1
|
Fang J, Hu Y, Hu Z. Comparative analysis of codon usage patterns in 16 chloroplast genomes of suborder Halimedineae. BMC Genomics 2024; 25:945. [PMID: 39379800 PMCID: PMC11459826 DOI: 10.1186/s12864-024-10825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
The Halimedineae are marine green macroalgae that play crucial roles as primary producers in various habitats, including coral reefs, rocky shores, embayments, lagoons, and seagrass beds. Several tropical species have calcified thalli, which contribute significantly to the formation of coral reefs. In this study, we investigated the codon usage patterns and the main factors influencing codon usage bias in 16 chloroplast genomes of the suborder Halimedineae. Nucleotide composition analysis revealed that the codons of these species were enriched in A/U bases and preferred to end in A/U bases, and the distribution of GC content followed a trend of GC1 > GC2 > GC3. 30 optimal codons encoding 17 amino acids were identified, and most of the optimal codons and all of the over-expressed codons preferentially ended with A/U. The neutrality plot, effective number of codons (ENc) plot, and parity rule 2 (PR2) plot analysis indicated that natural selection played a major role in shaping codon usage bias of the most Halimedineae species. The genetic relationships based on their RSCU values and chloroplast protein-coding genes showed the closely related species have similar codon usage patterns. This study describes, for the first time, the codon usage patterns and characterization of Halimedineae chloroplast genomes, and provides new insights into the evolution of this suborder.
Collapse
Affiliation(s)
- Jiao Fang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, China.
| | - Yuquan Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, College of Life Science, Jianghan University, Wuhan, Hubei, China
| | - Zhangfeng Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, China.
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, College of Life Science, Jianghan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Massé A, Detang J, Duval C, Duperron S, Woo AC, Domart-Coulon I. Bacterial Microbiota of Ostreobium, the Coral-Isolated Chlorophyte Ectosymbiont, at Contrasted Salinities. Microorganisms 2023; 11:1318. [PMID: 37317290 DOI: 10.3390/microorganisms11051318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Microscopic filaments of the siphonous green algae Ostreobium (Ulvophyceae, Bryopsidales) colonize and dissolve the calcium carbonate skeletons of coral colonies in reefs of contrasted salinities. Here, we analyzed their bacterial community's composition and plasticity in response to salinity. Multiple cultures of Pocillopora coral-isolated Ostreobium strains from two distinct rbcL lineages representative of IndoPacific environmental phylotypes were pre-acclimatized (>9 months) to three ecologically relevant reef salinities: 32.9, 35.1, and 40.2 psu. Bacterial phylotypes were visualized for the first time at filament scale by CARD-FISH in algal tissue sections, within siphons, at their surface or in their mucilage. Ostreobium-associated microbiota, characterized by bacterial 16S rDNA metabarcoding of cultured thalli and their corresponding supernatants, were structured by host genotype (Ostreobium strain lineage), with dominant Kiloniellaceae or Rhodospirillaceae (Alphaproteobacteria, Rhodospirillales) depending on Ostreobium lineage, and shifted Rhizobiales' abundances in response to the salinity increase. A small core microbiota composed of seven ASVs (~1.5% of thalli ASVs, 19-36% cumulated proportions) was persistent across three salinities in both genotypes, with putative intracellular Amoebophilaceae and Rickettsiales_AB1, as well as Hyphomonadaceae and Rhodospirillaceae also detected within environmental (Ostreobium-colonized) Pocillopora coral skeletons. This novel knowledge on the taxonomic diversity of Ostreobium bacteria paves the way to functional interaction studies within the coral holobiont.
