Pyropia haitanensis and Porphyra umbilicalis, respectively. Most Bangiaceae MYB genes contain several Gly-rich motifs, which may be the result of an adaptation to carbon limitations and maintenance of important regulatory functions. An expression profile analysis showed that PyMYB genes exhibited diverse expression profiles. However, the expression patterns of different members appeared to be diverse, and PyMYB5 was upregulated in response to dehydration, low temperature, and Pythium porphyrae infection. This is the first comprehensive study of the MYB gene family in Py. Yezoensis and it provides vital insights into the functional divergence of MYB genes.
Collapse
Affiliation(s)
- Xinzi Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lei Tang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xianghai Tang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunxiang Mao
- MOE Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource & Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
9
|
Borg M, Krueger-Hadfield SA, Destombe C, Collén J, Lipinska A, Coelho SM. Red macroalgae in the genomic era. THE NEW PHYTOLOGIST 2023; 240:471-488. [PMID: 37649301 DOI: 10.1111/nph.19211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Rhodophyta (or red algae) are a diverse and species-rich group that forms one of three major lineages in the Archaeplastida, a eukaryotic supergroup whose plastids arose from a single primary endosymbiosis. Red algae are united by several features, such as relatively small intron-poor genomes and a lack of cytoskeletal structures associated with motility like flagella and centrioles, as well as a highly efficient photosynthetic capacity. Multicellular red algae (or macroalgae) are one of the earliest diverging eukaryotic lineages to have evolved complex multicellularity, yet despite their ecological, evolutionary, and commercial importance, they have remained a largely understudied group of organisms. Considering the increasing availability of red algal genome sequences, we present a broad overview of fundamental aspects of red macroalgal biology and posit on how this is expected to accelerate research in many domains of red algal biology in the coming years.
Collapse
Affiliation(s)
- Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Stacy A Krueger-Hadfield
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Virginia Institute of Marine Science Eastern Shore Laboratory, Wachapreague, VA, 23480, USA
| | - Christophe Destombe
- International Research Laboratory 3614 (IRL3614) - Evolutionary Biology and Ecology of Algae, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, 29680, France
| | - Jonas Collén
- CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff, Sorbonne Université, Roscoff, 29680, France
| | - Agnieszka Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| |
Collapse
|
10
|
Mallén-Ponce MJ, Gámez-Arcas S, Pérez-Pérez ME. Redox partner interactions in the ATG8 lipidation system in microalgae. Free Radic Biol Med 2023; 203:58-68. [PMID: 37028463 DOI: 10.1016/j.freeradbiomed.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
Autophagy is a catabolic pathway that functions as a degradative and recycling process to maintain cellular homeostasis in most eukaryotic cells, including photosynthetic organisms such as microalgae. This process involves the formation of double-membrane vesicles called autophagosomes, which engulf the material to be degraded and recycled in lytic compartments. Autophagy is mediated by a set of highly conserved autophagy-related (ATG) proteins that play a fundamental role in the formation of the autophagosome. The ATG8 ubiquitin-like system catalyzes the conjugation of ATG8 to the lipid phosphatidylethanolamine, an essential reaction in the autophagy process. Several studies identified the ATG8 system and other core ATG proteins in photosynthetic eukaryotes. However, how ATG8 lipidation is driven and regulated in these organisms is not fully understood yet. A detailed analysis of representative genomes from the entire microalgal lineage revealed a high conservation of ATG proteins in these organisms with the remarkable exception of red algae, which likely lost ATG genes before diversification. Here, we examine in silico the mechanisms and dynamic interactions between different components of the ATG8 lipidation system in plants and algae. Moreover, we also discuss the role of redox post-translational modifications in the regulation of ATG proteins and the activation of autophagy in these organisms by reactive oxygen species.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005, Paris, France
| | - Samuel Gámez-Arcas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092, Sevilla, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092, Sevilla, Spain.
| |
Collapse
|
11
|
Van Etten J, Benites LF, Stephens TG, Yoon HS, Bhattacharya D. Algae obscura: The potential of rare species as model systems. JOURNAL OF PHYCOLOGY 2023; 59:293-300. [PMID: 36764681 DOI: 10.1111/jpy.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 05/28/2023]
Abstract
Model organism research has provided invaluable knowledge about foundational biological principles. However, most of these studies have focused on species that are in high abundance, easy to cultivate in the lab, and represent only a small fraction of extant biodiversity. Here, we present three examples of rare algae with unusual features that we refer to as "algae obscura." The Cyanidiophyceae (Rhodophyta), Glaucophyta, and Paulinella (rhizarian) lineages have all transitioned out of obscurity to become models for fundamental evolutionary research. Insights have been gained into the prevalence and importance of eukaryotic horizontal gene transfer, early Earth microbial community dynamics, primary plastid endosymbiosis, and the origin of Archaeplastida. By reviewing the research that has come from the exploration of these organisms, we demonstrate that underappreciated algae have the potential to help us formulate, refine, and substantiate core hypotheses and that such organisms should be considered when establishing future model systems.
Collapse
Affiliation(s)
- Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Luiz Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
12
|
Bowles AMC, Williamson CJ, Williams TA, Lenton TM, Donoghue PCJ. The origin and early evolution of plants. TRENDS IN PLANT SCIENCE 2023; 28:312-329. [PMID: 36328872 DOI: 10.1016/j.tplants.2022.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Plant (archaeplastid) evolution has transformed the biosphere, but we are only now beginning to learn how this took place through comparative genomics, phylogenetics, and the fossil record. This has illuminated the phylogeny of Archaeplastida, Viridiplantae, and Streptophyta, and has resolved the evolution of key characters, genes, and genomes - revealing that many key innovations evolved long before the clades with which they have been casually associated. Molecular clock analyses estimate that Streptophyta and Viridiplantae emerged in the late Mesoproterozoic to late Neoproterozoic, whereas Archaeplastida emerged in the late-mid Palaeoproterozoic. Together, these insights inform on the coevolution of plants and the Earth system that transformed ecology and global biogeochemical cycles, increased weathering, and precipitated snowball Earth events, during which they would have been key to oxygen production and net primary productivity (NPP).
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK; Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| | | | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Timothy M Lenton
- Global Systems Institute, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
13
|
Van Etten J, Cho CH, Yoon HS, Bhattacharya D. Extremophilic red algae as models for understanding adaptation to hostile environments and the evolution of eukaryotic life on the early earth. Semin Cell Dev Biol 2023; 134:4-13. [PMID: 35339358 DOI: 10.1016/j.semcdb.2022.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 01/08/2023]
Abstract
Extremophiles have always garnered great interest because of their exotic lifestyles and ability to thrive at the physical limits of life. In hot springs environments, the Cyanidiophyceae red algae are the only photosynthetic eukaryotes able to live under extremely low pH (0-5) and relatively high temperature (35ºC to 63ºC). These extremophiles live as biofilms in the springs, inhabit acid soils near the hot springs, and form endolithic populations in the surrounding rocks. Cyanidiophyceae represent a remarkable source of knowledge about the evolution of extremophilic lifestyles and their genomes encode specialized enzymes that have applied uses. Here we review the evolutionary origin, taxonomy, genome biology, industrial applications, and use of Cyanidiophyceae as genetic models. Currently, Cyanidiophyceae comprise a single order (Cyanidiales), three families, four genera, and nine species, including the well-known Cyanidioschyzon merolae and Galdieria sulphuraria. These algae have small, gene-rich genomes that are analogous to those of prokaryotes they live and compete with. There are few spliceosomal introns and evidence exists for horizontal gene transfer as a driver of local adaptation to gain access to external fixed carbon and to extrude toxic metals. Cyanidiophyceae offer a variety of commercial opportunities such as phytoremediation to detoxify contaminated soils or waters and exploitation of their mixotrophic lifestyles to support the efficient production of bioproducts such as phycocyanin and floridosides. In terms of exobiology, Cyanidiophyceae are an ideal model system for understanding the evolutionary effects of foreign gene acquisition and the interactions between different organisms inhabiting the same harsh environment on the early Earth. Finally, we describe ongoing research with C. merolae genetics and summarize the unique insights they offer to the understanding of algal biology and evolution.
Collapse
Affiliation(s)
- Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
14
|
Cho CH, Park SI, Huang TY, Lee Y, Ciniglia C, Yadavalli HC, Yang SW, Bhattacharya D, Yoon HS. Genome-wide signatures of adaptation to extreme environments in red algae. Nat Commun 2023; 14:10. [PMID: 36599855 DOI: 10.1038/s41467-022-35566-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
The high temperature, acidity, and heavy metal-rich environments associated with hot springs have a major impact on biological processes in resident cells. One group of photosynthetic eukaryotes, the Cyanidiophyceae (Rhodophyta), has successfully thrived in hot springs and associated sites worldwide for more than 1 billion years. Here, we analyze chromosome-level assemblies from three representative Cyanidiophyceae species to study environmental adaptation at the genomic level. We find that subtelomeric gene duplication of functional genes and loss of canonical eukaryotic traits played a major role in environmental adaptation, in addition to horizontal gene transfer events. Shared responses to environmental stress exist in Cyanidiales and Galdieriales, however, most of the adaptive genes (e.g., for arsenic detoxification) evolved independently in these lineages. Our results underline the power of local selection to shape eukaryotic genomes that may face vastly different stresses in adjacent, extreme microhabitats.
