1
|
Yan J, Yang T, Ma S, Li D, Hu C, Tan J. Macrophage-derived mitochondria-rich extracellular vesicles aggravate bone loss in periodontitis by disrupting the mitochondrial dynamics of BMSCs. J Nanobiotechnology 2025; 23:208. [PMID: 40075447 PMCID: PMC11905510 DOI: 10.1186/s12951-025-03178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Periodontitis is the leading cause of tooth loss in adults due to progressive bone destruction, which is closely related to the dysfunction of bone mesenchymal stem cells (BMSCs). Existing evidence suggests that mitochondrial disorders are associated with periodontitis. However, whether mitochondrial dysregulation contributes to the osteogenic impairment of BMSCs and the underlying mechanisms remain unclear. Macrophages have been shown to communicate extensively with BMSCs in periodontitis. Recent studies have reported a novel manner of cellular communication in which mitochondria-rich extracellular vesicles(MEVs) transfer mitochondria from parent cells to recipient cells, playing a role in both physiological and pathological conditions. Therefore, we aimed to investigate the role of MEVs in orchestrating the crosstalk between macrophages and BMSCs in periodontitis to formulate management strategies for bone loss. RESULTS Our results revealed that macrophages underwent significant mitochondrial dysfunction and inflammation in periodontitis and that MEVs derived from these macrophages played a role in alveolar bone destruction. Furthermore, cell imaging showed that inflammatory macrophages packaged numerous damaged mitochondria into MEVs, and the entry of these impaired mitochondria into BMSCs disrupted mitochondrial dynamics and hindered donut-shaped mitochondria formation, leading to osteogenic dysfunction. Proteomic analysis revealed that the proteins enriched in macrophage-derived MEVs were largely related to mitochondria and the formation and transport of vesicles. Additionally, we found that MEVs from macrophages significantly increased lipocalin 2 (LCN2) in BMSCs in periodontitis and that LCN2 perturbed mitochondrial morphological changes in BMSCs by inducing the degradation of OMA1 and accumulation of OPA1, resulting in osteogenesis impairment in BMSCs. Inhibition of LCN2 rescued the osteogenic dysfunction of BMSCs and alveolar bone loss in periodontitis. CONCLUSIONS The transfer of mitochondria to BMSCs via MEVs exacerbates alveolar bone resorption through LCN2/OMA1/OPA1 signaling in periodontitis. Inhibition of LCN2 alleviates inflammatory bone loss, suggesting a promising therapeutic strategy for periodontitis.
Collapse
Affiliation(s)
- Jiayin Yan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tian Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Siyuan Ma
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Danfeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cheng Hu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiali Tan
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China.
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Shanbhag S, Kampleitner C, Sanz-Esporrin J, Lie SA, Gruber R, Mustafa K, Sanz M. Regeneration of alveolar bone defects in the experimental pig model: A systematic review and meta-analysis. Clin Oral Implants Res 2024; 35:467-486. [PMID: 38450852 DOI: 10.1111/clr.14253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Pigs are emerging as a preferred experimental in vivo model for bone regeneration. The study objective was to answer the focused PEO question: in the pig model (P), what is the capacity of experimental alveolar bone defects (E) for spontaneous regeneration in terms of new bone formation (O)? METHODS Following PRISMA guidelines, electronic databases were searched for studies reporting experimental bone defects or extraction socket healing in the maxillae or mandibles of pigs. The main inclusion criteria were the presence of a control group of untreated defects/sockets and the assessment of regeneration via 3D tomography [radiographic defect fill (RDF)] or 2D histomorphometry [new bone formation (NBF)]. Random effects meta-analyses were performed for the outcomes RDF and NBF. RESULTS Overall, 45 studies were included reporting on alveolar