Collapse
Affiliation(s)
- Anaïs Massé
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| | - Juliette Detang
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| | - Charlotte Duval
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| | - Sébastien Duperron
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| | - Anthony C Woo
- Pôle Analyse de Données UAR 2700 2AD, Muséum National d'Histoire Naturelle (MNHN), 43 Rue Cuvier, 75005 Paris, France
| | - Isabelle Domart-Coulon
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| |
Collapse
|
3
|
Alesmail M, Becerra Y, Betancourt KJ, Bracy SM, Castro AT, Cea C, Chavez J, Del Angel J, Diaz E, Diaz-Guzman Y, Dominguez J, Estrada JG, Frei LG, Gabrielson PW, Gallardo A, Garcia MR, Gonzalez E, Gonzalez Rocha A, Guzman-Bermudez D, Hebert CR, Hernandez M, Hughey JR, Lee Z, Leyva Romero A, Martinez E, Martinez N, Medina KH, Morales M, Moreno AM, Nava I, Nono AN, Ochoa SA, Perez A, Perez N, Perez Pulido E, Poduska S, Ramirez KN, Reyes D, Richardson K, Rodriguez J, Rodriguez AM, Serrano-Lopez C, Velasquez AG, Villanueva G. Complete Chloroplast Genome of an Endophytic Ostreobium sp. (Ostreobiaceae) from the U.S. Virgin Islands. Microbiol Resour Announc 2023; 12:e0027223. [PMID: 37093049 DOI: 10.1128/mra.00272-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
We present the complete chloroplast genome sequence of an endophytic Ostreobium sp. isolated from a 19th-century coralline red algal specimen from St. Croix, U.S. Virgin Islands. The chloroplast genome is 84,848 bp in length, contains 114 genes, and has a high level of gene synteny to other Ostreobiaceae.
Collapse
Affiliation(s)
- Mustafa Alesmail
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Yulissa Becerra
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Kimberly J Betancourt
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Shelly M Bracy
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Anevay T Castro
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Cynthia Cea
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Justin Chavez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Janet Del Angel
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Edgar Diaz
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Yael Diaz-Guzman
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Jonathan Dominguez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Jocelynnicole G Estrada
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Lashabelle G Frei
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Paul W Gabrielson
- Biology Department and Herbarium, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrea Gallardo
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Miriam R Garcia
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Eva Gonzalez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Anthony Gonzalez Rocha
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Diego Guzman-Bermudez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Cassidy R Hebert
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Marlene Hernandez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Jeffery R Hughey
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Zachary Lee
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Alexandra Leyva Romero
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Eric Martinez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Nathaniel Martinez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Kazimiera H Medina
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Miguel Morales
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Alexis M Moreno
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Isabella Nava
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Alyssa N Nono
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Samuel A Ochoa
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Amy Perez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Natasha Perez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Edwin Perez Pulido
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Sophie Poduska
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Kimberly N Ramirez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Denise Reyes
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Kelsey Richardson
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Juanaisa Rodriguez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Alondra M Rodriguez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Clarisa Serrano-Lopez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Andrea G Velasquez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| | - Gezelle Villanueva
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA
| |
Collapse
|
4
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
5
|
Every refuge has its price: Ostreobium as a model for understanding how algae can live in rock and stay in business. Semin Cell Dev Biol 2023; 134:27-36. [PMID: 35341677 DOI: 10.1016/j.semcdb.2022.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
Abstract
Ostreobium is a siphonous green alga in the Bryopsidales (Chlorophyta) that burrows into calcium carbonate (CaCO3) substrates. In this habitat, it lives under environmental conditions unusual for an alga (i.e., low light and low oxygen) and it is a major agent of carbonate reef bioerosion. In coral skeletons, Ostreobium can form conspicuous green bands recognizable by the naked eye and it is thought to contribute to the coral's nutritional needs. With coral reefs in global decline, there is a renewed focus on understanding Ostreobium biology and its roles in the coral holobiont. This review summarizes knowledge on Ostreobium's morphological structure, biodiversity and evolution, photosynthesis, mechanism of bioerosion and its role as a member of the coral holobiont. We discuss the resources available to study Ostreobium biology, lay out some of the uncharted territories in Ostreobium biology and offer perspectives for future research.
Collapse
|
6
|
Cárdenas A, Raina JB, Pogoreutz C, Rädecker N, Bougoure J, Guagliardo P, Pernice M, Voolstra CR. Greater functional diversity and redundancy of coral endolithic microbiomes align with lower coral bleaching susceptibility. THE ISME JOURNAL 2022; 16:2406-2420. [PMID: 35840731 PMCID: PMC9478130 DOI: 10.1038/s41396-022-01283-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 04/14/2023]
Abstract
The skeleton of reef-building coral harbors diverse microbial communities that could compensate for metabolic deficiencies caused by the loss of algal endosymbionts, i.e., coral bleaching. However, it is unknown to what extent endolith taxonomic diversity and functional potential might contribute to thermal resilience. Here we exposed Goniastrea edwardsi and Porites lutea, two common reef-building corals from the central Red Sea to a 17-day long heat stress. Using hyperspectral imaging, marker gene/metagenomic sequencing, and NanoSIMS, we characterized their endolithic microbiomes together with 15N and 13C assimilation of two skeletal compartments: the endolithic band directly below the coral tissue and the deep skeleton. The bleaching-resistant G. edwardsi was associated with endolithic microbiomes of greater functional diversity and redundancy that exhibited lower N and C assimilation than endoliths in the bleaching-sensitive P. lutea. We propose that the lower endolithic primary productivity in G. edwardsi can be attributed to the dominance of chemolithotrophs. Lower primary production within the skeleton may prevent unbalanced nutrient fluxes to coral tissues under heat stress, thereby preserving nutrient-limiting conditions characteristic of a stable coral-algal symbiosis. Our findings link coral endolithic microbiome structure and function to bleaching susceptibility, providing new avenues for understanding and eventually mitigating reef loss.