Collapse
Affiliation(s)
- Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Tzu-Yen Huang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yongsung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Hari Chandana Yadavalli
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
15
|
Wong DK, Grisdale CJ, Slat VA, Rader SD, Fast NM. The evolution of pre-mRNA splicing and its machinery revealed by reduced extremophilic red algae. J Eukaryot Microbiol 2023; 70:e12927. [PMID: 35662328 DOI: 10.1111/jeu.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Cyanidiales are a group of mostly thermophilic and acidophilic red algae that thrive near volcanic vents. Despite their phylogenetic relationship, the reduced genomes of Cyanidioschyzon merolae and Galdieria sulphuraria are strikingly different with respect to pre-mRNA splicing, a ubiquitous eukaryotic feature. Introns are rare and spliceosomal machinery is extremely reduced in C. merolae, in contrast to G. sulphuraria. Previous studies also revealed divergent spliceosomes in the mesophilic red alga Porphyridium purpureum and the red algal derived plastid of Guillardia theta (Cryptophyta), along with unusually high levels of unspliced transcripts. To further examine the evolution of splicing in red algae, we compared C. merolae and G. sulphuraria, investigating splicing levels, intron position, intron sequence features, and the composition of the spliceosome. In addition to identifying 11 additional introns in C. merolae, our transcriptomic analysis also revealed typical eukaryotic splicing in G. sulphuraria, whereas most transcripts in C. merolae remain unspliced. The distribution of intron positions within their host genes was examined to provide insight into patterns of intron loss in red algae. We observed increasing variability of 5' splice sites and branch donor regions with increasing intron richness. We also found these relationships to be connected to reductions in and losses of corresponding parts of the spliceosome. Our findings highlight patterns of intron and spliceosome evolution in related red algae under the pressures of genome reduction.
Collapse
Affiliation(s)
- Donald K Wong
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Cameron J Grisdale
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Viktor A Slat
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Stephen D Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Naomi M Fast
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Manat G, Fanuel M, Jouanneau D, Jam M, Mac-Bear J, Rogniaux H, Mora T, Larocque R, Lipinska A, Czjzek M, Ropartz D, Ficko-Blean E. Specificity of a β-porphyranase produced by the carrageenophyte red alga Chondrus crispus and implications of this unexpected activity on red algal biology. J Biol Chem 2022; 298:102707. [PMID: 36402445 PMCID: PMC9771727 DOI: 10.1016/j.jbc.2022.102707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
The carrageenophyte red alga Chondrus crispus produces three family 16 glycoside hydrolases (CcGH16-1, CcGH16-2, and CcGH16-3). Phylogenetically, the red algal GH16 members are closely related to bacterial GH16 homologs from subfamilies 13 and 14, which have characterized marine bacterial β-carrageenase and β-porphyranase activities, respectively, yet the functions of these CcGH16 hydrolases have not been determined. Here, we first confirmed the gene locus of the ccgh16-3 gene in the alga to facilitate further investigation. Next, our biochemical characterization of CcGH16-3 revealed an unexpected β-porphyranase activity, since porphyran is not a known component of the C. crispus extracellular matrix. Kinetic characterization was undertaken on natural porphyran substrate with an experimentally determined molecular weight. We found CcGH16-3 has a pH optimum between 7.5 and 8.0; however, it exhibits reasonably stable activity over a large pH range (pH 7.0-9.0). CcGH16-3 has a KM of 4.0 ± 0.8 μM, a kcat of 79.9 ± 6.9 s-1, and a kcat/KM of 20.1 ± 1.7 μM-1 s-1. We structurally examined fine enzymatic specificity by performing a subsite dissection. CcGH16-3 has a strict requirement for D-galactose and L-galactose-6-sulfate in its -1 and +1 subsites, respectively, whereas the outer subsites are less restrictive. CcGH16-3 is one of a handful of algal enzymes characterized with a specificity for a polysaccharide unknown to be found in their own extracellular matrix. This β-porphyranase activity in a carrageenophyte red alga may provide defense against red algal pathogens or provide a competitive advantage in niche colonization.
Collapse
Affiliation(s)
- Guillaume Manat
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, France
| | - Mathieu Fanuel
- INRAE, UR BIA, Nantes, France,INRAE, BIBS Facility, Nantes, France
| | - Diane Jouanneau
- CNRS, FR 2424, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Murielle Jam
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, France
| | | | - Hélène Rogniaux
- INRAE, UR BIA, Nantes, France,INRAE, BIBS Facility, Nantes, France
| | - Théo Mora
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, France
| | - Robert Larocque
- CNRS, FR 2424, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Agnieszka Lipinska
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, France
| | - Mirjam Czjzek
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, France
| | - David Ropartz
- INRAE, UR BIA, Nantes, France,INRAE, BIBS Facility, Nantes, France
| | - Elizabeth Ficko-Blean
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, France,For correspondence: Elizabeth Ficko-Blean
| |
Collapse
|
17
|
Life cycle and functional genomics of the unicellular red alga Galdieria for elucidating algal and plant evolution and industrial use. Proc Natl Acad Sci U S A 2022; 119:e2210665119. [PMID: 36194630 PMCID: PMC9565259 DOI: 10.1073/pnas.2210665119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sexual reproduction has not been observed in unicellular red algae and Glaucophyceae, early branching groups in Archaeplastida, in which red algae and Viridiplantae independently evolved multicellular sexual life cycles. The finding of sexual reproduction in the unicellular red alga Galdieria provides information on the missing link of life cycle evolution in Archaeplastida. In addition, the metabolic plasticity, the polyextremophilic features, a relatively small genome, transcriptome data for the diploid and haploid, and the genetic modification tools developed here provide a useful platform for understanding the evolution of Archaeplastida, photosynthesis, metabolism, and environmental adaptation. For biotechnological use of the information and tools of Galdieria, the newly found cell wall–less haploid makes cell disruption less energy/cost intensive than the cell-walled diploid. Sexual reproduction is widespread in eukaryotes; however, only asexual reproduction has been observed in unicellular red algae, including Galdieria, which branched early in Archaeplastida. Galdieria possesses a small genome; it is polyextremophile, grows either photoautotrophically, mixotrophically, or heterotrophically, and is being developed as an industrial source of vitamins and pigments because of its high biomass productivity. Here, we show that Galdieria exhibits a sexual life cycle, alternating between cell-walled diploid and cell wall–less haploid, and that both phases can proliferate asexually. The haploid can move over surfaces and undergo self-diploidization or generate heterozygous diploids through mating. Further, we prepared the whole genome and a comparative transcriptome dataset between the diploid and haploid and developed genetic tools for the stable gene expression, gene disruption, and selectable marker recycling system using the cell wall–less haploid. The BELL/KNOX and MADS-box transcription factors, which function in haploid-to-diploid transition and development in plants, are specifically expressed in the haploid and diploid, respectively, and are involved in the haploid-to-diploid transition in Galdieria, providing information on the missing link of the sexual life cycle evolution in Archaeplastida. Four actin genes are differently involved in motility of the haploid and cytokinesis in the diploid, both of which are myosin independent and likely reflect ancestral roles of actin. We have also generated photosynthesis-deficient mutants, such as blue-colored cells, which were depleted in chlorophyll and carotenoids, for industrial pigment production. These features of Galdieria facilitate the understanding of the evolution of algae and plants and the industrial use of microalgae.
Collapse
|
18
|
Liu B, Chen Y, Zhu H, Liu G. Phylotranscriptomic and Evolutionary Analyses of the Green Algal Order Chaetophorales (Chlorophyceae, Chlorophyta). Genes (Basel) 2022; 13:genes13081389. [PMID: 36011300 PMCID: PMC9407426 DOI: 10.3390/genes13081389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the phylogenetic differences in the taxonomic framework of the Chaetophorales as determined by the use of nuclear molecular markers or chloroplast genes, the current study was the first to use phylotranscriptomic analyses comparing the transcriptomes of 12 Chaetophorales algal species. The results showed that a total of 240,133 gene families and 143 single-copy orthogroups were identified. Based on the single-copy orthogroups, supergene analysis and the coalescent-based approach were adopted to perform phylotranscriptomic analysis of the Chaetophorales. The phylogenetic relationships of most species were consistent with those of phylogenetic analyses based on the chloroplast genome data rather than nuclear molecular markers. The Schizomeriaceae and the Aphanochaetaceae clustered into a well-resolved basal clade in the Chaetophorales by either strategy. Evolutionary analyses of divergence time and substitution rate also revealed that the closest relationships existed between the Schizomeriaceae and Aphanochaetaceae. All species in the Chaetophorales exhibited a large number of expanded and contracted gene families, in particular the common ancestor of the Schizomeriaceae and Aphanochaetaceae. The only terrestrial alga, Fritschiella tuberosa, had the greatest number of expanded gene families, which were associated with increased fatty acid biosynthesis. Phylotranscriptomic and evolutionary analyses all robustly identified the unique taxonomic relationship of Chaetophorales consistent with chloroplast genome data, proving the advantages of high-throughput data in phylogeny.