bone defects or extraction sockets, most frequently in the mandibles of minipigs. Based on morphology, defects were broadly classified as 'box-defects' (BD) or 'cylinder-defects' (CD) with a wide range of healing times (10 days to 52 weeks). Meta-analyses revealed pooled estimates (with 95% confidence intervals) of 50% RDF (36.87%-63.15%) and 43.74% NBF (30.47%-57%) in BD, and 44% RDF (16.48%-71.61%) and 39.67% NBF (31.53%-47.81%) in CD, which were similar to estimates of socket-healing [48.74% RDF (40.35%-57.13%) and 38.73% NBF (28.57%-48.89%)]. Heterogeneity in the meta-analysis was high (I2 > 90%). CONCLUSION A substantial body of literature revealed a high capacity for spontaneous regeneration in experimental alveolar bone defects of (mini)pigs, which should be considered in future studies of bone regeneration in this animal model.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Javier Sanz-Esporrin
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| | - Stein-Atle Lie
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Banimohamad-Shotorbani B, Rahbarghazi R, Jarolmasjed S, Mehdipour A, Shafaei H. Combination of mesenchymal stem cell sheet with poly-caprolactone nanofibrous mat and Gelfoam increased osteogenesis capacity in rat calvarial defect. BIOIMPACTS : BI 2024; 15:30006. [PMID: 39963571 PMCID: PMC11830138 DOI: 10.34172/bi.30006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 02/20/2025]
Abstract
Introduction To date, different strategies have been used for co-transplantation of cell-loaded biomaterials for bone tissue regeneration. This study aimed to investigate the osteogenic properties of adipose-derived-mesenchymal stem cell (AD-MSC) sheets combined with nanofibrous poly-caprolactone (PCL) mat and Gelfoam in rats with calvarial bone defect. Methods Calvarial critical-size defects were induced in male rats. Animals were classified into Control, Gelfoam, Gelfoam/PCL nanofiber, Gelfoam/AD-MSC sheet, and Gelfoam/PCL nanofiber/AD-MSC sheet groups. After 3 months, rats were sacrificed and the regeneration rate was evaluated. Results Almost all groups showed bone regeneration properties, but the volume of newly formed bone was higher in groups that received Gelfoam/AD-MSC and Gelfoam/PCL nanofiber/AD-MSC sheets (P < 0.05). The application of Gelfoam/PCL nanofiber/AD-MSC sheets not only increased bone thickness, bone volume/total bone volume (BV/TV) ratio, strong Hounsfield Unit (HU), but also led to the formation of ossified connective tissue with wrinkled patterns. Conclusion The current study indicated that the Gelfoam/PCL nanofiber/AD-MSC sheet provides a suitable platform for effective osteogenesis in calvarial bone defects.
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Banimohamad-Shotorbani B, Karkan SF, Rahbarghazi R, Mehdipour A, Jarolmasjed S, Saghati S, Shafaei H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res Ther 2023; 14:68. [PMID: 37024981 PMCID: PMC10080954 DOI: 10.1186/s13287-023-03309-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Bone defects are among the most common damages in human medicine. Due to limitations and challenges in the area of bone healing, the research field has turned into a hot topic discipline with direct clinical outcomes. Among several available modalities, scaffold-free cell sheet technology has opened novel avenues to yield efficient osteogenesis. It is suggested that the intact matrix secreted from cells can provide a unique microenvironment for the acceleration of osteoangiogenesis. To the best of our knowledge, cell sheet technology (CST) has been investigated in terms of several skeletal defects with promising outcomes. Here, we highlighted some recent advances associated with the application of CST for the recovery of craniomaxillofacial (CMF) in various preclinical settings. The regenerative properties of both single-layer and multilayer CST were assessed regarding fabrication methods and applications. It has been indicated that different forms of cell sheets are available for CMF engineering like those used for other hard tissues. By tackling current challenges, CST is touted as an effective and alternative therapeutic option for CMF bone regeneration.
