1
|
El-Gendi H, Albrahim JS, Alenezi H, El-Fakharany EM, El-Maradny YA, Saleh AK. Bioactive bacterial cellulose/chitosan/sodium alginate composite film functionalized with Moringa oleifera seed extract: Antimicrobial, anticancer, and molecular docking studies. Int J Biol Macromol 2025; 307:141958. [PMID: 40074119 DOI: 10.1016/j.ijbiomac.2025.141958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
In this study, composite films (BC/Ch/SA/EEMS) were fabricated using the casting method by incorporating bacterial cellulose (BC), chitosan (Ch), and sodium alginate (SA) with ethanolic Moringa seed extract (EEMS). HPLC analysis detected 16 polyphenolic compounds in EEMS, with Rutin (59.56 μg/mL) the most abundant, while GC-MS analysis identified 11-octadecenoic acid (88.35 %) as the predominant compound. The minimum inhibitory concentration (MIC) of EEMS was approximately 0.015 mg/mL for S. typhimurium, while S. mutans and C. albicans shared a MIC value of 0.062 mg/mL. The BC/Ch/SA/EEMS composite films were characterized using SEM, XRD, and FT-IR, confirming the successful incorporation of EEMS, which appeared as white spots within the composite. The composite films exhibited broad-spectrum antimicrobial activity, particularly against S. typhimurium and S. aureus, with the 2 % EEMS-loaded film demonstrating the highest efficacy. In vitro anticancer evaluations revealed significant cytotoxic effects against HepG-2 liver and MDA breast cancer cell lines, with Film 2 (2 % EEMS) exhibiting the highest selectivity index. Molecular docking analysis further highlighted Kaempferol and Syringic acid as potential drug candidates due to their strong binding affinities with key cancer-associated proteins. The novelty of this study lies in integrating of EEMS into a biopolymer matrix with promising biomedical applications.
Collapse
Affiliation(s)
- Hamada El-Gendi
- Bioprocess development department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt.
| | - Jehan S Albrahim
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hussain Alenezi
- Department of Manufacturing Engineering Technology, College of Technological Studies, PAAET, Shuwaikh Industrial, Kuwait
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki, 12622 Giza, Egypt.
| |
Collapse
|
2
|
Ma Y, Wang J, Fan J, Jia H, Li J. Interrelation of Natural Polyphenol and Fibrosis in Diabetic Nephropathy. Molecules 2024; 30:20. [PMID: 39795078 PMCID: PMC11722366 DOI: 10.3390/molecules30010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Diabetic nephropathy (DN) is a common and serious complication of diabetes mellitus and a major cause of end-stage renal disease (ESRD). Renal fibrosis, which corresponds to excessive deposition of extracellular matrix and leads to scarring, is a characteristic feature of the various progressive stages of DN. It can trigger various pathological processes leading to the activation of autophagy, inflammatory responses and a vicious circle of oxidative stress and inflammation. Although it is known that DN can be alleviated by mechanisms linked to antioxidants, reducing inflammation and improving autophagy, how to improve DN by reducing fibrosis using natural polyphenols needs to be studied further. Nowadays, natural polyphenolic compounds with excellent safety and efficacy are playing an increasingly important role in drug discovery. Therefore, this review reveals the multiple mechanisms associated with fibrosis in DN, as well as the different signaling pathways (including TGF-β/SMAD, mTORC1/p70S6K, JAK/STAT/SOCS and Wnt/β-catenin) and the potential role in the fibrotic niche. In parallel, we summarize the types of polyphenolic compounds and their pharmacodynamic effects, and finally evaluate the use of polyphenols to modulate relevant targets and pathways, providing potential research directions for polyphenols to improve DN. In summary, the problem of long-term monotherapy resistance can be reduced with natural polyphenols, while reducing the incidence of toxic side effects. In addition, potential targets and their inhibitors can be identified through these pathways, offering potential avenues of research for natural polyphenols in the pharmacological treatment of multisite fibrosis.