Collapse
Affiliation(s)
- Benwen Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yangliang Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huan Zhu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoxiang Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: ; Tel.: +86-027-6878-0576
| |
Collapse
|
19
|
Nakamura-Gouvea N, Alves-Lima C, Benites LF, Iha C, Maracaja-Coutinho V, Aliaga-Tobar V, Araujo Amaral Carneiro M, Yokoya NS, Marinho-Soriano E, Graminha MAS, Collén J, Oliveira MC, Setubal JC, Colepicolo P. Insights into agar and secondary metabolite pathways from the genome of the red alga Gracilaria domingensis (Rhodophyta, Gracilariales). JOURNAL OF PHYCOLOGY 2022; 58:406-423. [PMID: 35090189 DOI: 10.1111/jpy.13238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Gracilariales is a clade of florideophycean red macroalgae known for being the main source of agar. We present a de novo genome assembly and annotation of Gracilaria domingensis, an agarophyte alga with flattened thallus widely distributed along Central and South American Atlantic intertidal zones. In addition to structural analysis, an organizational comparison was done with other Rhodophyta genomes. The nuclear genome has 78 Mbp, with 11,437 predicted coding genes, 4,075 of which did not have hits in sequence databases. We also predicted 1,567 noncoding RNAs, distributed in 14 classes. The plastid and mitochondrion genome structures were also obtained. Genes related to agar synthesis were identified. Genes for type II galactose sulfurylases could not be found. Genes related to ascorbate synthesis were found. These results suggest an intricate connection of cell wall polysaccharide synthesis and the redox systems through the use of L-galactose in Rhodophyta. The genome of G. domingensis should be valuable to phycological and aquacultural research, as it is the first tropical and Western Atlantic red macroalgal genome to be sequenced.
Collapse
Affiliation(s)
- Natalia Nakamura-Gouvea
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu, Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Cicero Alves-Lima
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu, Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Luiz Felipe Benites
- CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Sorbonne Université, Observatoire Océanologique - F-66650, Banyuls-sur-Mer, France
| | - Cintia Iha
- Department of Botany, Institute of Biosciences, University of São Paulo, R Matão 277, São Paulo, SP, 05508-090, Brazil
| | - Vinicius Maracaja-Coutinho
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Universidad de Chile - Independencia, Santiago, 8380492, Chile
| | - Victor Aliaga-Tobar
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Universidad de Chile - Independencia, Santiago, 8380492, Chile
| | - Marcella Araujo Amaral Carneiro
- Department of Oceanography and Limnology, Federal University of Rio Grande do Norte - Via Costeira, Praia de Mãe Luiza, s/n, Natal, RN, 59014-002, Brazil
| | - Nair S Yokoya
- Phycology Research Center, Institute of Botany, Secretary of Infrastructure and Environment of São Paulo State, Brazil - Av. Miguel Estefano, 3687, Água Funda, São Paulo, SP, 04301-012, Brazil
| | - Eliane Marinho-Soriano
- Department of Oceanography and Limnology, Federal University of Rio Grande do Norte - Via Costeira, Praia de Mãe Luiza, s/n, Natal, RN, 59014-002, Brazil
| | - Marcia A S Graminha
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Campus Ville, Araraquara, SP, 14800-903, Brazil
| | - Jonas Collén
- Station Biologique de Roscoff, UMR 8227, Integrative Biology of Marine Models - CS 90074, Roscoff cedex, 29688, France
| | - Mariana C Oliveira
- Department of Botany, Institute of Biosciences, University of São Paulo, R Matão 277, São Paulo, SP, 05508-090, Brazil
| | - Joao C Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Pio Colepicolo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
20
|
Stadnichuk IN, Tropin IV. Cyanidiales as Polyextreme Eukaryotes. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:472-487. [PMID: 35790381 DOI: 10.1134/s000629792205008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/28/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Cyanidiales were named enigmatic microalgae due to their unique polyextreme properties, considered for a very long time unattainable for eukaryotes. Cyanidiales mainly inhabit hot sulfuric springs with high acidity (pH 0-4), temperatures up to 56°C, and ability to survive in the presence of dissolved heavy metals. Owing to the minimal for eukaryotes genome size, Cyanidiales have become one of the most important research objects in plant cell physiology, biochemistry, molecular biology, phylogenomics, and evolutionary biology. They play an important role in studying many aspects of oxygenic photosynthesis and chloroplasts origin. The ability to survive in stressful habitats and the corresponding metabolic pathways were acquired by Cyanidiales from archaea and bacteria via horizontal gene transfer (HGT). Thus, the possibility of gene transfer from prokaryotes to eukaryotes was discovered, which was a new step in understanding of the origin of eukaryotic cell.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127726, Russia.
| | - Ivan V Tropin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
21
|
Lee WK, Ho CL. Ecological and evolutionary diversification of sulphated polysaccharides in diverse photosynthetic lineages: A review. Carbohydr Polym 2022; 277:118764. [PMID: 34893214 DOI: 10.1016/j.carbpol.2021.118764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/02/2022]
Abstract
Sulphated polysaccharides (SPs) are carbohydrate macromolecules with sulphate esters that are found among marine algae, seagrasses, mangroves and some terrestrial plants. The sulphate concentration in the ocean (28 mM) since ancient time could have driven the production of SPs in marine algae. SPs have a gelatinous property that can protect marine algae against desiccation and salinity stress. Agar and carrageenan are red algal SPs that are widely used as gelling agents in the food and pharmaceutical industries. The information on the SPs from freshwater and land plants are limited. In this review, we reviewed the taxonomic distribution and composition of SPs in different photosynthetic lineages, and explored the association of SP production in these diversified photosynthetic organisms with evolution history and environmental stresses. We also reviewed the genes/proteins involved in SP biosynthesis. Insights into SP biosynthetic machinery may shed light on the evolution that accompanied adaptation to life on earth.
Collapse
Affiliation(s)
- Wei-Kang Lee
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM-Serdang, Selangor, Malaysia; Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia.
| | - Chai-Ling Ho
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM-Serdang, Selangor, Malaysia.
| |
Collapse
|
22
|
Wong DK, Stark MS, Rader SD, Fast NM. Characterization of Pre-mRNA Splicing and Spliceosomal Machinery in Porphyridium purpureum and Evolutionary Implications for Red Algae. J Eukaryot Microbiol 2021; 68:e12844. [PMID: 33569840 DOI: 10.1111/jeu.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Pre-mRNA splicing is a highly conserved eukaryotic process, but our understanding of it is limited by a historical focus on well-studied organisms such as humans and yeast. There is considerable diversity in mechanisms and components of pre-mRNA splicing, especially in lineages that have evolved under the pressures of genome reduction. The ancestor of red algae is thought to have undergone genome reduction prior to the lineage's radiation, resulting in overall gene and intron loss in extant groups. Previous studies on the extremophilic red alga Cyanidioschyzon merolae revealed an intron-sparse genome with a highly reduced spliceosome. To determine whether these features applied to other red algae, we investigated multiple aspects of pre-mRNA splicing in the mesophilic red alga Porphyridium purpureum. Through strand-specific RNA-Seq, we observed high levels of intron retention across a large number of its introns, and nearly half of the transcripts for these genes are not spliced at all. We also discovered a relationship between variability of 5' splice site sequences and levels of splicing. To further investigate the connections between intron retention and splicing machinery, we bioinformatically assembled the P. purpureum spliceosome, and biochemically verified the presence of snRNAs. While most other core spliceosomal components are present, our results suggest highly divergent or missing U1 snRNP proteins, despite the presence of an uncharacteristically long U1 snRNA. These unusual aspects highlight the diverse nature of pre-mRNA splicing that can be seen in lesser-studied eukaryotes, raising the importance of investigating fundamental eukaryotic processes outside of model organisms.