Collapse
Affiliation(s)
- Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany.
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Claudia Pogoreutz
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Nils Rädecker
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, 6009, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Christian R Voolstra
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany.
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
7
|
Coral Holobionts Possess Distinct Lipid Profiles That May Be Shaped by Symbiodiniaceae Taxonomy. Mar Drugs 2022; 20:md20080485. [PMID: 36005488 PMCID: PMC9410212 DOI: 10.3390/md20080485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Symbiotic relationships are very important for corals. Abiotic stressors cause the acclimatization of cell membranes in symbionts, which possess different membrane acclimatization strategies. Membrane stability is determined by a unique lipid composition and, thus, the profile of thylakoid lipids can depend on coral symbiont species. We have analyzed and compared thylakoid lipidomes (mono- and digalactosyldiacylglycerols (MGDG and DGDG), sulfoquinovosyldiacylglycerols (SQDG), and phosphatidylglycerols (PG)) of crude extracts from symbiotic reef-building coral Acropora sp., the hydrocoral Millepora platyphylla, and the octocoral Sinularia flexibilis. S. flexibilis crude extracts were characterized by a very high SQDG/PG ratio, a DGDG/MGDG ratio < 1, a lower degree of galactolipid unsaturation, a higher content of SQDG with polyunsaturated fatty acids, and a thinner thylakoid membrane which may be explained by the presence of thermosensitive dinoflagellates Cladocopium C3. In contrast, crude extracts of M. platyphylla and Acropora sp. exhibited the lipidome features of thermotolerant Symbiodiniaceae. M. platyphylla and Acropora sp. colonies contained Cladocopium C3u and Cladocopium C71/C71a symbionts, respectively, and their lipidome profiles showed features that indicate thermotolerance. We suggest that an association with symbionts that exhibit the thermotolerant thylakoid lipidome features, combined with a high Symbiodiniaceae diversity, may facilitate further acclimatization/adaptation of M. platyphylla and Acropora sp. holobionts in the South China Sea.
Collapse
|
8
|
Iha C, Dougan KE, Varela JA, Avila V, Jackson CJ, Bogaert KA, Chen Y, Judd LM, Wick R, Holt KE, Pasella MM, Ricci F, Repetti SI, Medina M, Marcelino VR, Chan CX, Verbruggen H. Genomic adaptations to an endolithic lifestyle in the coral-associated alga Ostreobium. Curr Biol 2021; 31:1393-1402.e5. [PMID: 33548192 DOI: 10.1016/j.cub.2021.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/21/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
The green alga Ostreobium is an important coral holobiont member, playing key roles in skeletal decalcification and providing photosynthate to bleached corals that have lost their dinoflagellate endosymbionts. Ostreobium lives in the coral's skeleton, a low-light environment with variable pH and O2 availability. We present the Ostreobium nuclear genome and a metatranscriptomic analysis of healthy and bleached corals to improve our understanding of Ostreobium's adaptations to its extreme environment and its roles as a coral holobiont member. The Ostreobium genome has 10,663 predicted protein-coding genes and shows adaptations for life in low and variable light conditions and other stressors in the endolithic environment. This alga presents a rich repertoire of light-harvesting complex proteins but lacks many genes for photoprotection and photoreceptors. It also has a large arsenal of genes for oxidative stress response. An expansion of extracellular peptidases suggests that Ostreobium may supplement its energy needs by feeding on the organic skeletal matrix, and a diverse set of fermentation pathways allows it to live in the anoxic skeleton at night. Ostreobium depends on other holobiont members for vitamin B12, and our metatranscriptomes identify potential bacterial sources. Metatranscriptomes showed Ostreobium becoming a dominant agent of photosynthesis in bleached corals and provided evidence for variable responses among coral samples and different Ostreobium genotypes. Our work provides a comprehensive understanding of the adaptations of Ostreobium to its extreme environment and an important genomic resource to improve our comprehension of coral holobiont resilience, bleaching, and recovery.