Collapse
Affiliation(s)
- Ye Ma
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jiakun Wang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Juyue Fan
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Huiyang Jia
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
3
|
Tossetta G, Fantone S, Togni L, Santarelli A, Olivieri F, Marzioni D, Rippo MR. Modulation of NRF2/KEAP1 Signaling by Phytotherapeutics in Periodontitis. Antioxidants (Basel) 2024; 13:1270. [PMID: 39456522 PMCID: PMC11504014 DOI: 10.3390/antiox13101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Periodontitis affects up to 40% of adults over 60 years old and is a consequence of gingivitis. Periodontitis is characterized by a chronic inflammation, periodontal damage, and alveolar bone resorption. The nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2)/Kelch-like ECH-Associated Protein 1 (KEAP1) (NRF2/KEAP1) signaling pathway plays a key role in periodontitis by modulating redox balance and inflammation of the periodontium. However, NRF2 expression is decreased in gingival tissues of patients with periodontitis while oxidative stress is significantly increased in this pathology. Oxidative stress and lipopolysaccharide (LPS) produced by gram-negative bacteria favor the production of inflammatory causing periodontal inflammation and favoring alveolar bone. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating the NRF2/KEAP1 pathway in in vitro and in vivo models of periodontitis in order to evaluate new potential treatments of periodontitis that can improve the outcome of this disease.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sonia Fantone
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
| | - Lucrezia Togni
- Department of Clinical Specialistic and Dental Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.T.); (A.S.)
| | - Andrea Santarelli
- Department of Clinical Specialistic and Dental Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.T.); (A.S.)
- Dentistry Clinic, National Institute of Health and Science of Aging, IRCCS INRCA, 60126 Ancona, Italy
| | - Fabiola Olivieri
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
- IRCCS INRCA, 60124 Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
4
|
Ando M, Nagata K, Takeshita R, Ito N, Noguchi S, Minamikawa N, Kodama N, Yamamoto A, Yashiro T, Hachisu M, Ichihara G, Kishino S, Yamamoto M, Ogawa J, Nishiyama C. The gut lactic acid bacteria metabolite, 10-oxo- cis-6, trans-11-octadecadienoic acid, suppresses inflammatory bowel disease in mice by modulating the NRF2 pathway and GPCR-signaling. Front Immunol 2024; 15:1374425. [PMID: 38745644 PMCID: PMC11091332 DOI: 10.3389/fimmu.2024.1374425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Various gut bacteria, including Lactobacillus plantarum, possess several enzymes that produce hydroxy fatty acids (FAs), oxo FAs, conjugated FAs, and partially saturated FAs from polyunsaturated FAs as secondary metabolites. Among these derivatives, we identified 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC), a γ-linolenic acid (GLA)-derived enon FA, as the most effective immunomodulator, which inhibited the antigen-induced immunoactivation and LPS-induced production of inflammatory cytokines. The treatment with γKetoC significantly suppressed proliferation of CD4+ T cells, LPS-induced activation of bone marrow-derived dendritic cells (BMDCs), and LPS-induced IL-6 release from peritoneal cells, splenocytes, and CD11c+ cells isolated from the spleen. γKetoC also inhibited the release of inflammatory cytokines from BMDCs stimulated with poly-I:C, R-848, or CpG. Further in vitro experiments using an agonist of GPR40/120 suggested the involvement of these GPCRs in the effects of γKetoC on DCs. We also found that γKetoC stimulated the NRF2 pathway in DCs, and the suppressive effects of γKetoC and agonist of GPR40/120 on the release of IL-6 and IL-12 were reduced in Nrf2-/- BMDCs. We evaluated the role of NRF2 in the anti-inflammatory effects of γKetoC in a dextran sodium sulfate-induced colitis model. The oral administration of γKetoC significantly reduced body weight loss, improved stool scores, and attenuated atrophy of the colon, in wild-type C57BL/6 and Nrf2+/- mice with colitis. In contrast, the pathology of colitis was deteriorated in Nrf2-/- mice even with the administration of γKetoC. Collectively, the present results demonstrated the involvement of the NRF2 pathway and GPCRs in γKetoC-mediated anti-inflammatory responses.