Collapse
Affiliation(s)
- Donald K Wong
- Department of Botany, University of British Columbia, 3156-6270 University Boulevard, Vancouver, BC, Canada
| | - Martha S Stark
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada
| | - Stephen D Rader
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada
| | - Naomi M Fast
- Department of Botany, University of British Columbia, 3156-6270 University Boulevard, Vancouver, BC, Canada
| |
Collapse
|
23
|
Zeng L, Dehesh K. The eukaryotic MEP-pathway genes are evolutionarily conserved and originated from Chlaymidia and cyanobacteria. BMC Genomics 2021; 22:137. [PMID: 33637041 PMCID: PMC7912892 DOI: 10.1186/s12864-021-07448-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Isoprenoids are the most ancient and essential class of metabolites produced in all organisms, either via mevalonate (MVA)-and/or methylerythritol phosphate (MEP)-pathways. The MEP-pathway is present in all plastid-bearing organisms and most eubacteria. However, no comprehensive study reveals the origination and evolutionary characteristics of MEP-pathway genes in eukaryotes. Results Here, detailed bioinformatics analyses of the MEP-pathway provide an in-depth understanding the evolutionary history of this indispensable biochemical route, and offer a basis for the co-existence of the cytosolic MVA- and plastidial MEP-pathway in plants given the established exchange of the end products between the two isoprenoid-biosynthesis pathways. Here, phylogenetic analyses establish the contributions of both cyanobacteria and Chlamydiae sequences to the plant’s MEP-pathway genes. Moreover, Phylogenetic and inter-species syntenic block analyses demonstrate that six of the seven MEP-pathway genes have predominantly remained as single-copy in land plants in spite of multiple whole-genome duplication events (WGDs). Substitution rate and domain studies display the evolutionary conservation of these genes, reinforced by their high expression levels. Distinct phenotypic variation among plants with reduced expression levels of individual MEP-pathway genes confirm the indispensable function of each nuclear-encoded plastid-targeted MEP-pathway enzyme in plant growth and development. Conclusion Collectively, these findings reveal the polyphyletic origin and restrict conservation of MEP-pathway genes, and reinforce the potential function of the individual enzymes beyond production of the isoprenoids intermediates. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07448-x.
Collapse
Affiliation(s)
- Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
24
|
Dabravolski SA, Isayenkov SV. Evolution of Plant Na +-P-Type ATPases: From Saline Environments to Land Colonization. PLANTS 2021; 10:plants10020221. [PMID: 33498844 PMCID: PMC7911474 DOI: 10.3390/plants10020221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
Soil salinity is one of the major factors obstructing the growth and development of agricultural crops. Eukaryotes have two main transport systems involved in active Na+ removal: cation/H+ antiporters and Na+-P-type ATPases. Key transport proteins, Na+/K+-P-ATPases, are widely distributed among the different taxa families of pumps which are responsible for keeping cytosolic Na+ concentrations below toxic levels. Na+/K+-P-ATPases are considered to be absent in flowering plants. The data presented here are a complete inventory of P-type Na+/K+-P-ATPases in the major branches of the plant kingdom. We also attempt to elucidate the evolution of these important membrane pumps in plants in comparison with other organisms. We were able to observe the gradual replacement of the Na+-binding site to the Ca2+-binding site, starting with cyanobacteria and moving to modern land plants. Our results show that the α-subunit likely evolved from one common ancestor to bacteria, fungi, plants, and mammals, whereas the β-subunit did not evolve in green algae. In conclusion, our results strongly suggest the significant differences in the domain architecture and subunit composition of plant Na+/K+-P-ATPases depending on plant taxa and the salinity of the environment. The obtained data clarified and broadened the current views on the evolution of Na+/K+-P-ATPases. The results of this work would be helpful for further research on P-type ATPase functionality and physiological roles.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 21002 Vitebsk, Belarus;
| | - Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, 04123 Kyiv, Ukraine
- Correspondence: author:
| |
Collapse
|
25
|
Abstract
A lineage of predatory, non-photosynthetic protists related to red algae has been discovered, changing the way we think about the biology of the first photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Morgan J Colp
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
26
|
Fan X, Qiu H, Han W, Wang Y, Xu D, Zhang X, Bhattacharya D, Ye N. Phytoplankton pangenome reveals extensive prokaryotic horizontal gene transfer of diverse functions. SCIENCE ADVANCES 2020; 6:eaba0111. [PMID: 32494685 PMCID: PMC7190310 DOI: 10.1126/sciadv.aba0111] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/03/2020] [Indexed: 05/17/2023]
Abstract
The extent and role of horizontal gene transfer (HGT) in phytoplankton and, more broadly, eukaryotic evolution remain controversial topics. Recent studies substantiate the importance of HGT in modifying or expanding functions such as metal or reactive species detoxification and buttressing halotolerance. Yet, the potential of HGT to significantly alter the fate of species in a major eukaryotic assemblage remains to be established. We provide such an example for the ecologically important lineages encompassed by cryptophytes, rhizarians, alveolates, stramenopiles, and haptophytes ("CRASH" taxa). We describe robust evidence of prokaryotic HGTs in these taxa affecting functions such as polysaccharide biosynthesis. Numbers of HGTs range from 0.16 to 1.44% of CRASH species gene inventories, comparable to the ca. 1% prokaryote-derived HGTs found in the genomes of extremophilic red algae. Our results substantially expand the impact of HGT in eukaryotes and define a set of general principles for prokaryotic gene fixation in phytoplankton genomes.
Collapse
Affiliation(s)
- Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huan Qiu
- Independent scholar, 121 Goucher Terrace, Gaithersburg, MD 20877, USA
| | - Wentao Han
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, 59 Dudley Road, Foran Hall 102, New Brunswick, NJ 08901, USA
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
27
|
Cao M, Xu K, Yu X, Bi G, Liu Y, Kong F, Sun P, Tang X, Du G, Ge Y, Wang D, Mao Y. A chromosome-level genome assembly of Pyropia haitanensis (Bangiales, Rhodophyta). Mol Ecol Resour 2020; 20:216-227. [PMID: 31600851 PMCID: PMC6972535 DOI: 10.1111/1755-0998.13102] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023]
Abstract
Pyropia haitanensis (Bangiales, Rhodophyta), a major economically important marine crop, is also considered as an ideal research model of Rhodophyta to address several major biological questions such as sexual reproduction and adaptation to intertidal abiotic stresses. However, comparative genomic analysis to decipher the underlying molecular mechanisms is hindered by the lack of high-quality genome information. Therefore, we integrated sequencing data from Illumina short-read sequencing, PacBio single-molecule sequencing and BioNano optical genome mapping. The assembled genome was approximately 53.3 Mb with an average GC% of 67.9%. The contig N50 and scaffold N50 were 510.3 kb and 5.8 Mb, respectively. Additionally, 10 superscaffolds representing 80.9% of the total assembly (42.7 Mb) were anchored and orientated to the 5 linkage groups based on markers and genetic distance; this outcome is consistent with the karyotype of five chromosomes (n = 5) based on cytological observation in P. haitanensis. Approximately 9.6% and 14.6% of the genomic region were interspersed repeat and tandem repeat elements, respectively. Based on full-length transcriptome data generated by PacBio, 10,903 protein-coding genes were identified. The construction of a genome-wide phylogenetic tree demonstrated that the divergence time of P. haitanensis and Porphyra umbilicalis was ~204.4 Ma. Interspecies comparison revealed that 493 gene families were expanded and that 449 were contracted in the P. haitanensis genome compared with those in the Po. umbilicalis genome. The genome identified is of great value for further research on the genome evolution of red algae and genetic adaptation to intertidal stresses.
Collapse
Affiliation(s)
- Min Cao
- Key Laboratory of Marine Genetics and Breeding (OUC)Ministry of EducationQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Kuipeng Xu
- Key Laboratory of Marine Genetics and Breeding (OUC)Ministry of EducationQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xinzi Yu
- Key Laboratory of Marine Genetics and Breeding (OUC)Ministry of EducationQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Guiqi Bi
- Key Laboratory of Marine Genetics and Breeding (OUC)Ministry of EducationQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Yang Liu
- Key Laboratory of Marine Genetics and Breeding (OUC)Ministry of EducationQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Fanna Kong
- Key Laboratory of Marine Genetics and Breeding (OUC)Ministry of EducationQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Peipei Sun
- Key Laboratory of Marine Genetics and Breeding (OUC)Ministry of EducationQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (OUC)Ministry of EducationQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Guoying Du
- Key Laboratory of Marine Genetics and Breeding (OUC)Ministry of EducationQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Yuan Ge
- Key Laboratory of Marine Genetics and Breeding (OUC)Ministry of EducationQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Dongmei Wang
- Key Laboratory of Marine Genetics and Breeding (OUC)Ministry of EducationQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding (OUC)Ministry of EducationQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University)Ministry of EducationSanyaChina
| |
Collapse
|
28
|
Lee J, Kim D, Bhattacharya D, Yoon HS. Expansion of phycobilisome linker gene families in mesophilic red algae. Nat Commun 2019; 10:4823. [PMID: 31645564 PMCID: PMC6811547 DOI: 10.1038/s41467-019-12779-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/26/2019] [Indexed: 02/02/2023] Open
Abstract
The common ancestor of red algae (Rhodophyta) has undergone massive genome reduction, whereby 25% of the gene inventory has been lost, followed by its split into the species-poor extremophilic Cyanidiophytina and the broadly distributed mesophilic red algae. Success of the mesophile radiation is surprising given their highly reduced gene inventory. To address this latter issue, we combine an improved genome assembly from the unicellular red alga Porphyridium purpureum with a diverse collection of other algal genomes to reconstruct ancient endosymbiotic gene transfers (EGTs) and gene duplications. We find EGTs associated with the core photosynthetic machinery that may have played important roles in plastid establishment. More significant are the extensive duplications and diversification of nuclear gene families encoding phycobilisome linker proteins that stabilize light-harvesting functions. We speculate that the origin of these complex families in mesophilic red algae may have contributed to their adaptation to a diversity of light environments. Widely distributed red algae have experienced massive genome reduction during evolution. Here, using an improved genome assembly of Porphyridium purpureum, Lee et al. show the role of endosymbiotic gene transfer in plastid evolution and the correlation between phycobilisome linker diversification and the red algal radiation.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA.,Department of Oceanography, Kyungpook National University, Daegu, 41566, Korea
| | - Dongseok Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
29
|
Abstract
Green plants (Viridiplantae) include around 450,000-500,000 species1,2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.
