1
|
Li H, Wang W, Zhang F, Chen L, Miao F, Zhao H, Yang Z, Cai Z. Extracellular polymeric substance mediating nanoplastics-promoted short-term Porphyridium growth disrupts marine carbon and phosphorus migration. WATER RESEARCH 2025; 283:123860. [PMID: 40408988 DOI: 10.1016/j.watres.2025.123860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/27/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
The ecotoxicity of nanoplastics (NPs) on marine microalgae has been extensively explored recently, yet the mechanisms driving short-term growth improvement caused by NPs remain poorly understood. In the present study, we observed that a relatively high concentration (10 mg/L) of the green fluorescently labeled fresh polyamide-polymethyl methacrylate polymer blend (w/w 21:4) NPs beads (200 nm) significantly enhanced the cell density of Porphyridium cruentum (42.1 %) by alleviating reactive oxygen species generation, chlorophyll degradation, and photoinhibition. An increase in the sticky bounded exopolysaccharides (b-EPs) surrounding P. cruentum surface enhanced NP adsorption within five hours of exposure, with -CH3 bond in phospholipids/glycolipids and polysaccharides of b-EPs supporting the adsorption to mitigate photoinhibition. Increased free exopolysaccharides (EPs) removed inorganic and organic carbon and 48 % of dissolved organic matter (DOM), encapsulating NPs into sediments while cooperating with pH elevation. However, short-term growth promotion resulted in cell shading and phosphorous deficiency after 12 days of cultivation. Consequently, the photosynthesis-antenna proteins pathway and energy metabolites were downregulated, whereas the transmembrane transport and receptor activities of phosphate and calcium signal pathways were upregulated to maintain growth, achieving balance in the 1 mg/L group. The significantly upregulated steroid biosynthesis promoted the hydrophobicity of plasma membranes and reduced the permeability for water-soluble ions, exacerbating phosphorus deficiency. The downregulation of the Calvin cycle shifted the total carbon metabolism and carbon migration, reducing photosynthesis and respiration but accumulating starch to counteract cell shading and phosphorus deficiency. These findings provide novel insights into the mechanisms underlying the short-term growth stimulation and long-term potential toxic effects of NPs on marine microalgae, thus altering marine carbon and phosphorus cycles.
Collapse
Affiliation(s)
- Huankai Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wei Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Feng Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Leijian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfang Miao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
2
|
Estrada CSD, Oliveira OAD, Varasteh T, Avelino-Alves D, Lima M, Barelli V, Campos LS, Cavalcanti G, Dias GM, Tschoeke D, Thompson C, Thompson F. Short-term negative effects of seawater acidification on the rhodolith holobionts metatranscriptome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178614. [PMID: 39879954 DOI: 10.1016/j.scitotenv.2025.178614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Rhodolith holobionts are formed by calcareous coralline algae (e.g., Corallinales) and associated microbiomes. The largest rhodolith bank in the South Atlantic is located in the Abrolhos Bank, in southwestern Brazil, covering an area of 22,000 km2. Rhodoliths serve as nurseries for marine life. However, ocean acidification threatens them with extinction. The acute effects of high pCO₂ levels on rhodolith metatranscriptomes remain unknown. This study investigates the transcriptomic profiles of rhodoliths exposed to short-term (96-h) high pCO₂ levels (up to 1638 ppm). Metatranscriptomes were generated for both dead and alive rhodoliths (15.48 million Illumina reads in total). Alive rhodoliths showed an enrichment of gene transcripts related to environmental stress responses and photosynthesis (Cyanobacteria). In contrast, the metatranscriptomes of dead rhodoliths were dominated by heterotrophic (Proteobacteria and Bacteroidetes) metabolism and virulence factors. The rhodolith holobiont metatranscriptomes respond rapidly to short-term acidification (within 1 h), suggesting that these holobionts may have some capacity to cope with acute acidification effects. However, the negative impacts of prolonged ocean acidification on rhodolith health cannot be overlooked. Rhodoliths exposed to low pH (7.5) for 96 h exhibited a completely altered transcriptomic profile compared to controls. This study highlights the plasticity of rhodolith transcriptomes in the face of ocean acidification and climate change.