Collapse
Affiliation(s)
- Miki Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kazuki Nagata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Ryuki Takeshita
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Naoto Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Sakura Noguchi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Natsuki Minamikawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Naoki Kodama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Asuka Yamamoto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Masakazu Hachisu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masayuki Yamamoto
- Department of Molecular Biochemistry, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
5
|
Wang Y, Liu H, Zhang Z. Recent Advance in Regulatory Effect of GRP120 on Bone Metabolism. Aging Dis 2023; 14:1714-1727. [PMID: 37196107 PMCID: PMC10529742 DOI: 10.14336/ad.2023.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/16/2023] [Indexed: 05/19/2023] Open
Abstract
The link between fatty acids and bone metabolism is complex and can be direct and indirect. This link has been reported in different types of bone cells and various stages of bone metabolism. G-protein coupled receptor 120 (GPR120), also called free fatty acid receptor 4 (FFAR4), is a member of the recently discovered G protein-coupled receptor family that can interact with both long-chain saturated fatty acids (C14-C18) and long-chain unsaturated fatty acids (C16-C22). Research shows that GPR120 regulates processes in different types of bone cells, directly or indirectly affecting bone metabolism. Our research reviewed the literature on the effects of GPR120 on bone marrow mesenchymal stem cells (BMMSCs), osteoblasts, osteoclasts, and chondrocytes, focusing on the research findings regarding the mechanism by which GPR120 alters specific bone metabolic diseases-osteoporosis and osteoarthritis. The data reviewed here provide a basis for clinical and basic research into the role of GPR120 on bone metabolic diseases.
Collapse
Affiliation(s)
| | - Haixia Liu
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiguo Zhang
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Yu QQ, Zhang H, Zhao S, Xie D, Zhao H, Chen W, Pang M, Han B, Jiang P. Systematic evaluation of irinotecan-induced intestinal mucositis based on metabolomics analysis. Front Pharmacol 2022; 13:958882. [PMID: 36188576 PMCID: PMC9520243 DOI: 10.3389/fphar.2022.958882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a major dose-limiting side effect of chemotherapy, especially in regimens containing irinotecan (CPT-11). Several studies on the pathologic mechanisms of CIM focused on both the genomics and molecular pathways triggered by chemotherapy. However, systematic evaluation of metabolomic analysis in irinotecan-induced intestinal mucositis (IIM) has not been investigated. This study aimed to comprehensively analyze metabolite changes in main tissues of IIM mouse models. Male ICR mice were assigned to two groups: the model group (n = 11) treated with CPT-11 (20 mg/kg daily; i.p.) and the control group (n= 11) with solvent for 9 days. Gas chromatography-mass spectrometry (GC-MS) was used to investigate the metabolic alterations in the serum, intestinal, colonic, hepatic, and splenic samples of mice between two groups by multivariate statistical analyses, including GC-MS data processing, pattern recognition analysis, and pathway analysis. Forty-six metabolites, including hydrocarbons, amino acids, lipids, benzenoids, hydroxy acids, and amines, had significant changes in levels in tissues and sera of IIM mouse models. The most important pathways related to the identified metabolites were the glycerolipid metabolism in the colon and aminoacyl-tRNA biosynthesis; glycine, serine, and threonine metabolism; and glyoxylate and dicarboxylate metabolism in the liver. Our study firstly provided a comprehensive and systematic view of metabolic alterations of IIM using GC-MS analysis. The characterizations of metabolic changes could offer profound and theoretical insight into exploring new biomarkers for diagnosis and treatment of IIM.