Collapse
Affiliation(s)
- Cintia Iha
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Katherine E Dougan
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Javier A Varela
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, and APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - Viridiana Avila
- Pennsylvania State University, University Park, PA 16802, USA
| | | | - Kenny A Bogaert
- Phycology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Gent, Belgium
| | - Yibi Chen
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ryan Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Marisa M Pasella
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Francesco Ricci
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mónica Medina
- Pennsylvania State University, University Park, PA 16802, USA
| | - Vanessa R Marcelino
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
9
|
Fang J, Liu B, Liu G, Verbruggen H, Zhu H. Six Newly Sequenced Chloroplast Genomes From Trentepohliales: The Inflated Genomes, Alternative Genetic Code and Dynamic Evolution. FRONTIERS IN PLANT SCIENCE 2021; 12:780054. [PMID: 34956275 PMCID: PMC8692980 DOI: 10.3389/fpls.2021.780054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 05/17/2023]
Abstract
Cephaleuros is often known as an algal pathogen with 19 taxonomically valid species, some of which are responsible for red rust and algal spot diseases in vascular plants. No chloroplast genomes have yet been reported in this genus, and the limited genetic information is an obstacle to understanding the evolution of this genus. In this study, we sequenced six new Trentepohliales chloroplast genomes, including four Cephaleuros and two Trentepohlia. The chloroplast genomes of Trentepohliales are large compared to most green algae, ranging from 216 to 408 kbp. They encode between 93 and 98 genes and have a GC content of 26-36%. All new chloroplast genomes were circular-mapping and lacked a quadripartite structure, in contrast to the previously sequenced Trentepohlia odorata, which does have an inverted repeat. The duplicated trnD -GTC, petD, and atpA genes in C. karstenii may be remnants of the IR region and shed light on its reduction. Chloroplast genes of Trentepohliales show elevated rates of evolution, strong rearrangement dynamics and several genes display an alternative genetic code with reassignment of the UGA/UAG codon presumably coding for arginine. Our results present the first whole chloroplast genome of the genus Cephaleuros and enrich the chloroplast genome resources of Trentepohliales.
Collapse
Affiliation(s)
- Jiao Fang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Benwen Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guoxiang Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Huan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Huan Zhu,
| |
Collapse
|
10
|
Massé A, Tribollet A, Meziane T, Bourguet-Kondracki ML, Yéprémian C, Sève C, Thiney N, Longeon A, Couté A, Domart-Coulon I. Functional diversity of microboring Ostreobium algae isolated from corals. Environ Microbiol 2020; 22:4825-4846. [PMID: 32990394 DOI: 10.1111/1462-2920.15256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
The filamentous chlorophyte Ostreobium sp. dominates shallow marine carbonate microboring communities, and is one of the major agents of reef bioerosion. While its large genetic diversity has emerged, its physiology remains little known, with unexplored relationship between genotypes and phenotypes (endolithic versus free-living growth forms). Here, we isolated nine strains affiliated to two lineages of Ostreobium (>8% sequence divergence of the plastid gene rbcL), one of which was assigned to the family Odoaceae, from the fast-growing coral host Pocillopora acuta Lamarck 1816. Free-living isolates maintained their bioerosive potential, colonizing pre-bleached coral carbonate skeletons. We compared phenotypes, highlighting shifts in pigment and fatty acid compositions, carbon to nitrogen ratios and stable isotope compositions (δ13 C and δ15 N). Our data show a pattern of higher chlorophyll b and lower arachidonic acid (20:4ω6) content in endolithic versus free-living Ostreobium. Photosynthetic carbon fixation and nitrate uptake, quantified via 8 h pulse-labeling with 13 C-bicarbonate and 15 N-nitrate, showed lower isotopic enrichment in endolithic compared to free-living filaments. Our results highlight the functional plasticity of Ostreobium phenotypes. The isotope tracer approach opens the way to further study the biogeochemical cycling and trophic ecology of these cryptic algae at coral holobiont and reef scales.