Collapse
Affiliation(s)
- Carolina Salvador Duque Estrada
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Odara Araujo de Oliveira
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Tooba Varasteh
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Dhara Avelino-Alves
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Michele Lima
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil; Fundação Oswaldo Cruz (Fiocruz), RJ, Brazil
| | - Vitor Barelli
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Lucia S Campos
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Giselle Cavalcanti
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Graciela Maria Dias
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Diogo Tschoeke
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Cristiane Thompson
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Fabiano Thompson
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Carneiro IM, Széchy MTMD, Bertocci I, Paiva PC. Impact of a nuclear power station effluent on marine forests: A case study in SE Brazil and insights for global warming scenarios. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123323. [PMID: 38190876 DOI: 10.1016/j.envpol.2024.123323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
One of the main disturbances caused by coastal nuclear power plants is the discharge of thermal effluents capable of affecting a number of marine systems, including macroalgal forests that support key ecosystem services such as carbon uptake, fisheries increment and coastal protection. This study aimed at describing the long-term trend (1992-2022) in the abundance of Sargassum forests from sites located inside and outside areas affected by the thermal effluent discharged by the Brazilian Nuclear Power Station (BNPS) and at evaluating the relationship between Sargassum cover and seawater temperature. This information is interesting to provide insights on whether and how Sargassum populations would likely be affected by increasing temperature due to climate change. We detected a long-term decline in Sargassum cover inside, but not outside the area affected by the BNPS thermal plume. Mean summer surface seawater temperature above 30 °C was identified as an important factor driving the decline of Sargassum abundance. This study highlights the impact caused by decades of discharge of the BNPS thermal effluent on Sargassum forests, which leads to predict the likely disappearance of marine forests under a climate change scenario in other sites situated in warm temperate regions.
Collapse
Affiliation(s)
- Ivan Monclaro Carneiro
- Programa de Pós-graduação em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Iacopo Bertocci
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paulo Cesar Paiva
- Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
He W, Ke X, Li T, Wu Y, Tang X, Chen W, Liu T, Du H. Comparison and improvement of RNA extraction methods in Sargassum (Phaeophyta). JOURNAL OF PHYCOLOGY 2023; 59:822-834. [PMID: 37656660 DOI: 10.1111/jpy.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 09/03/2023]
Abstract
Sargassum (Sargassaceae) is widely distributed globally and plays an important role in regulating climate change, but the landscape of genomes and transcripts is less known. High-quality nucleic acids are the basis for molecular biology experiments such as high-throughput sequencing. Although extensive studies have documented methods of RNA extraction, these methods are not very applicable to Sargassum, which contains high levels of polysaccharides and polyphenols. To find a suitable method to improve the quality of RNA extracted, we compared and modified several popular RNA extraction methods and screened one practical method with three specific Sargassum spp. The results showed that three CTAB methods (denoted as Methods 1, 2, and 3) and the RNAprep Pure Plant Kit (denoted as Method 4) could, with slight modifications, effectively isolate RNA from Sargassum species, except for Method 4 used with S. fusiforme. By performing further screening, we determined Method 4 was the best choice for S. hemiphyllum and S. henslowianum, as revealed by RNA yields, RNA Integrity Number (RIN), extraction time, and unigene mapped ratio. For S. fusiforme, Methods 1, 2, and 3 showed no obvious differences among the yields, quality, or time to perform. In addition, one other method was tested, but we found the quality of the RNA extracted by TRIzol reagent methods (denoted as Method 5) performed the worst when compared with the above four methods. Therefore, our study provides four suitable methods for RNA extraction in Sargassum and is essential for future genetic exploration of Sargassum.