Collapse
Affiliation(s)
- Qing-Qing Yu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Heng Zhang
- Department of Laboratory, Shandong Daizhuang Hospital, Jining, China
| | - Shiyuan Zhao
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Dadi Xie
- Department of Endocrine, Tengzhou Central People’s Hospital, Tengzhou, China
| | - Haibo Zhao
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Weidong Chen
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Min Pang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Pei Jiang
- Jining First People’s Hospital, Jining Medical College, Jining, China
| |
Collapse
|
7
|
Recent trends in the field of lipid engineering. J Biosci Bioeng 2022; 133:405-413. [DOI: 10.1016/j.jbiosc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
|
8
|
Polyunsaturated Fatty Acids as Prebiotics: Innovation or Confirmation? Foods 2022; 11:foods11020146. [PMID: 35053879 PMCID: PMC8774454 DOI: 10.3390/foods11020146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
The International Scientific Association for Probiotics and Prebiotics (ISAPP), in its last consensus statement about prebiotics, defined polyunsaturated fatty acids (PUFAs) as “candidate prebiotics” due to a lack of complete scientific evidence. Previous studies have demonstrated the ability of microbiota to metabolize PUFAs, although the role of the resulting metabolites in the host is less known. Recent partial evidence shows that these metabolites can have important health effects in the host, reinforcing the concept of the prebiotic action of PUFAs, despite the data being mostly related to omega-6 linoleic acid and to lactobacilli taxon. However, considering that the symbionts in our gut benefit from the nutritional molecules that we include in our diet, and that bacteria, like all living organisms, cannot benefit from a single nutritional molecule, the concept of the “correct prebiotic diet” should be the new frontier in the field of gut microbiota research.
Collapse
|
9
|
Lee Y, Yoon Y, Choi KH. Probiotics-Mediated Bioconversion and Periodontitis. Food Sci Anim Resour 2021; 41:905-922. [PMID: 34796320 PMCID: PMC8564330 DOI: 10.5851/kosfa.2021.e57] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Novel bioactive metabolites have been developed through a bioconversion of dairy products or other foods using probiotics isolated from dairy products or other fermented foods. These probiotics-mediated bioconversion (PMB) metabolites show antioxidant, anti-inflammatory, antimicrobial, epithelial barrier, and anticancer activities. In addition, the effect of PMB metabolites in periodontitis is recently reported in several studies. Periodontitis is a chronic inflammatory disease caused by infections, and the tooth support tissue is destroyed. Common treatments for periodontitis include scaling and root planning with systemic antibiotics. However, the overuse of antibiotics has led to the emergence of drug-resistant microorganisms and disturbs the beneficial bacteria, including lactobacilli in the oral cavity. For this reason, PMB metabolites, such as fermented milk, have been suggested as substitutes for antibiotics to reduce periodontitis. This paper reviews the recent studies on the correlation between periodontitis and PMB metabolites and classifies the efficacy of major PMB metabolites for periodontitis. The review suggests that PMB is effective for periodontitis, and further studies are needed to confirm the therapeutic effect of PMB metabolites on periodontitis.
Collapse
Affiliation(s)
- Yewon Lee
- Department of Food and Nutrition,
Sookmyung Women’s University, Seoul 04310,
Korea
| | - Yohan Yoon
- Department of Food and Nutrition,
Sookmyung Women’s University, Seoul 04310,
Korea
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310,
Korea
| | - Kyoung-hee Choi
- Department of Oral Microbiology, College
of Dentistry, Wonkwang University, Iksan 54538,
Korea
| |
Collapse
|
10
|
Carullo G, Mazzotta S, Vega-Holm M, Iglesias-Guerra F, Vega-Pérez JM, Aiello F, Brizzi A. GPR120/FFAR4 Pharmacology: Focus on Agonists in Type 2 Diabetes Mellitus Drug Discovery. J Med Chem 2021; 64:4312-4332. [PMID: 33843223 PMCID: PMC8154576 DOI: 10.1021/acs.jmedchem.0c01002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The G-protein coupled receptors (GPCRs)
activated by free fatty
acids (FFAs) have emerged as new and exciting drug targets, due to
their plausible translation from pharmacology to medicines. This perspective
aims to report recent research about GPR120/FFAR4 and its involvement
in several diseases, including cancer, inflammatory conditions, and
central nervous system disorders. The focus is to highlight the importance
of GPR120 in Type 2 diabetes mellitus (T2DM). GPR120 agonists, useful
in T2DM drug discovery, have been widely explored from a structure–activity
relationship point of view. Since the identification of the first
reported synthetic agonist TUG-891, the research has paved the way
for the development of TUG-based molecules as well as new and different
chemical entities. These molecules might represent the starting point
for the future discovery of GPR120 agonists as antidiabetic drugs.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Biotechnology, Chemistry, and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sarah Mazzotta
- Department of Pharmaceutical Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, DoE 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende, Cosenza, Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry, and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
11
|
Hosomi K, Kiyono H, Kunisawa J. Fatty acid metabolism in the host and commensal bacteria for the control of intestinal immune responses and diseases. Gut Microbes 2020; 11:276-284. [PMID: 31120334 PMCID: PMC7524326 DOI: 10.1080/19490976.2019.1612662] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intestinal tissue has a specialized immune system that exhibits an exquisite balance between active and suppressive responses important for the maintenance of health. Intestinal immunity is functionally affected by both diet and gut commensal bacteria. Here, we review the effects of fatty acids on the regulation of intestinal immunity and immunological diseases, revealing that dietary fatty acids and their metabolites play an important role in the regulation of allergy, inflammation, and immunosurveillance in the intestine. Several lines of evidence have revealed that some dietary fatty acids are converted to biologically active metabolites by enzymes not only in the host but also in the commensal bacteria. Thus, biological interaction between diet and commensal bacteria could form the basis of a new era in the control of host immunity and its associated diseases.