Collapse
Affiliation(s)
- Anaïs Massé
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France.,IRD-Sorbonne Université (UPMC-CNRS-MNHN), Laboratoire IPSL-LOCEAN, 4 Place Jussieu, Tour 46-00, 5éme étage, Paris Cedex, 75005, France
| | - Aline Tribollet
- IRD-Sorbonne Université (UPMC-CNRS-MNHN), Laboratoire IPSL-LOCEAN, 4 Place Jussieu, Tour 46-00, 5éme étage, Paris Cedex, 75005, France
| | - Tarik Meziane
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle (MNHN), SU, UNICAEN, UA, CNRS (UMR7208), IRD; CP53, 61 rue Buffon, Paris, 75005, France
| | - Marie-Lise Bourguet-Kondracki
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Claude Yéprémian
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Charlotte Sève
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Najet Thiney
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle (MNHN), SU, UNICAEN, UA, CNRS (UMR7208), IRD; CP53, 61 rue Buffon, Paris, 75005, France
| | - Arlette Longeon
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Alain Couté
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Isabelle Domart-Coulon
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| |
Collapse
|
11
|
Repetti SI, Jackson CJ, Judd LM, Wick RR, Holt KE, Verbruggen H. The inflated mitochondrial genomes of siphonous green algae reflect processes driving expansion of noncoding DNA and proliferation of introns. PeerJ 2020; 8:e8273. [PMID: 31915577 PMCID: PMC6944098 DOI: 10.7717/peerj.8273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Within the siphonous green algal order Bryopsidales, the size and gene arrangement of chloroplast genomes has been examined extensively, while mitochondrial genomes have been mostly overlooked. The recently published mitochondrial genome of Caulerpa lentillifera is large with expanded noncoding DNA, but it remains unclear if this is characteristic of the entire order. Our study aims to evaluate the evolutionary forces shaping organelle genome dynamics in the Bryopsidales based on the C. lentillifera and Ostreobium quekettii mitochondrial genomes. In this study, the mitochondrial genome of O. quekettii was characterised using a combination of long and short read sequencing, and bioinformatic tools for annotation and sequence analyses. We compared the mitochondrial and chloroplast genomes of O. quekettii and C. lentillifera to examine hypotheses related to genome evolution. The O. quekettii mitochondrial genome is the largest green algal mitochondrial genome sequenced (241,739 bp), considerably larger than its chloroplast genome. As with the mtDNA of C. lentillifera, most of this excess size is from the expansion of intergenic DNA and proliferation of introns. Inflated mitochondrial genomes in the Bryopsidales suggest effective population size, recombination and/or mutation rate, influenced by nuclear-encoded proteins, differ between the genomes of mitochondria and chloroplasts, reducing the strength of selection to influence evolution of their mitochondrial genomes.
Collapse
Affiliation(s)
- Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | | | - Louise M Judd
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Ryan R Wick
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Pernice M, Raina JB, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME JOURNAL 2019; 14:325-334. [PMID: 31690886 PMCID: PMC6976677 DOI: 10.1038/s41396-019-0548-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
Reef-building corals harbour an astonishing diversity of microorganisms, including endosymbiotic microalgae, bacteria, archaea, and fungi. The metabolic interactions within this symbiotic consortium are fundamental to the ecological success of corals and the unique productivity of coral reef ecosystems. Over the last two decades, scientific efforts have been primarily channelled into dissecting the symbioses occurring in coral tissues. Although easily accessible, this compartment is only 2–3 mm thick, whereas the underlying calcium carbonate skeleton occupies the vast internal volume of corals. Far from being devoid of life, the skeleton harbours a wide array of algae, endolithic fungi, heterotrophic bacteria, and other boring eukaryotes, often forming distinct bands visible to the bare eye. Some of the critical functions of these endolithic microorganisms in coral health, such as nutrient cycling and metabolite transfer, which could enable the survival of corals during thermal stress, have long been demonstrated. In addition, some of these microorganisms can dissolve calcium carbonate, weakening the coral skeleton and therefore may play a major role in reef erosion. Yet, experimental data are wanting due to methodological limitations. Recent technological and conceptual advances now allow us to tease apart the complex physical, ecological, and chemical interactions at the heart of coral endolithic microbial communities. These new capabilities have resulted in an excellent body of research and provide an exciting outlook to further address the functional microbial ecology of the “overlooked” coral skeleton.