Collapse
|
30
|
Rickaby REM, Eason Hubbard MR. Upper ocean oxygenation, evolution of RuBisCO and the Phanerozoic succession of phytoplankton. Free Radic Biol Med 2019; 140:295-304. [PMID: 31075497 PMCID: PMC6856715 DOI: 10.1016/j.freeradbiomed.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/10/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Evidence is compiled to demonstrate a redox scale within Earth's photosynthesisers that correlates the specificity of their RuBisCO with organismal metabolic tolerance to anoxia, and ecological selection by dissolved O2/CO2 and nutrients. The Form 1B RuBisCO found in the chlorophyte green algae, has a poor selectivity between the two dissolved substrates, O2 and CO2, at the active site. This enzyme appears adapted to lower O2/CO2 ratios, or more "anoxic" conditions and therefore requires additional energetic or nutrient investment in a carbon concentrating mechanism (CCM) to boost the intracellular CO2/O2 ratio and maintain competitive carboxylation rates under increasingly high O2/CO2 conditions in the environment. By contrast the coccolithophores and diatoms evolved containing the more selective Rhodophyte Form 1D RuBisCO, better adapted to a higher O2/CO2 ratio, or more oxic conditions. This Form 1D RuBisCO requires lesser energetic or nutrient investment in a CCM to attain high carboxylation rates under environmentally high O2/CO2 ratios. Such a physiological relationship may underpin the succession of phytoplankton in the Phanerozoic oceans: the coccolithophores and diatoms took over the oceanic realm from the incumbent cyanobacteria and green algae when the upper ocean became persistently oxygenated, alkaline and more oligotrophic. The facultatively anaerobic green algae, able to tolerate the anoxic conditions of the water column and a periodically inundated soil, were better poised to adapt to the fluctuating anoxia associated with periods of submergence and emergence and transition onto the land. The induction of a CCM may exert a natural limit to the improvement of RuBisCO efficiency over Earth history. Rubisco specificity appears to adapt on the timescale of ∼100 Myrs. So persistent elevation of CO2/O2 ratios in the intracellular environment around the enzyme, may induce a relaxation in RuBisCO selectivity for CO2 relative to O2. The most efficient RuBisCO for net carboxylation is likely to be found in CCM-lacking algae that have been exposed to hyperoxic conditions for at least 100 Myrs, such as intertidal brown seaweeds.
Collapse
Affiliation(s)
- Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK.
| | - M R Eason Hubbard
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| |
Collapse
|
31
|
Gawryluk RMR, Tikhonenkov DV, Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ. Non-photosynthetic predators are sister to red algae. Nature 2019; 572:240-243. [DOI: 10.1038/s41586-019-1398-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
|
32
|
Foflonker F, Mollegard D, Ong M, Yoon HS, Bhattacharya D. Genomic Analysis of Picochlorum Species Reveals How Microalgae May Adapt to Variable Environments. Mol Biol Evol 2019; 35:2702-2711. [PMID: 30184126 DOI: 10.1093/molbev/msy167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Understanding how microalgae adapt to rapidly changing environments is not only important to science but can help clarify the potential impact of climate change on the biology of primary producers. We sequenced and analyzed the nuclear genome of multiple Picochlorum isolates (Chlorophyta) to elucidate strategies of environmental adaptation. It was previously found that coordinated gene regulation is involved in adaptation to salinity stress, and here we show that gene gain and loss also play key roles in adaptation. We determined the extent of horizontal gene transfer (HGT) from prokaryotes and their role in the origin of novel functions in the Picochlorum clade. HGT is an ongoing and dynamic process in this algal clade with adaptation being driven by transfer, divergence, and loss. One HGT candidate that is differentially expressed under salinity stress is indolepyruvate decarboxylase that is involved in the production of a plant auxin that mediates bacteria-diatom symbiotic interactions. Large differences in levels of heterozygosity were found in diploid haplotypes among Picochlorum isolates. Biallelic divergence was pronounced in P. oklahomensis (salt plains environment) when compared with its closely related sister taxon Picochlorum SENEW3 (brackish water environment), suggesting a role of diverged alleles in response to environmental stress. Our results elucidate how microbial eukaryotes with limited gene inventories expand habitat range from mesophilic to halophilic through allelic diversity, and with minor but important contributions made by HGT. We also explore how the nature and quality of genome data may impact inference of nuclear ploidy.
Collapse
Affiliation(s)
- Fatima Foflonker
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Devin Mollegard
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Meichin Ong
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ
| |
Collapse
|
33
|
Rossoni AW, Price DC, Seger M, Lyska D, Lammers P, Bhattacharya D, Weber APM. The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. eLife 2019; 8:e45017. [PMID: 31149898 PMCID: PMC6629376 DOI: 10.7554/elife.45017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023] Open
Abstract
The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics that impact our understanding of the origin of metabolic processes and the role of organelles in cellular evolution. We addressed this issue by analyzing 10 novel Cyanidiales genomes and determined that 1% of their gene inventory is HGT-derived. Numerous HGT candidates share a close phylogenetic relationship with prokaryotes that live in similar habitats as the Cyanidiales and encode functions related to polyextremophily. HGT candidates differ from native genes in GC-content, number of splice sites, and gene expression. HGT candidates are more prone to loss, which may explain the absence of a eukaryotic pan-genome. Therefore, the lack of a pan-genome and cumulative effects fail to provide substantive arguments against our hypothesis of recurring HGT followed by differential loss in eukaryotes. The maintenance of 1% HGTs, even under selection for genome reduction, underlines the importance of non-endosymbiosis related foreign gene acquisition.
Collapse
Affiliation(s)
- Alessandro W Rossoni
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Dana C Price
- Department of Plant BiologyRutgers UniversityNew BrunswickUnited States
| | - Mark Seger
- Arizona Center for Algae Technology and InnovationArizona State UniversityMesaUnited States
| | - Dagmar Lyska
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Peter Lammers
- Arizona Center for Algae Technology and InnovationArizona State UniversityMesaUnited States
| | | | - Andreas PM Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
34
|
Rossoni AW, Weber APM. Systems Biology of Cold Adaptation in the Polyextremophilic Red Alga Galdieria sulphuraria. Front Microbiol 2019; 10:927. [PMID: 31118926 PMCID: PMC6504705 DOI: 10.3389/fmicb.2019.00927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
Rapid fluctuation of environmental conditions can impose severe stress upon living organisms. Surviving such episodes of stress requires a rapid acclimation response, e.g., by transcriptional and post-transcriptional mechanisms. Persistent change of the environmental context, however, requires longer-term adaptation at the genetic level. Fast-growing unicellular aquatic eukaryotes enable analysis of adaptive responses at the genetic level in a laboratory setting. In this study, we applied continuous cold stress (28°C) to the thermoacidophile red alga G. sulphuraria, which is 14°C below its optimal growth temperature of 42°C. Cold stress was applied for more than 100 generations to identify components that are critical for conferring thermal adaptation. After cold exposure for more than 100 generations, the cold-adapted samples grew ∼30% faster than the starting population. Whole-genome sequencing revealed 757 variants located on 429 genes (6.1% of the transcriptome) encoding molecular functions involved in cell cycle regulation, gene regulation, signaling, morphogenesis, microtubule nucleation, and transmembrane transport. CpG islands located in the intergenic region accumulated a significant number of variants, which is likely a sign of epigenetic remodeling. We present 20 candidate genes and three putative cis-regulatory elements with various functions most affected by temperature. Our work shows that natural selection toward temperature tolerance is a complex systems biology problem that involves gradual reprogramming of an intricate gene network and deeply nested regulators.