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Amato M, Santonocito S, Viglianisi G, Tatullo M, Isola G. Impact of Oral Mesenchymal Stem Cells Applications as a Promising Therapeutic Target in the Therapy of Periodontal Disease. Int J Mol Sci 2022; 23:13419. [PMID: 36362206 PMCID: PMC9658889 DOI: 10.3390/ijms232113419] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Periodontal disease is a chronic inflammatory condition affecting about 20-50% of people, worldwide, and manifesting clinically through the detection of gingival inflammation, clinical attachment loss, radiographically assessed resorption of alveolar bone, gingival bleeding upon probing, teeth mobility and their potential loss at advanced stages. It is characterized by a multifactorial etiology, including an imbalance of the oral microbiota, mechanical stress and systemic diseases such as diabetes mellitus. The current standard treatments for periodontitis include eliminating the microbial pathogens and applying biomaterials to treat the bone defects. However, periodontal tissue regeneration via a process consistent with the natural tissue formation process has not yet been achieved. Developmental biology studies state that periodontal tissue is composed of neural crest-derived ectomesenchyme. The aim of this review is to discuss the clinical utility of stem cells in periodontal regeneration by reviewing the relevant literature that assesses the periodontal-regenerative potential of stem cells.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, 70122 Bari, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
6
|
Song W, Bo X, Ma X, Hou K, Li D, Geng W, Zeng J. Craniomaxillofacial derived bone marrow mesenchymal stem/stromal cells (BMSCs) for craniomaxillofacial bone tissue engineering: A literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e650-e659. [PMID: 35691558 DOI: 10.1016/j.jormas.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
Craniomaxillofacial bone defects seriously affect the appearance, function, and psychological status of patients. Traditional autologous bone grafting is very challenging due to the limited sources of bone tissue, excessive surgical trauma, and high incidence of related complications. Craniomaxillofacial bone tissue engineering (BTE) strategies based on bone marrow mesenchymal stem cells (BMSCs) are emerging as an alternative. Craniomaxillofacial BMSCs (C-BMSCs) are homologous to craniomaxillofacial bones, which develop from the mesoderm and neural crest. This article aims to compare the differences in osteogenesis, angiogenesis, and immune regulation of C-BMSCs and other sources of BMSCs, and propose ideas and strategies such as 3D printing and mechanotherapy to completely harness the characteristics of C-BMSCs. In conclusion, C-BSMCs are a promising source of stem cells for the repair and reconstruction of craniomaxillofacial bone defects, and more attention should be paid to accelerating their basic research and clinical practices.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaowen Bo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xiaohan Ma
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Kegui Hou
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China; Department of Stomatology, Shunyi District Hospital affiliated to Capital Medical University, Beijing, China
| | - Dan Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jianyu Zeng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Costa CA, Deliberador TM, Abuna RPF, Rodrigues TL, Souza SLSD, Palioto DB. Mesenchymal stem cells surpass the capacity of bone marrow aspirate concentrate for periodontal regeneration. J Appl Oral Sci 2022; 30:e20210359. [PMID: 35384987 PMCID: PMC8983037 DOI: 10.1590/1678-7757-2021-0359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Regenerative approaches using mesenchymal stem cells (MSCs) have been evaluated to promote the complete formation of all missing periodontal tissues, e.g., new cementum, bone, and functional periodontal ligaments. MSCs derived from bone marrow have been applied to bone and periodontal defects in several forms, including bone marrow aspirate concentrate (BMAC) and cultured and isolated bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate the periodontal regeneration capacity of BMAC and cultured BM-MSCs in the wound healing of fenestration defects in rats. Methodology: BM-MSCs were obtained after bone marrow aspiration of the isogenic iliac crests of rats, followed by cultivation and isolation. Autogenous BMAC was collected and centrifuged immediately before surgery. In 36 rats, fenestration defects were created and treated with suspended BM-MSCs, BMAC or left to spontaneously heal (control) (N=6). Their regenerative potential was assessed by microcomputed tomography (µCT) and histomorphometry, as well as their cell phenotype and functionality by the Luminex assay at 15 and 30 postoperative days. Results: BMAC achieved higher bone volume in 30 days than spontaneous healing (p<0.0001) by enhancing osteoblastic lineage commitment maturation, with higher levels of osteopontin (p=0.0013). Defects filled with cultured BM-MSCs achieved higher mature bone formation in early stages than spontaneous healing and BMAC (p=0.0241 and p=0.0143, respectively). Moreover, significantly more cementum-like tissue formation (p<0.0001) was observed with new insertion of fibers in specimens treated with BM-MSCs within 30 days. Conclusion: Both forms of cell transport, BMAC and BM-MSCs, promoted bone formation. However, early bone formation and maturation were achieved when cultured BM-MSCs were used. Likewise, only cultured BM-MSCs were capable of achieving complete periodontal regeneration with inserted fibers in the new cementum-like tissue.