Collapse
Affiliation(s)
- Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia.
| | - Nils Rädecker
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Anny Cárdenas
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Claudia Pogoreutz
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. .,Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
13
|
Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C, Mehlenbacher E, Patel CJ, Kostic AD. The Landscape of Genetic Content in the Gut and Oral Human Microbiome. Cell Host Microbe 2019; 26:283-295.e8. [PMID: 31415755 PMCID: PMC6716383 DOI: 10.1016/j.chom.2019.07.008] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/01/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
Abstract
Despite substantial interest in the species diversity of the human microbiome and its role in disease, the scale of its genetic diversity, which is fundamental to deciphering human-microbe interactions, has not been quantified. Here, we conducted a cross-study meta-analysis of metagenomes from two human body niches, the mouth and gut, covering 3,655 samples from 13 studies. We found staggering genetic heterogeneity in the dataset, identifying a total of 45,666,334 non-redundant genes (23,961,508 oral and 22,254,436 gut) at the 95% identity level. Fifty percent of all genes were "singletons," or unique to a single metagenomic sample. Singletons were enriched for different functions (compared with non-singletons) and arose from sub-population-specific microbial strains. Overall, these results provide potential bases for the unexplained heterogeneity observed in microbiome-derived human phenotypes. One the basis of these data, we built a resource, which can be accessed at https://microbial-genes.bio.
Collapse
Affiliation(s)
- Braden T Tierney
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Zhen Yang
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA; Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada
| | - Jacob M Luber
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Marc Beaudin
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA; Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marsha C Wibowo
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Christina Baek
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | | | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Aleksandar D Kostic
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Wetherbee R, Jackson CJ, Repetti SI, Clementson LA, Costa JF, van de Meene A, Crawford S, Verbruggen H. The golden paradox - a new heterokont lineage with chloroplasts surrounded by two membranes. JOURNAL OF PHYCOLOGY 2019; 55:257-278. [PMID: 30536815 DOI: 10.1111/jpy.12822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
A marine, sand-dwelling, golden-brown alga is described from clonal cultures established from a high intertidal pool in southeastern Australia. This tiny, unicellular species, which we call the "golden paradox" (Chrysoparadoxa australica gen. et sp. nov.), is benthic, surrounded by a multilayered cell wall and attached to the substratum by a complex adhesive plug. Each vegetative cell gives rise to a single, naked zoospore with heterokont flagella that settles and may become briefly amoeboid prior to dividing. Daughter cells are initially amoeboid, then either permanently attach and return to the benthic stage or become motile again prior to final settlement. Two deeply lobed chloroplasts occupy opposite ends of the cell and are surrounded by only two membranes. The outer chloroplast membrane is continuous between the two chloroplasts via the outer membrane of the nuclear envelope. Only two membranes occupy the chloroplast-nucleus interface, the inner membrane of the nuclear envelope and the inner chloroplast membrane. A small pyrenoid is found in each chloroplast and closely abuts the nucleus or protrudes into it. It contains an unusual, membrane-bound inclusion that stains with SYBR green but is unlikely to be a nucleomorph. Phylogenies inferred from a 10-gene concatenated alignment show an early-branching position within the PX clade. The unusual morphological features and phylogenetic position indicate C. australica should be classified as a new class, Chrysoparadoxophyceae. Despite an atypical plastid, exploration of the C. australica transcriptome revealed typical heterokont protein targeting to the plastid.
Collapse
Affiliation(s)
- Richard Wetherbee
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Christopher J Jackson
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | - Joana F Costa
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Allison van de Meene
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Simon Crawford
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
15
|
Cremen MCM, Leliaert F, Marcelino VR, Verbruggen H. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta). Genome Biol Evol 2018; 10:1048-1061. [PMID: 29635329 PMCID: PMC5888179 DOI: 10.1093/gbe/evy063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss.