Collapse
Affiliation(s)
| | - Andreas P. M. Weber
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
35
|
Rossoni AW, Schï Nknecht G, Lee HJ, Rupp RL, Flachbart S, Mettler-Altmann T, Weber APM, Eisenhut M. Cold Acclimation of the Thermoacidophilic Red Alga Galdieria sulphuraria: Changes in Gene Expression and Involvement of Horizontally Acquired Genes. PLANT & CELL PHYSIOLOGY 2019; 60:702-712. [PMID: 30590832 DOI: 10.1093/pcp/pcy240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Galdieria sulphuraria is a unicellular red alga that lives in hot, acidic, toxic metal-rich, volcanic environments, where few other organisms survive. Its genome harbors up to 5% of genes that were most likely acquired through horizontal gene transfer. These genes probably contributed to G.sulphuraria's adaptation to its extreme habitats, resulting in today's polyextremophilic traits. Here, we applied RNA-sequencing to obtain insights into the acclimation of a thermophilic organism towards temperatures below its growth optimum and to study how horizontally acquired genes contribute to cold acclimation. A decrease in growth temperature from 42�C/46�C to 28�C resulted in an upregulation of ribosome biosynthesis, while excreted proteins, probably components of the cell wall, were downregulated. Photosynthesis was suppressed at cold temperatures, and transcript abundances indicated that C-metabolism switched from gluconeogenesis to glycogen degradation. Folate cycle and S-adenosylmethionine cycle (one-carbon metabolism) were transcriptionally upregulated, probably to drive the biosynthesis of betaine. All these cold-induced changes in gene expression were reversible upon return to optimal growth temperature. Numerous genes acquired by horizontal gene transfer displayed temperature-dependent expression changes, indicating that these genes contributed to adaptive evolution in G.sulphuraria.
Collapse
Affiliation(s)
- Alessandro W Rossoni
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D�sseldorf, Germany
| | - Gerald Schï Nknecht
- Department of Plant Biology, Ecology & Evolution, Oklahoma State University, Stillwater, OK, USA
| | - Hyun Jeong Lee
- Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, South Korea
| | - Ryan L Rupp
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Samantha Flachbart
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D�sseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D�sseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D�sseldorf, Germany
| | - Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D�sseldorf, Germany
| |
Collapse
|
36
|
Sibbald SJ, Hopkins JF, Filloramo GV, Archibald JM. Ubiquitin fusion proteins in algae: implications for cell biology and the spread of photosynthesis. BMC Genomics 2019; 20:38. [PMID: 30642248 PMCID: PMC6332867 DOI: 10.1186/s12864-018-5412-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/26/2018] [Indexed: 11/12/2022] Open
Abstract
Background The process of gene fusion involves the formation of a single chimeric gene from multiple complete or partial gene sequences. Gene fusion is recognized as an important mechanism by which genes and their protein products can evolve new functions. The presence-absence of gene fusions can also be useful characters for inferring evolutionary relationships between organisms. Results Here we show that the nuclear genomes of two unrelated single-celled algae, the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans, possess an unexpected diversity of genes for ubiquitin fusion proteins, including novel arrangements in which ubiquitin occupies amino-terminal, carboxyl-terminal, and internal positions relative to its fusion partners. We explore the evolution of the ubiquitin multigene family in both genomes, and show that both algae possess a gene encoding an ubiquitin-nickel superoxide dismutase fusion protein (Ubiq-NiSOD) that is widely but patchily distributed across the eukaryotic tree of life – almost exclusively in phototrophs. Conclusion Our results suggest that ubiquitin fusion proteins are more common than currently appreciated; because of its small size, the ubiquitin coding region can go undetected when gene predictions are carried out in an automated fashion. The punctate distribution of the Ubiq-NiSOD fusion across the eukaryotic tree could serve as a beacon for the spread of plastids from eukaryote to eukaryote by secondary and/or tertiary endosymbiosis. Electronic supplementary material The online version of this article (10.1186/s12864-018-5412-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shannon J Sibbald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Julia F Hopkins
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.,Present Address: Informatics Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Gina V Filloramo
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
37
|
Stiller JW, Yang C, Collén J, Kowalczyk N, Thompson BE. Evolution and expression of core SWI/SNF genes in red algae. JOURNAL OF PHYCOLOGY 2018; 54:879-887. [PMID: 30288746 DOI: 10.1111/jpy.12795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Red algae are the oldest identifiable multicellular eukaryotes, with a fossil record dating back more than a billion years. During that time two major rhodophyte lineages, bangiophytes and florideophytes, have evolved varied levels of morphological complexity. These two groups are distinguished, in part, by different patterns of multicellular development, with florideophytes exhibiting a far greater diversity of morphologies. Interestingly, during their long evolutionary history, there is no record of a rhodophyte achieving the kinds of cellular and tissue-specific differentiation present in other multicellular algal lineages. To date, the genetic underpinnings of unique aspects of red algal development are largely unexplored; however, they must reflect the complements and patterns of expression of key regulatory genes. Here we report comparative evolutionary and gene expression analyses of core subunits of the SWI/SNF chromatin-remodeling complex, which is implicated in cell differentiation and developmental regulation in more well studied multicellular groups. Our results suggest that a single, canonical SWI/SNF complex was present in the rhodophyte ancestor, with gene duplications and evolutionary diversification of SWI/SNF subunits accompanying the evolution of multicellularity in the common ancestor of bangiophytes and florideophytes. Differences in how SWI/SNF chromatin remodeling evolved subsequently, in particular gene losses and more rapid divergence of SWI3 and SNF5 in bangiophytes, could help to explain why they exhibit a more limited range of morphological complexity than their florideophyte cousins.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| | - Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Jonas Collén
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Nathalie Kowalczyk
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Beth E Thompson
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| |
Collapse
|
38
|
Cenci U, Qiu H, Pillonel T, Cardol P, Remacle C, Colleoni C, Kadouche D, Chabi M, Greub G, Bhattacharya D, Ball SG. Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida. Sci Rep 2018; 8:15243. [PMID: 30323231 PMCID: PMC6189191 DOI: 10.1038/s41598-018-33663-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/03/2018] [Indexed: 02/01/2023] Open
Abstract
Menaquinone (vitamin K2) shuttles electrons between membrane-bound respiratory complexes under microaerophilic conditions. In photosynthetic eukaryotes and cyanobacteria, phylloquinone (vitamin K1) participates in photosystem I function. Here we elucidate the evolutionary history of vitamin K metabolism in algae and plants. We show that Chlamydiales intracellular pathogens made major genetic contributions to the synthesis of the naphthoyl ring core and the isoprenoid side-chain of these quinones. Production of the core in extremophilic red algae is under control of a menaquinone (Men) gene cluster consisting of 7 genes that putatively originated via lateral gene transfer (LGT) from a chlamydial donor to the plastid genome. In other green and red algae, functionally related nuclear genes also originated via LGT from a non-cyanobacterial, albeit unidentified source. In addition, we show that 3-4 of the 9 required steps for synthesis of the isoprenoid side chains are under control of genes of chlamydial origin. These results are discussed in the light of the hypoxic response experienced by the cyanobacterial endosymbiont when it gained access to the eukaryotic cytosol.
Collapse
Affiliation(s)
- U Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - H Qiu
- Department of Ecology, Evolution & Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - T Pillonel
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, 1011, Lausanne, Switzerland
| | - P Cardol
- Laboratoire de Génétique et Physiologie des Microalgues, InBioS/Phytosystems, B22 Institut de Botanique, Université de Liège, 4000, Liège, Belgium
| | - C Remacle
- Laboratoire de Génétique et Physiologie des Microalgues, InBioS/Phytosystems, B22 Institut de Botanique, Université de Liège, 4000, Liège, Belgium
| | - C Colleoni
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - D Kadouche
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - M Chabi
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - G Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, 1011, Lausanne, Switzerland
| | - D Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - S G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France.
| |
Collapse
|
39
|
Herman EK, Ali M, Field MC, Dacks JB. Regulation of early endosomes across eukaryotes: Evolution and functional homology of Vps9 proteins. Traffic 2018; 19:546-563. [PMID: 29603841 PMCID: PMC6032885 DOI: 10.1111/tra.12570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
Endocytosis is a crucial process in eukaryotic cells. The GTPases Rab 5, 21 and 22 that mediate endocytosis are ancient eukaryotic features and all available evidence suggests retained conserved function. In animals and fungi, these GTPases are regulated in part by proteins possessing Vps9 domains. However, the diversity, evolution and functions of Vps9 proteins beyond animals or fungi are poorly explored. Here we report a comprehensive analysis of the Vps9 family of GTPase regulators, combining molecular evolutionary data with functional characterization in the non-opisthokont model organism Trypanosoma brucei. At least 3 subfamilies, Alsin, Varp and Rabex5 + GAPVD1, are found across eukaryotes, suggesting that all are ancient features of regulation of endocytic Rab protein function. There are examples of lineage-specific Vps9 subfamily member expansions and novel domain combinations, suggesting diversity in precise regulatory mechanisms between individual lineages. Characterization of the Rabex5 + GAPVD1 and Alsin orthologues in T. brucei demonstrates that both proteins are involved in endocytosis, and that simultaneous knockdown prevents membrane recruitment of Rab5 and Rab21, indicating conservation of function. These data demonstrate that, for the Vps9-domain family at least, modulation of Rab function is mediated by evolutionarily conserved protein-protein interactions.