Collapse
Affiliation(s)
- Weiling He
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Xiao Ke
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Yuming Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Xianming Tang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technology, Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Tao Liu
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| |
Collapse
|
5
|
Qin F, Shui G, Li Z, Tu M, Zang X. Expression Profiling Reveals the Possible Involvement of the Ubiquitin-Proteasome Pathway in Abiotic Stress Regulation in Gracilariopsis lemaneiformis. Int J Mol Sci 2023; 24:12313. [PMID: 37569689 PMCID: PMC10418974 DOI: 10.3390/ijms241512313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Gracilariopsis lemaneiformis is an economically important red macroalga, the cultivation of which is affected by abiotic stresses. This research intends to study the response mechanism of various components of the ubiquitin-protease pathway to abiotic stress in G. lemaneiformis. The algae were treated with five common external stresses (high temperature, low temperature, O3, PEG, and water shortage) to study the macroscopic and microscopic manifestations of the ubiquitin-proteasome pathway. Firstly, the changes in soluble protein and ubiquitin were detected during the five treatments, and the results showed that the content of soluble protein and ubiquitin significantly increased under most stresses. The content of the soluble protein increased the most on the second day after 20% PEG treatment, which was 1.38 times higher than that of the control group, and the content of ubiquitin increased the most 30 min after water shortage treatment, which was 3.6 times higher than that of the control group. Then, 12 key genes (E1, E2, UPL1, HRD1, UFD1, Cul3, Cul4, DDB2, PIAS1, FZR1, APC8, and COP1) of the ubiquitin-proteasome pathway were studied, including an estimation of the probably regulatory elements in putative promoter regions and an analysis of transcript levels. The results showed that CAAT box, LTR, GC motif, and MBS elements were present in the putative promoter regions, which might have endowed the genes with the ability to respond to stress. The transcript analysis showed that under high temperature, low temperature, PEG, O3, and water shortage, all of the genes exhibited instant and significant up-regulation, and different genes had different response levels to different stresses. Many of them also showed the synergistic effect of transcript up-regulation under various stress treatments. In particular, E1, E2, Cul3, Cul4, UPL1, HRD1, and COP1 performed most significantly under the five stresses. Collectively, our exploration of the ubiquitin-proteasome pathway and the transcript levels of key genes suggest a significant role to cope with adversity, and potential candidate genes can be selected for transformation to obtain stress-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | - Xiaonan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China; (F.Q.); (G.S.); (Z.L.); (M.T.)
| |
Collapse
|
6
|
Huang Y, Cui J, Wang S, Chen X, Liao J, Guo Y, Xin R, Huang B, Xie E. Transcriptome analysis reveals the molecular mechanisms of adaptation to high temperatures in Gracilaria bailinae. FRONTIERS IN PLANT SCIENCE 2023; 14:1125324. [PMID: 37123824 PMCID: PMC10140531 DOI: 10.3389/fpls.2023.1125324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Global warming causes great thermal stress to macroalgae and those species that can adapt to it are thought to be better able to cope with warmer oceans. Gracilaria bailinae, a macroalgae with high economic and ecological values, can survive through the hot summer in the South China Sea, but the molecular mechanisms underlying its adaptation to high temperatures are unclear. To address this issue, the present study analyzed the growth and transcriptome of G. bailinae after a 7-day exposure to 15°C (LT: low temperature), 25°C (MT: middle temperature), and 35°C (HT: high temperature). Growth analysis showed that the HT group had the highest relative growth rate (RGR = 2.1%) with the maximum photochemical quantum yield of PSII (F v/F m = 0.62) remaining within the normal range. Transcriptome analysis showed more differentially expressed genes (DEGs) in the comparison between MT and HT groups than in that between MT and LT, and most of these DEGs tended to be downregulated at higher temperatures. The KEGG pathway enrichment analysis showed that the DEGs were mainly enriched in the carbohydrate, energy, and lipid metabolisms. In addition, the genes involved in NADPH and ATP synthesis, which are associated with photosynthesis, the Calvin cycle, pyruvate metabolism, and the citrate cycle, were downregulated. Downregulation was also observed in genes that encode enzymes involved in fatty acid desaturation and alpha-linolenic acid metabolism. In summary, G. bailinae regulated the synthesis of NADPH and ATP, which are involved in the above-mentioned processes, to reduce unnecessary energy consumption, and limited the synthesis of enzymes in the metabolism of unsaturated fatty acids and alpha-linolenic acid to adapt to high environmental temperatures. The results of this study improve our understanding of the molecular mechanisms underlying the adaptation of G. bailinae to high temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Enyi Xie
- *Correspondence: Jianjun Cui, ; Enyi Xie,
| |
Collapse
|
7
|
Cikoš AM, Aladić K, Velić D, Tomas S, Lončarić P, Jerković I. Evaluation of ultrasound-assisted extraction of fucoxanthin and total pigments from three croatian macroalgal species. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Transcriptome of the coralline alga Calliarthron tuberculosum (Corallinales, Rhodophyta) reveals convergent evolution of a partial lignin biosynthesis pathway. PLoS One 2022; 17:e0266892. [PMID: 35834440 PMCID: PMC9282553 DOI: 10.1371/journal.pone.0266892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
The discovery of lignins in the coralline red alga Calliarthron tuberculosum raised new questions about the deep evolution of lignin biosynthesis. Here we present the transcriptome of C. tuberculosum supported with newly generated genomic data to identify gene candidates from the monolignol biosynthetic pathway using a combination of sequence similarity-based methods. We identified candidates in the monolignol biosynthesis pathway for the genes 4CL, CCR, CAD, CCoAOMT, and CSE but did not identify candidates for PAL, CYP450 (F5H, C3H, C4H), HCT, and COMT. In gene tree analysis, we present evidence that these gene candidates evolved independently from their land plant counterparts, suggesting convergent evolution of a complex multistep lignin biosynthetic pathway in this red algal lineage. Additionally, we provide tools to extract metabolic pathways and genes from the newly generated transcriptomic and genomic datasets. Using these methods, we extracted genes related to sucrose metabolism and calcification. Ultimately, this transcriptome will provide a foundation for further genetic and experimental studies of calcifying red algae.