Collapse
|
8
|
Mangione F, Salmon B, EzEldeen M, Jacobs R, Chaussain C, Vital S. Characteristics of Large Animal Models for Current Cell-Based Oral Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:489-505. [PMID: 33882717 DOI: 10.1089/ten.teb.2020.0384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recent advances in the field of cell-based therapeutics open promising perspectives for oral tissue regeneration. The development of large animal models, which overcome the limits of the rodent models and allow to emulate clinical situations, is crucial for the validation of regenerative strategies to move toward clinical application. Currently, porcine, canine, and ovine models are mainly developed for oral regeneration and their specific characteristics have an impact on the outcomes of the studies. Thus, this systematic review investigates the application of porcine, canine, and ovine models in present cell-based oral regeneration, according to the species characteristics and the targeted tissue to regenerate. A customized search of PubMed, EMBASE, Scopus, and Web of Science databases from January 2015 to March 2020 was conducted. Relevant articles about cell-based oral tissues engineering in porcine, canine, and ovine models were evaluated. Among the evaluated articles, 58 relevant studies about cell-based oral regeneration in porcine, canine, and ovine models matched the eligibility criteria and were selected for full analysis. Porcine models, the most similar species with humans, were mostly used for bone and periodontium regeneration; tooth regeneration was reported only in pig, except for one study in dog. Canine models were the most transversal models, successfully involved for all oral tissue regeneration and notably in implantology. However, differences with humans and ethical concerns affect the use of these models. Ovine models, alternative to porcine and canine ones, were mainly used for bone and, scarcely, periodontium regeneration. The anatomy and physiology of these animals restrain their involvement. If consistency was found in defect specificities and cell trends among different species animal models of bone, dentin-pulp complex, or tooth regeneration, variability appeared in periodontium. Regeneration assessment methods were more elaborate in porcines and canines than in ovines. Risk of bias was low for selection, attrition and reporting, but unclear for performance and detection. Overall, if none of the large animal models can be considered an ideal one, they are of deemed importance for oral cell-based tissue engineering and researchers should consider their relevance to establish favorable conditions for a given preclinical cell-based therapeutics.
Collapse
Affiliation(s)
- Francesca Mangione
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Henri Mondor Hospital, AP-HP, Créteil, France
| | - Benjamin Salmon
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Bretonneau Hospital, AP-HP, Paris, France.,Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, AP-HP, Paris, France
| | - Mostafa EzEldeen
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.,Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.,Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Catherine Chaussain
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Bretonneau Hospital, AP-HP, Paris, France.,Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, AP-HP, Paris, France
| | - Sibylle Vital
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Colombes, France
| |
Collapse
|
9
|
Liu Y, Wang H, Dou H, Tian B, Li L, Jin L, Zhang Z, Hu L. Bone regeneration capacities of alveolar bone mesenchymal stem cells sheet in rabbit calvarial bone defect. J Tissue Eng 2020; 11:2041731420930379. [PMID: 32566118 PMCID: PMC7288803 DOI: 10.1177/2041731420930379] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/09/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells sheets have been verified as a promising non-scaffold
strategy for bone regeneration. Alveolar bone marrow mesenchymal stem cells,
derived from neural crest, have the character of easily obtained and strong
multi-differential potential. However, the bone regenerative features of
alveolar bone marrow mesenchymal stem cells sheets in the craniofacial region
remain unclear. The purpose of the present study was to compare the osteogenic
differentiation and bone defect repairment characteristics of bone marrow
mesenchymal stem cells sheets derived from alveolar bone (alveolar bone marrow
mesenchymal stem cells) and iliac bone (Lon-bone marrow mesenchymal stem cells)
in vitro and in vivo. Histology character,
osteogenic differentiation, and osteogenic gene expression of human alveolar
bone marrow mesenchymal stem cells and Lon-bone marrow mesenchymal stem cells
were compared in vitro. The cell sheets were implanted in
rabbit calvarial defects to evaluate tissue regeneration characteristics.
