1
|
Davutoglu MG, Geyer VF, Niese L, Soltwedel JR, Zoccoler ML, Sabatino V, Haase R, Kröger N, Diez S, Poulsen N. Gliding motility of the diatom Craspedostauros australis coincides with the intracellular movement of raphid-specific myosins. Commun Biol 2024; 7:1187. [PMID: 39313522 PMCID: PMC11420354 DOI: 10.1038/s42003-024-06889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Raphid diatoms are one of the few eukaryotes capable of gliding motility, which is remarkably fast and allows for quasi-instantaneous directional reversals. Besides other mechanistic models, it has been suggested that an actomyosin system provides the force for diatom gliding. However, in vivo data on the dynamics of actin and myosin in diatoms are lacking. In this study, we demonstrate that the raphe-associated actin bundles required for diatom movement do not exhibit a directional turnover of subunits and thus their dynamics do not contribute directly to force generation. By phylogenomic analysis, we identified four raphid diatom-specific myosins in Craspedostauros australis (CaMyo51A-D) and investigated their in vivo localization and dynamics through GFP-tagging. Only CaMyo51B-D but not CaMyo51A exhibited coordinated movement during gliding, consistent with a role in force generation. The characterization of raphid diatom-specific myosins lays the foundation for unraveling the molecular mechanisms that underlie the gliding motility of diatoms.
Collapse
Affiliation(s)
- Metin G Davutoglu
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Veikko F Geyer
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Lukas Niese
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Johannes R Soltwedel
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Marcelo L Zoccoler
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Valeria Sabatino
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Robert Haase
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Faculty of Mathematics and Computer Science, Leipzig University, Leipzig, Germany
| | - Nils Kröger
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany.
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Nicole Poulsen
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
2
|
Attard K, Singh RK, Gattuso JP, Filbee-Dexter K, Krause-Jensen D, Kühl M, Sejr MK, Archambault P, Babin M, Bélanger S, Berg P, Glud RN, Hancke K, Jänicke S, Qin J, Rysgaard S, Sørensen EB, Tachon F, Wenzhöfer F, Ardyna M. Seafloor primary production in a changing Arctic Ocean. Proc Natl Acad Sci U S A 2024; 121:e2303366121. [PMID: 38437536 PMCID: PMC10945780 DOI: 10.1073/pnas.2303366121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2 of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y-1 of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y-1, seagrasses contribute ~23 Tg C y-1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y-1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2 y-1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets.
Collapse
Affiliation(s)
- Karl Attard
- Department of Biology, University of Southern Denmark, 5230Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230Odense M, Denmark
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| | - Rakesh Kumar Singh
- Department of Biology, Chemistry and Geography, Université du Québec à Rimouski, Rimouski, QCG5L 3A1, Canada
- Center for Remote Imaging, Sensing and Processing, National University of Singapore, Singapore119076, Singapore
| | - Jean-Pierre Gattuso
- CNRS-Sorbonne Université, Laboratoire d’Océanographie, Villefranche-sur-Mer06230, France
- Institute for Sustainable Development and International Relations, Paris75337, France
| | - Karen Filbee-Dexter
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
- Benthic Communities Group/Institute of Marine Research, His4817, Norway
- School of Biological Science and Indian Oceans Marine Research Centre, University of Western Australia, Perth6009, WA, Australia
| | - Dorte Krause-Jensen
- Department of Ecoscience, Aarhus University, 8000Aarhus C, Denmark
- Arctic Research Center, Department of Biology, Aarhus University, 8000Aarhus C, Denmark
| | - Michael Kühl
- Department of Biology, Marine Biological Section, University of Copenhagen, 3000Helsingør, Denmark
| | - Mikael K. Sejr
- Department of Ecoscience, Aarhus University, 8000Aarhus C, Denmark
- Arctic Research Center, Department of Biology, Aarhus University, 8000Aarhus C, Denmark
| | - Philippe Archambault
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
- ArcticNet, Department of Biology, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Marcel Babin
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| | - Simon Bélanger
- Department of Biology, Chemistry and Geography, Université du Québec à Rimouski, Rimouski, QCG5L 3A1, Canada
| | - Peter Berg
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA400123
| | - Ronnie N. Glud
- Department of Biology, University of Southern Denmark, 5230Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230Odense M, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, 108-8477Tokyo, Japan
| | - Kasper Hancke
- Norwegian Institute for Water Research, 0579Oslo, Norway
| | - Stefan Jänicke
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Jing Qin
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Søren Rysgaard
- Arctic Research Center, Department of Biology, Aarhus University, 8000Aarhus C, Denmark
- Centre for Earth Observation Science, Clayton H. Riddell Faculty of Environment Earth, and Resources, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Esben B. Sørensen
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Foucaut Tachon
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| | - Frank Wenzhöfer
- Department of Biology, University of Southern Denmark, 5230Odense M, Denmark
- Helmholtz - Max Planck Joint Research Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institute Helmholtz-Centre for Polar and Marine Research, Bremerhaven27515, Germany