Collapse
Affiliation(s)
- Emily K. Herman
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
| | - Moazzam Ali
- School of Life SciencesUniversity of DundeeDundeeUK
| | | | - Joel B. Dacks
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
| |
Collapse
|
40
|
Wong DK, Grisdale CJ, Fast NM. Evolution and Diversity of Pre-mRNA Splicing in Highly Reduced Nucleomorph Genomes. Genome Biol Evol 2018; 10:1573-1583. [PMID: 29860351 PMCID: PMC6009652 DOI: 10.1093/gbe/evy111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic genes are interrupted by introns that are removed in a conserved process known as pre-mRNA splicing. Though well-studied in select model organisms, we are only beginning to understand the variation and diversity of this process across the tree of eukaryotes. We explored pre-mRNA splicing and other features of transcription in nucleomorphs, the highly reduced remnant nuclei of secondary endosymbionts. Strand-specific transcriptomes were sequenced from the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans, whose plastids are derived from red and green algae, respectively. Both organisms exhibited elevated nucleomorph antisense transcription and gene expression relative to their respective nuclei, suggesting unique properties of gene regulation and transcriptional control in nucleomorphs. Marked differences in splicing were observed between the two nucleomorphs: the few introns of the G. theta nucleomorph were largely retained in mature transcripts, whereas the many short introns of the B. natans nucleomorph are spliced at typical eukaryotic levels (>90%). These differences in splicing levels could be reflecting the ancestries of the respective plastids, the different intron densities due to independent genome reduction events, or a combination of both. In addition to extending our understanding of the diversity of pre-mRNA splicing across eukaryotes, our study also indicates potential links between splicing, antisense transcription, and gene regulation in reduced genomes.
Collapse
Affiliation(s)
- Donald K Wong
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cameron J Grisdale
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi M Fast
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Sun X, Wu J, Wang G, Kang Y, Ooi HS, Shen T, Wang F, Yang R, Xu N, Zhao X. Genomic analyses of unique carbohydrate and phytohormone metabolism in the macroalga Gracilariopsis lemaneiformis (Rhodophyta). BMC PLANT BIOLOGY 2018; 18:94. [PMID: 29801464 PMCID: PMC5970526 DOI: 10.1186/s12870-018-1309-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/10/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Red algae are economically valuable for food and in industry. However, their genomic information is limited, and the genomic data of only a few species of red algae have been sequenced and deposited recently. In this study, we annotated a draft genome of the macroalga Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta). RESULTS The entire 88.98 Mb genome of Gp. lemaneiformis 981 was generated from 13,825 scaffolds (≥500 bp) with an N50 length of 30,590 bp, accounting for approximately 91% of this algal genome. A total of 38.73 Mb of scaffold sequences were repetitive, and 9281 protein-coding genes were predicted. A phylogenomic analysis of 20 genomes revealed the relationship among the Chromalveolata, Rhodophyta, Chlorophyta and higher plants. Homology analysis indicated phylogenetic proximity between Gp. lemaneiformis and Chondrus crispus. The number of enzymes related to the metabolism of carbohydrates, including agar, glycoside hydrolases, glycosyltransferases, was abundant. In addition, signaling pathways associated with phytohormones such as auxin, salicylic acid and jasmonates are reported for the first time for this alga. CONCLUSION We sequenced and analyzed a draft genome of the red alga Gp. lemaneiformis, and revealed its carbohydrate metabolism and phytohormone signaling characteristics. This work will be helpful in research on the functional and comparative genomics of the order Gracilariales and will enrich the genomic information on marine algae.
Collapse
Affiliation(s)
- Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211 People’s Republic of China
| | - Jun Wu
- School of Biomedical Engineering, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Guangce Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 People’s Republic of China
| | - Yani Kang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211 People’s Republic of China
- School of Biomedical Engineering, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Hong Sain Ooi
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Tingting Shen
- School of Biomedical Engineering, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Fangjun Wang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211 People’s Republic of China
| | - Rui Yang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211 People’s Republic of China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211 People’s Republic of China
| | - Xiaodong Zhao
- School of Biomedical Engineering, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| |
Collapse
|
42
|
Lee J, Yang EC, Graf L, Yang JH, Qiu H, Zelzion U, Chan CX, Stephens TG, Weber APM, Boo GH, Boo SM, Kim KM, Shin Y, Jung M, Lee SJ, Yim HS, Lee JH, Bhattacharya D, Yoon HS. Analysis of the Draft Genome of the Red Seaweed Gracilariopsis chorda Provides Insights into Genome Size Evolution in Rhodophyta. Mol Biol Evol 2018; 35:1869-1886. [DOI: 10.1093/molbev/msy081] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Eun Chan Yang
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan, Korea
| | - Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Huan Qiu
- Department of Ecology Evolution and Natural Resources, Rutgers University, New Brunswick, NJ
| | - Udi Zelzion
- Department of Ecology Evolution and Natural Resources, Rutgers University, New Brunswick, NJ
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas P M Weber
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Duesseldorf, Germany
| | - Ga Hun Boo
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Sung Min Boo
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Kyeong Mi Kim
- National Marine Biodiversity Institute of Korea, Seocheon, Korea
| | - Younhee Shin
- Bioinformatics Group, R&D Center, Insilicogen, Inc., Suwon, Korea
| | - Myunghee Jung
- Bioinformatics Group, R&D Center, Insilicogen, Inc., Suwon, Korea
| | | | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Korea
| | | | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
43
|
Qiu H, Rossoni AW, Weber APM, Yoon HS, Bhattacharya D. Unexpected conservation of the RNA splicing apparatus in the highly streamlined genome of Galdieria sulphuraria. BMC Evol Biol 2018; 18:41. [PMID: 29606099 PMCID: PMC5880011 DOI: 10.1186/s12862-018-1161-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
Background Genome reduction in intracellular pathogens and endosymbionts is usually compensated by reliance on the host for energy and nutrients. Free-living taxa with reduced genomes must however evolve strategies for generating functional diversity to support their independent lifestyles. An emerging model for the latter case is the Rhodophyta (red algae) that comprises an ecologically widely distributed, species-rich phylum. Red algae have undergone multiple phases of significant genome reduction, including extremophilic unicellular taxa with limited nuclear gene inventories that must cope with hot, highly acidic environments. Results Using genomic data from eight red algal lineages, we identified 155 spliceosomal machinery (SM)-associated genes that were putatively present in the red algal common ancestor. This core SM gene set is most highly conserved in Galdieria species (150 SM genes) and underwent differing levels of gene loss in other examined red algae (53-145 SM genes). Surprisingly, the high SM conservation in Galdieria sulphuraria coincides with the enrichment of spliceosomal introns in this species (2 introns/gene) in comparison to other red algae (< 0.34 introns/gene). Spliceosomal introns in G. sulphuraria undergo alternatively splicing, including many that are differentially spliced upon changes in culture temperature. Conclusions Our work reveals the unique nature of G. sulphuraria among red algae with respect to the conservation of the spliceosomal machinery and introns. We discuss the possible implications of these findings in the highly streamlined genome of this free-living eukaryote. Electronic supplementary material The online version of this article (10.1186/s12862-018-1161-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huan Qiu
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Alessandro W Rossoni
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225, Düsseldorf, Germany
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225, Düsseldorf, Germany
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA. .,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
44
|
García-Gutiérrez Á, Cánovas FM, Ávila C. Glutamate synthases from conifers: gene structure and phylogenetic studies. BMC Genomics 2018; 19:65. [PMID: 29351733 PMCID: PMC5775586 DOI: 10.1186/s12864-018-4454-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/15/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plants synthesize glutamate from ammonium by the combined activity of the enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT) through the glutamate synthase cycle. In plants, there are two forms of glutamate synthases that differ in their electron donors, NADH-GOGAT (EC 1.4.1.14) and Fd-GOGAT (EC 1.4.7.1), which have differential roles either in primary ammonia assimilation or in the reassimilation of ammonium from different catabolic processes. Glutamate synthases are complex iron-sulfur flavoproteins containing functional domains involved in the control and coordination of their catalytic activities in annual plants. In conifers, partial cDNA sequences for GOGATs have been isolated and used for gene expression studies. However, knowledge of the gene structure and of phylogenetic relationships with other plant enzymes is quite scant. RESULTS Technological advances in conifer megagenomes sequencing have made it possible to obtain full-length cDNA sequences encoding Fd- and NADH-GOGAT from maritime pine, as well as BAC clones containing sequences for NADH-GOGAT and Fd-GOGAT genes. In the current study, we studied the genomic organization of pine GOGAT genes, the size of their exons/introns, copy numbers in the pine genome and relationships with other plant genes. Phylogenetic analysis was performed, and the degree of preservation and dissimilarity of key domains for the catalytic activities of these enzymes in different taxa were determined. CONCLUSIONS Fd- and NADH-GOGAT are encoded by single-copy genes in the maritime pine genome. The Fd-GOGAT gene is extremely large spanning more than 330 kb and the presence of very long introns highlights the important contribution of LTR retrotransposons to the gene size in conifers. In contrast, the structure of the NADH-GOGAT gene is similar to the orthologous genes in angiosperms. Our phylogenetic analysis indicates that these two genes had different origins during plant evolution. The results provide new insights into the structure and molecular evolution of these essential genes.