Integrated bioinformatics analysis was used to reveal the specific gene and
pathways expression profile of alveolar bone marrow mesenchymal stem cells. Our
results showed that alveolar bone marrow mesenchymal stem cells had higher
osteogenic differentiation than Lon-bone marrow mesenchymal stem cells. Although
no obvious differences were found in the histological structure, fibronectin and
integrin β1 expression between them, alveolar-bone marrow mesenchymal stem cells
sheet exhibited higher mineral deposition and expression levels of osteogenic
marker genes. After being transplanted in the rabbit calvarial defects area, the
results showed that greater bone volume and trabecular thickness regeneration
were found in bone marrow mesenchymal stem cells sheet group compared to
Lon-bone marrow mesenchymal stem cells group at both 4 weeks and 8 weeks.
Finally, datasets of bone marrow mesenchymal stem cells versus Lon-bone marrow
mesenchymal stem cells, and periodontal ligament mesenchymal stem cells (another
neural crest derived mesenchymal stem cells) versus umbilical cord mesenchymal
stem cells were analyzed. Total 71 differential genes were identified by overlap
between the 2 datasets. Homeobox genes, such as LHX8, MKX, PAX9,
MSX, and HOX, were identified as the most
significantly changed and would be potential specific genes in neural crest
mesenchymal stem cells. In conclusion, the Al-bone marrow mesenchymal stem cells
sheet-based tissue regeneration appears to be a promising strategy for
craniofacial defect repair in future clinical applications.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,Department of Stomatology, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China.,Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Haifeng Wang
- Department of Stomatology, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
| | - Huixin Dou
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Bin Tian
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Le Li
- Department of Stomatology, Tsinghua University Hospital, Beijing, China
| | - Luyuan Jin
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenting Zhang
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Lei Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Shi L, Tee BC, Emam H, Prokes R, Larsen P, Sun Z. Enhancement of bone marrow aspirate concentrate with local self-healing corticotomies. Tissue Cell 2020; 66:101383. [PMID: 32933706 DOI: 10.1016/j.tice.2020.101383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
Abstract
Bone marrow aspirate concentrate (BMAC) is a potentially useful biological product for bone regeneration. This study investigated whether BMAC can be enriched by local minor corticotomies. Five 4-month-old domestic pigs were used with each pig undergoing two minor corticotomies at one randomly-selected tibia. Two weeks after the operation, bone marrow was aspirated from both tibiae and processed into BMAC samples. The amount of mesenchymal stem cells (MSCs) and the concentration of several regenerative growth factors contained in BMAC, as well as the proliferative and osteogenic differentiation capacity of MSCs, were compared between the corticotomy and the control sides. Another four weeks later, healing of the corticotomies was evaluated by radiographic and histological methods. The results demonstrated that BMAC from the corticotomy side contained significantly more MSCs than the control side. MSCs from the corticotomy side also proliferated significantly faster and tended to have stronger osteogenic differentiation than those from the control side. In contrast, the protein concentration of TGF-β, BMP-2 and PDGF contained in BMAC was only minimally changed by the corticotomies. The corticotomies in all pigs healed uneventfully, showing complete obliteration of the corticotomy gaps on CT images. Comparison between the two sides showed that the corticotomy side had thicker and denser cortical bone and more abundant osteogenic cell differentiation than the control side. These findings suggest that the quantity and proliferative/osteogenic differentiation capacity of MSCs contained in local BMAC can be enhanced by minor corticotomies, and spontaneous healing of the corticotomy can be completed within 6 weeks of the operation.