- Helmholtz - Max Planck Joint Research Group for Deep Sea Ecology and Technology, Max-Planck-Institute for Marine Microbiology, Bremen28359, Germany
| | - Mathieu Ardyna
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| |
Collapse
|
3
|
Zackova Suchanova J, Bilcke G, Romanowska B, Fatlawi A, Pippel M, Skeffington A, Schroeder M, Vyverman W, Vandepoele K, Kröger N, Poulsen N. Diatom adhesive trail proteins acquired by horizontal gene transfer from bacteria serve as primers for marine biofilm formation. THE NEW PHYTOLOGIST 2023; 240:770-783. [PMID: 37548082 DOI: 10.1111/nph.19145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/02/2023] [Indexed: 08/08/2023]
Abstract
Biofilm-forming benthic diatoms are key primary producers in coastal habitats, where they frequently dominate sunlit intertidal substrata. The development of gliding motility in raphid diatoms was a key molecular adaptation that contributed to their evolutionary success. However, the structure-function correlation between diatom adhesives utilized for gliding and their relationship to the extracellular matrix that constitutes the diatom biofilm is unknown. Here, we have used proteomics, immunolocalization, comparative genomics, phylogenetics and structural homology analysis to investigate the evolutionary history and function of diatom adhesive proteins. Our study identified eight proteins from the adhesive trails of Craspedostauros australis, of which four form a new protein family called Trailins that contain an enigmatic Choice-of-Anchor A (CAA) domain, which was acquired through horizontal gene transfer from bacteria. Notably, the CAA-domain shares a striking structural similarity with one of the most widespread domains found in ice-binding proteins (IPR021884). Our work offers new insights into the molecular basis for diatom biofilm formation, shedding light on the function and evolution of diatom adhesive proteins. This discovery suggests that there is a transition in the composition of biomolecules required for initial surface colonization and those utilized for 3D biofilm matrix formation.
Collapse
Affiliation(s)
- Jirina Zackova Suchanova
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, 01307, Germany
| | - Gust Bilcke
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Beata Romanowska
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, 01307, Germany
| | - Ali Fatlawi
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47-49, Dresden, 01307, Germany
- Centre for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Chemnitzer Str. 46b, Dresden, 01187, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Germany Center for Systems Biology, Pfotenhauerstraße 108, Dresden, 01307, Germany
| | - Alastair Skeffington
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47-49, Dresden, 01307, Germany
- Centre for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Chemnitzer Str. 46b, Dresden, 01187, Germany
| | - Wim Vyverman
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Nils Kröger
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, 01307, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, 01062, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Nicole Poulsen
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, 01307, Germany
| |
Collapse
|
4
|
Zheng P, Kumadaki K, Quek C, Lim ZH, Ashenafi Y, Yip ZT, Newby J, Alverson AJ, Jie Y, Jedd G. Cooperative motility, force generation and mechanosensing in a foraging non-photosynthetic diatom. Open Biol 2023; 13:230148. [PMID: 37788707 PMCID: PMC10547550 DOI: 10.1098/rsob.230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Diatoms are ancestrally photosynthetic microalgae. However, some underwent a major evolutionary transition, losing photosynthesis to become obligate heterotrophs. The molecular and physiological basis for this transition is unclear. Here, we isolate and characterize new strains of non-photosynthetic diatoms from the coastal waters of Singapore. These diatoms occupy diverse ecological niches and display glucose-mediated catabolite repression, a classical feature of bacterial and fungal heterotrophs. Live-cell imaging reveals deposition of secreted extracellular polymeric substance (EPS). Diatoms moving on pre-existing EPS trails (runners) move faster than those laying new trails (blazers). This leads to cell-to-cell coupling where runners can push blazers to make them move faster. Calibrated micropipettes measure substantial single-cell pushing forces, which are consistent with high-order myosin motor cooperativity. Collisions that impede forward motion induce reversal, revealing navigation-related force sensing. Together, these data identify aspects of metabolism and motility that are likely to promote and underpin diatom heterotrophy.
Collapse
Affiliation(s)
- Peng Zheng
- Temasek Life Sciences Laboratory, 117604 Singapore
| | - Kayo Kumadaki
- Department of Physics, National University of Singapore, 117542 Singapore
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | | | - Zeng Hao Lim
- Temasek Life Sciences Laboratory, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | - Yonatan Ashenafi
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
| | - Zhi Ting Yip
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | - Jay Newby
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
| | - Andrew J. Alverson
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA
| | - Yan Jie
- Department of Physics, National University of Singapore, 117542 Singapore
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Gregory Jedd
- Temasek Life Sciences Laboratory, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| |
Collapse
|
5
|
Abbriano R. Gliding toward new discoveries in diatom adhesion and motility. JOURNAL OF PHYCOLOGY 2023; 59:52-53. [PMID: 36779557 DOI: 10.1111/jpy.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|