Collapse
|
9
|
Cikoš AM, Šubarić D, Roje M, Babić J, Jerković I, Jokić S. Recent advances on macroalgal pigments and their biological activities (2016–2021). ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Qiu S, Wu Z, Chen Z, Abbew AW, Li J, Ge S. Microalgal Activity and Nutrient Uptake from Wastewater Enhanced by Nanoscale Zerovalent Iron: Performance and Molecular Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:585-594. [PMID: 34933554 DOI: 10.1021/acs.est.1c05503] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microalgae-based bioremediation presents an alternative to traditional biological wastewater treatment. However, its efficiency is still challenging due to low microalgal activities and growth rate in wastewater. Iron plays an important role in microbial metabolism and is effective to stimulate microbial growth. In this study, a novel approach was proposed to simultaneously promote microalgal activity and nutrient uptake from wastewater using nanoscale zerovalent iron (nZVI), and the underlying molecular mechanism was explored. Compared to the control, 0.05 mg/L of nZVI significantly enhanced biomass production by 113.3% as well as NH4+-N and PO43--P uptake rates by 32.2% and 75.0%, respectively. These observations were attributed to the enhanced metabolic pathways and intracellular regulations. Specifically, nZVI alleviated the cellular oxidative stress via decreased peroxisome biogenesis as indicated by reduced reactive oxygen species, enzymes, and genes involved. nZVI promoted ammonium assimilation, phosphate metabolism, carbon fixation, and energy generation. Moreover, nZVI regulated the biosynthesis and conversions of intracellular biocomposition, leading to increased carotenoid, carbohydrate, and lipid productions and decreased protein and fatty acid yields. The above metabolisms were supported by the regulations of differentially expressed genes involved. This study provided an nZVI-based approach and molecular mechanism for enhancing microalgal activities and nutrient uptake from wastewater.
Collapse
Affiliation(s)
- Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhengshuai Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| |
Collapse
|
11
|
Calcification in Three Common Calcified Algae from Phuket, Thailand: Potential Relevance on Seawater Carbonate Chemistry and Link to Photosynthetic Process. PLANTS 2021; 10:plants10112537. [PMID: 34834900 PMCID: PMC8624766 DOI: 10.3390/plants10112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022]
Abstract
Calcifying macroalgae contribute significantly to the structure and function of tropical marine ecosystems. Their calcification and photosynthetic processes are not well understood despite their critical role in marine carbon cycles and high vulnerability to environmental changes. This study aims to provide a better understanding of the macroalgal calcification process, focusing on its relevance concerning seawater carbonate chemistry and its relationship to photosynthesis in three dominant calcified macroalgae in Thailand, Padina boryana, Halimeda macroloba and Halimeda opuntia. Morphological and microstructural attributes of the three macroalgae were analyzed and subsequently linked to their calcification rates and responses to inhibition of photosynthesis. In the first experiment, seawater pH, total alkalinity and total dissolved inorganic carbon were measured after incubation of the macroalgae in the light and after equilibration of the seawater with air. Estimations of carbon uptake into photosynthesis and calcification and carbon release into air were obtained thereafter. Our results provide evidence that calcification of the three calcified macroalgae is a potential source of CO2, where calcification by H. opuntia and H. macroloba leads to a greater release of CO2 per biomass weight than P. boryana. Nevertheless, this capacity is expected to vary on a diurnal basis, as the second experiment indicates that calcification is highly coupled to photosynthetic activity. Lower pH as a result of inhibited photosynthesis under darkness imposes more negative effects on H. opuntia and H. macroloba than on P. boryana, implying that they are more sensitive to acidification. These effects were worsened when photosynthesis was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, highlighting the significance of photosynthetic electron transport-dependent processes. Our findings suggest that estimations of the amount of carbon stored in the vegetated marine ecosystems should account for macroalgal calcification as a potential carbon source while considering diurnal variations in photosynthesis and seawater pH in a natural setting.
Collapse
|