Collapse
Affiliation(s)
- Lei Shi
- Department of Pediatric Dentistry, Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, China; Division of Orthodontics, College of Dentistry, The Ohio State University, Rm 4088 Postle Hall, 305 W 12th Ave, 43210 Columbus, OH, USA
| | - Boon Ching Tee
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Hany Emam
- Division of Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Rachael Prokes
- Division of Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Peter Larsen
- Division of Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Zongyang Sun
- Division of Orthodontics, College of Dentistry, The Ohio State University, Rm 4088 Postle Hall, 305 W 12th Ave, 43210 Columbus, OH, USA.
| |
Collapse
|
11
|
Shi L, Tee BC, Cotter L, Sun Z. Enhance Mandibular Symphyseal Surface Bone Growth with Autologous Mesenchymal Stem Cell Sheets: An Animal Study. Aesthetic Plast Surg 2020; 44:191-200. [PMID: 31701201 DOI: 10.1007/s00266-019-01494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/31/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The size and shape of the chin strongly influence facial profile and harmony. The current correction of chin deficiency mostly relies on genioplasty surgery involving osteotomy. To avoid osteotomy, one possible alternative is to enhance bone growth at the mental protuberance area with cell sheet transplantation. This study was undertaken to evaluate the efficacy of this approach in a pig model. MATERIALS AND METHODS Five 4-month-old pigs were included for mandibular bone marrow aspiration and MSC isolation. Triple-layer MSC sheets were then fabricated and utilized using culture-expanded MSCs. Four weeks after bone marrow aspiration, subperiosteal pockets were created on the labial symphyseal surface, followed by transplantation of autogenous MSC sheets to one randomly chosen side with the other side (control) receiving no transplantation. Six weeks after the surgery, the pigs were euthanized and the specimens from both sides were collected for computed tomography (CT) and histological and immunohistochemical analysis. Measurements between the experimental and control sides were compared using paired t tests. RESULTS MSC sheet fabrication and transplantation were reliably conducted. The labial cortical bone thickness increased significantly with MSC sheet transplantation by an average of 2 mm (p = 0.0001). The average measurements of mineral apposition rate and cell proliferation at the cell sheet side tended to be higher than the control side although the differences did not reach statistical significance (p = 0.1-0.2). Tissue mineral density measurements from CT images and bone volume fraction (BV/TV) measurements from histologic images were identical between the two sides (p > 0.5). CONCLUSION These data provide a proof of concept that autologous MSC sheets may be transplanted to the subperiosteal region of the mandibular symphysis to stimulate local surface bone growth. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
|
12
|
Yang X, Zhou Z, Mao Z, Shen M, Chen N, Miao D. Role of p53 deficiency in socket healing after tooth extractions. J Mol Histol 2020; 51:55-65. [PMID: 32006186 DOI: 10.1007/s10735-020-09856-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/26/2020] [Indexed: 12/17/2022]
Abstract
p53 is known to advance the cell arrest and cell senescence in human tumors. In this study, we displayed that osteogenic ability of p53-knockout (p53-/-) mice was significantly increased in the tooth extraction socket compared with wild-type (WT) counterparts. Bone marrow mesenchymal stem cells (BM-MSCs) from mandibular were collected and exhibited with elevated proliferation potential and colony-forming units compared with the control, as well as stronger mineral deposits and osteogenic markers. Besides, the bone mass and bone parameter in p53-/- mice were markedly enhanced compared with the counterpart after extractions by micro-CT. Masson's trichrome staining and immunohistochemistry also revealed that new bone filling and osterix/osteocalcin (Osx/OCN)-immunopositive staining in p53-/- mice were remarkably increased at each time point. Furthermore, consistent with the enhanced osteogenic markers, the angiogenic marker of blood vessels (alpha smooth muscle actin, α-SMA) was significantly elevated in p53-/- mice in contrast to WT mice. Importantly, we found that the osteoclast numbers exhibited an increased trend in p53-/- mice compared with WT mice during socket healing. Collectively, our result suggest that p53 deficiency could promote the osteogenesis and angiogenesis in the tooth extraction socket and might lend possibility for p53-based therapeutic approaches in acceleration of extraction bone healing.