Collapse
Affiliation(s)
| | - Frederik Leliaert
- Botanic Garden Meise, 1860 Meise, Belgium.,Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - Vanessa R Marcelino
- School of BioSciences, University of Melbourne, Parkville, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, and Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, New South Wales, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
16
|
Cremen MCM, Leliaert F, West J, Lam DW, Shimada S, Lopez-Bautista JM, Verbruggen H. Reassessment of the classification of Bryopsidales (Chlorophyta) based on chloroplast phylogenomic analyses. Mol Phylogenet Evol 2018; 130:397-405. [PMID: 30227214 DOI: 10.1016/j.ympev.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023]
Abstract
The Bryopsidales is a morphologically diverse group of mainly marine green macroalgae characterized by a siphonous structure. The order is composed of three suborders - Ostreobineae, Bryopsidineae, and Halimedineae. While previous studies improved the higher-level classification of the order, the taxonomic placement of some genera in Bryopsidineae (Pseudobryopsis and Lambia) as well as the relationships between the families of Halimedineae remains uncertain. In this study, we re-assess the phylogeny of the order with datasets derived from chloroplast genomes, drastically increasing the taxon sampling by sequencing 32 new chloroplast genomes. The phylogenies presented here provided good support for the major lineages (suborders and most families) in Bryopsidales. In Bryopsidineae, Pseudobryopsis hainanensis was inferred as a distinct lineage from the three established families allowing us to establish the family Pseudobryopsidaceae. The Antarctic species Lambia antarctica was shown to be an early-branching lineage in the family Bryopsidaceae. In Halimedineae, we revealed several inconsistent phylogenetic positions of macroscopic taxa, and several entirely new lineages of microscopic species. A new classification scheme is proposed, which includes the merger of the families Pseudocodiaceae, Rhipiliaceae and Udoteaceae into a more broadly circumscribed Halimedaceae, and the establishment of tribes for the different lineages found therein. In addition, the deep-water genus Johnson-sea-linkia, currently placed in Rhipiliopsis, was reinstated based on our phylogeny.
Collapse
Affiliation(s)
- Ma Chiela M Cremen
- School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Frederik Leliaert
- Botanic Garden Meise, 1860 Meise, Belgium; Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - John West
- School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Daryl W Lam
- Department of Biological Sciences, The University of Alabama, 35487 AL, USA
| | - Satoshi Shimada
- Faculty of Core Research, Natural Science Division, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | | | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia
| |
Collapse
|
17
|
Jackson C, Knoll AH, Chan CX, Verbruggen H. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep 2018; 8:1523. [PMID: 29367699 PMCID: PMC5784168 DOI: 10.1038/s41598-017-18805-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/15/2017] [Indexed: 11/08/2022] Open
Abstract
Secondary plastids derived from green algae occur in chlorarachniophytes, photosynthetic euglenophytes, and the dinoflagellate genus Lepidodinium. Recent advances in understanding the origin of these plastids have been made, but analyses suffer from relatively sparse taxon sampling within the green algal groups to which they are related. In this study we aim to derive new insights into the identity of the plastid donors, and when in geological time the independent endosymbiosis events occurred. We use newly sequenced green algal chloroplast genomes from carefully chosen lineages potentially related to chlorarachniophyte and Lepidodinium plastids, combined with recently published chloroplast genomes, to present taxon-rich phylogenetic analyses to further pinpoint plastid origins. We integrate phylogenies with fossil information and relaxed molecular clock analyses. Our results indicate that the chlorarachniophyte plastid may originate from a precusor of siphonous green algae or a closely related lineage, whereas the Lepidodinium plastid originated from a pedinophyte. The euglenophyte plastid putatively originated from a lineage of prasinophytes within the order Pyramimonadales. Our molecular clock analyses narrow in on the likely timing of the secondary endosymbiosis events, suggesting that the event leading to Lepidodinium likely occurred more recently than those leading to the chlorarachniophyte and photosynthetic euglenophyte lineages.
Collapse
Affiliation(s)
- Christopher Jackson
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
18
|
Rossetto Marcelino V, Verbruggen H. Reference datasets of tufA and UPA markers to identify algae in metabarcoding surveys. Data Brief 2017; 11:273-276. [PMID: 28243624 PMCID: PMC5320050 DOI: 10.1016/j.dib.2017.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/15/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022] Open
Abstract
The data presented here are related to the research article “Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae” (Marcelino and Verbruggen, 2016) [1]. Here we provide reference datasets of the elongation factor Tu (tufA) and the Universal Plastid Amplicon (UPA) markers in a format that is ready-to-use in the QIIME pipeline (Caporaso et al., 2010) [2]. In addition to sequences previously available in GenBank, we included newly discovered endolithic algae lineages using both amplicon sequencing (Marcelino and Verbruggen, 2016) [1] and chloroplast genome data (Marcelino et al., 2016; Verbruggen et al., in press) [3], [4]. We also provide a script to convert GenBank flatfiles into reference datasets that can be used with other markers. The tufA and UPA reference datasets are made publicly available here to facilitate biodiversity assessments of microalgal communities.
Collapse
Affiliation(s)
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|