Collapse
Affiliation(s)
- Ángel García-Gutiérrez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Francisco M. Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
45
|
Dittami SM, Heesch S, Olsen JL, Collén J. Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. JOURNAL OF PHYCOLOGY 2017; 53:731-745. [PMID: 28509401 DOI: 10.1111/jpy.12547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/19/2017] [Indexed: 05/03/2023]
Abstract
Marine-freshwater and freshwater-marine transitions have been key events in the evolution of life, and most major groups of organisms have independently undergone such events at least once in their history. Here, we first compile an inventory of bidirectional freshwater and marine transitions in multicellular photosynthetic eukaryotes. While green and red algae have mastered multiple transitions in both directions, brown algae have colonized freshwater on a maximum of six known occasions, and angiosperms have made the transition to marine environments only two or three times. Next, we review the early evolutionary events leading to the colonization of current habitats. It is commonly assumed that the conquest of land proceeded in a sequence from marine to freshwater habitats. However, recent evidence suggests that early photosynthetic eukaryotes may have arisen in subaerial or freshwater environments and only later colonized marine environments as hypersaline oceans were diluted to the contemporary level. Although this hypothesis remains speculative, it is important to keep these alternative scenarios in mind when interpreting the current habitat distribution of plants and algae. Finally, we discuss the roles of structural and functional adaptations of the cell wall, reactive oxygen species scavengers, osmoregulation, and reproduction. These are central for acclimatization to freshwater or to marine environments. We observe that successful transitions appear to have occurred more frequently in morphologically simple forms and conclude that, in addition to physiological studies of euryhaline species, comparative studies of closely related species fully adapted to one or the other environment are necessary to better understand the adaptive processes.
Collapse
Affiliation(s)
- Simon M Dittami
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
| | - Svenja Heesch
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
| | - Jeanine L Olsen
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Jonas Collén
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
| |
Collapse
|
46
|
Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc Natl Acad Sci U S A 2017; 114:E6361-E6370. [PMID: 28716924 DOI: 10.1073/pnas.1703088114] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.
Collapse
|
47
|
Qiu H, Lee JM, Yoon HS, Bhattacharya D. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction. JOURNAL OF PHYCOLOGY 2017; 53:715-719. [PMID: 28095611 DOI: 10.1111/jpy.12514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
Red algae (Rhodophyta) putatively diverged from the eukaryote tree of life >1.2 billion years ago and are the source of plastids in the ecologically important diatoms, haptophytes, and dinoflagellates. In general, red algae contain the largest plastid gene inventory among all such organelles derived from primary, secondary, or additional rounds of endosymbiosis. In contrast, their nuclear gene inventory is reduced when compared to their putative sister lineage, the Viridiplantae, and other photosynthetic lineages. The latter is thought to have resulted from a phase of genome reduction that occurred in the stem lineage of Rhodophyta. A recent comparative analysis of a taxonomically broad collection of red algal and Viridiplantae plastid genomes demonstrates that the red algal ancestor encoded ~1.5× more plastid genes than Viridiplantae. This difference is primarily explained by more extensive endosymbiotic gene transfer (EGT) in the stem lineage of Viridiplantae, when compared to red algae. We postulate that limited EGT in Rhodophytes resulted from the countervailing force of ancient, and likely recurrent, nuclear genome reduction. In other words, the propensity for nuclear gene loss led to the retention of red algal plastid genes that would otherwise have undergone intracellular gene transfer to the nucleus. This hypothesis recognizes the primacy of nuclear genome evolution over that of plastids, which have no inherent control of their gene inventory and can change dramatically (e.g., secondarily non-photosynthetic eukaryotes, dinoflagellates) in response to selection acting on the host lineage.
Collapse
Affiliation(s)
- Huan Qiu
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Jun Mo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, 08901, USA
| |
Collapse
|
48
|
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L, Freeman KD, Richter DJ, Bowler C. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 2017; 6. [PMID: 28498102 PMCID: PMC5462543 DOI: 10.7554/elife.23717] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history. DOI:http://dx.doi.org/10.7554/eLife.23717.001 The cells of most plants and algae contain compartments called chloroplasts that enable them to capture energy from sunlight in a process known as photosynthesis. Chloroplasts are the remnants of photosynthetic bacteria that used to live freely in the environment until they were consumed by a larger cell. “Complex” chloroplasts can form if a cell that already has a chloroplast is swallowed by another cell. The most abundant algae in the oceans are known as diatoms. These algae belong to a group called the stramenopiles, which also includes giant seaweeds such as kelp. The stramenopiles have a complex chloroplast that they acquired from a red alga (a relative of the seaweed used in sushi). However, some of the proteins in their chloroplasts are from other sources, such as the green algal relatives of plants, and it was not clear how these chloroplast proteins have contributed to the evolution of this group. Many of the proteins that chloroplasts need to work properly are produced by the host cell and are then transported into the chloroplasts. Dorrell et al. studied the genetic material of many stramenopile species and identified 770 chloroplast-targeted proteins that are predicted to underpin the origins of this group. Experiments in a diatom called Phaeodactylum confirmed these predictions and show that many of these chloroplast-targeted proteins have been recruited from green algae, bacteria, and other compartments within the host cell to support the chloroplast. Further experiments suggest that another major group of algae called the haptophytes once had a stramenopile chloroplast. The current haptophyte chloroplast does not come from the stramenopiles so the haptophytes appear to have replaced their chloroplasts at least once in their evolutionary history. The findings show that algal chloroplasts are mosaics, supported by proteins from many different species. This helps us understand why certain species succeed in the wild and how they may respond to environmental changes in the oceans. In the future, these findings may help researchers to engineer new species of algae and plants for food and fuel production. DOI:http://dx.doi.org/10.7554/eLife.23717.002
Collapse
Affiliation(s)
- Richard G Dorrell
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gillian Gile
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Giselle McCallum
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Raphaël Méheust
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | - Eric P Bapteste
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Daniel J Richter
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS UMR 7144.,Adaptation et Diversité en Milieu Marin, Équipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Chris Bowler
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
49
|
Salomaki ED, Lane CE. Red Algal Mitochondrial Genomes Are More Complete than Previously Reported. Genome Biol Evol 2017; 9:48-63. [PMID: 28175279 PMCID: PMC5381584 DOI: 10.1093/gbe/evw267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
Abstract
The enslavement of an alpha-proteobacterial endosymbiont by the last common eukaryotic ancestor resulted in large-scale gene transfer of endosymbiont genes to the host nucleus as the endosymbiont transitioned into the mitochondrion. Mitochondrial genomes have experienced widespread gene loss and genome reduction within eukaryotes and DNA sequencing has revealed that most of these gene losses occurred early in eukaryotic lineage diversification. On a broad scale, more recent modifications to organelle genomes appear to be conserved and phylogenetically informative. The first red algal mitochondrial genome was sequenced more than 20 years ago, and an additional 29 Florideophyceae mitochondria have been added over the past decade. A total of 32 genes have been described to have been missing or considered non-functional pseudogenes from these Florideophyceae mitochondria. These losses have been attributed to endosymbiotic gene transfer or the evolution of a parasitic life strategy. Here we sequenced the mitochondrial genomes from the red algal parasite Choreocolax polysiphoniae and its host Vertebrata lanosa and found them to be complete and conserved in structure with other Florideophyceae mitochondria. This result led us to resequence the previously published parasite Gracilariophila oryzoides and its host Gracilariopsis andersonii, as well as reevaluate reported gene losses from published Florideophyceae mitochondria. Multiple independent losses of rpl20 and a single loss of rps11 can be verified. However by reannotating published data and resequencing specimens when possible, we were able to identify the majority of genes that have been reported as lost or pseudogenes from Florideophyceae mitochondria.
Collapse
|
50
|
Qiu H, Yoon HS, Bhattacharya D. Red Algal Phylogenomics Provides a Robust Framework for Inferring Evolution of Key Metabolic Pathways. PLOS CURRENTS 2016; 8. [PMID: 28018750 PMCID: PMC5164836 DOI: 10.1371/currents.tol.7b037376e6d84a1be34af756a4d90846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Red algae comprise an anciently diverged, species-rich phylum with morphologies that span unicells to large seaweeds. Here, leveraging a rich red algal genome and transcriptome dataset, we used 298 single-copy orthologous nuclear genes from 15 red algal species to erect a robust multi-gene phylogeny of Rhodophyta. This tree places red seaweeds (Bangiophyceae and Florideophyceae) at the base of the mesophilic red algae with the remaining non-seaweed mesophilic lineages forming a well-supported sister group. The early divergence of seaweeds contrasts with the evolution of multicellular land plants and brown algae that are nested among multiple, unicellular or filamentous sister lineages. Using this novel perspective on red algal evolution, we studied the evolution of the pathways for isoprenoid biosynthesis. This analysis revealed losses of the mevalonate pathway on at least three separate occasions in lineages that contain Cyanidioschyzon, Porphyridium, and Chondrus. Our results establish a framework for in-depth studies of the origin and evolution of genes and metabolic pathways in Rhodophyta.
Collapse
Affiliation(s)
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | | |
Collapse
|