Collapse
Affiliation(s)
- Xiaohan Yang
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, 210029, People's Republic of China.,Department of Stomatology, The Second Affiliated Hospital of Nanjing Medical University, No. 262, Zhong Shan North Road, Nanjing, 210003, People's Republic of China
| | - Zhixuan Zhou
- Department of Polyclinic, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han Zhong Road, Nanjing, 210029, People's Republic of China
| | - Zhiyuan Mao
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China.,Department of Stomatology, The Second Affiliated Hospital of Nanjing Medical University, No. 262, Zhong Shan North Road, Nanjing, 210003, People's Republic of China
| | - Ming Shen
- Department of Polyclinic, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han Zhong Road, Nanjing, 210029, People's Republic of China
| | - Ning Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, 210029, People's Republic of China. .,Department of Dental Implant, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han Zhong Road, Nanjing, 210029, People's Republic of China.
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China. .,Department of Stomatology, The Second Affiliated Hospital of Nanjing Medical University, No. 262, Zhong Shan North Road, Nanjing, 210003, People's Republic of China.
| |
Collapse
|
13
|
Sun R, Xu S, Wang Z. Rat sinus mucosa- and periosteum-derived exosomes accelerate osteogenesis. J Cell Physiol 2019; 234:21947-21961. [PMID: 31074002 DOI: 10.1002/jcp.28758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
Abstract
Guided bone regeneration (GBR) is commonly used for alveolar bone augmentation. The paracrine mechanism in the field of bone tissue engineering has been emphasized in recent years and exosomes are considered to have the potential of promoting osteogenesis. We aimed to study the influence of sinus mucosa and periosteum on bone regeneration through paracrine stimulation, especially via exosomes, and compare the differences between them. Here, we report that conditioned medium (CM) from sinus mucosa-derived cells (SMCs) and periosteum-derived cells (PCs) and the isolated exosomes enhanced the proliferation, migration and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) in vitro. A rat model of femoral bone defects was used to demonstrate that the exosomes derived from SMCs (SMC-Exos) and PCs (PC-Exos) can accelerate bone formation in vivo. Furthermore, we present a preliminary discussion of the possible functional components involved in the effects of SMC-Exos and PC-Exos on bone regeneration. In conclusion, these results demonstrated that the sinus mucosa and periosteum can accelerate osteogenesis through paracrine effects and the exosomes play important roles in this process.
Collapse
Affiliation(s)
- Ruinan Sun
- Department of Oral Implant, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Hospital of Stomatology, Tongji University, Shanghai, China
| | - Shuyu Xu
- Department of Oral Implant, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Hospital of Stomatology, Tongji University, Shanghai, China
| | - Zuolin Wang
- Department of Oral Implant, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Hospital of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Buduru SD, Gulei D, Zimta AA, Tigu AB, Cenariu D, Berindan-Neagoe I. The Potential of Different Origin Stem Cells in Modulating Oral Bone Regeneration Processes. Cells 2019; 8:cells8010029. [PMID: 30625993 PMCID: PMC6356555 DOI: 10.3390/cells8010029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering has gained much momentum since the implementation of stem cell isolation and manipulation for regenerative purposes. Despite significant technical improvements, researchers still have to decide which strategy (which type of stem cell) is the most suitable for their specific purpose. Therefore, this short review discusses the advantages and disadvantages of the three main categories of stem cells: embryonic stem cells, mesenchymal stem cells and induced pluripotent stem cells in the context of bone regeneration for dentistry-associated conditions. Importantly, when deciding upon the right strategy, the selection needs to be made in concordance with the morbidity and the life-threatening level of the condition in discussion. Therefore, even when a specific type of stem cell holds several advantages over others, their availability, invasiveness of the collection method and ethical standards become deciding parameters.
Collapse
Affiliation(s)
- Smaranda Dana Buduru
- Prosthetics and Dental Materials, Faculty of Dental Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania.
- Stomestet Stomatology Clinic, Calea Manastur 68A Street, 400658 Cluj-Napoca, Romania; .
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania.
| | - Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania.
| | - Adrian Bogdan Tigu
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania.
| | - Diana Cenariu
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34-36 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|