Collapse
Affiliation(s)
- Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,Graduate School of Medicine, Chiba University, Chiba, Japan,Department of Medicine, School of Medicine and CU-UCSD Center for Mucosal Immunology, Allergy and Vaccine, University of California, California, USA
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, Japan,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Dentistry, Osaka University, Osaka, Japan,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan,CONTACT Jun Kunisawa Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki City, Osaka567-0085, Japan
| |
Collapse
|
12
|
Sulijaya B, Takahashi N, Yamazaki K. Lactobacillus-Derived Bioactive Metabolites for the Regulation of Periodontal Health: Evidences to Clinical Setting. Molecules 2020; 25:molecules25092088. [PMID: 32365716 PMCID: PMC7248875 DOI: 10.3390/molecules25092088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022] Open
Abstract
Background: Gut microbiota plays a pivotal role in regulating host metabolism that affects the systemic health. To date, several studies have confirmed the fact that microbiota interacts with host, modulating immunity, controlling the homeostasis environment, and maintaining systemic condition. Recent studies have focused on the protective function of poly unsaturated fatty acids, 10-oxo-trans-11-oxadecenoic acid (KetoC) and 10-hydroxy-cis-12-octadecenoic acid (HYA), generated by gut microbiota on periodontal disease. Nevertheless, the mechanism remains unclear as investigations are limited to in vivo and in vitro studies. In this present review, we found that the administration of metabolites, KetoC and HYA, by a probiotic gut microbiota Lactobacillus plantarum from linoleic acid is found to inhibit the oxidation process, possess an antimicrobial function, and prevent the inflammation. These findings suggest the promising use of functional lipids for human health. Conclusion: Protective modalities of bioactive metabolites may support periodontal therapy by suppressing bacterial dysbiosis and regulating periodontal homeostasis in the clinical setting.
Collapse
Affiliation(s)
- Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; or
| | - Naoki Takahashi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Correspondence: ; Tel.: +81-25-227-0744
| |
Collapse
|
13
|
Nagatake T, Kunisawa J. Emerging roles of metabolites of ω3 and ω6 essential fatty acids in the control of intestinal inflammation. Int Immunol 2020; 31:569-577. [PMID: 30722032 PMCID: PMC6736389 DOI: 10.1093/intimm/dxy086] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract is continuously exposed to the external environment, which contains numerous non-self antigens, including food materials and commensal micro-organisms. For the maintenance of mucosal homeostasis, the intestinal epithelial layer and mucosal immune system simultaneously provide the first line of defense against pathogens and are tightly regulated to prevent their induction of inflammatory responses to non-pathogenic antigens. Defects in mucosal homeostasis lead to the development of inflammatory and associated intestinal diseases, such as Crohn’s disease, ulcerative colitis, food allergy and colorectal cancer. The recent discovery of novel dietary ω3 and ω6 lipid-derived metabolites—such as resolvin, protectin, maresin, 17,18-epoxy-eicosatetraenoic acid and microbe-dependent 10-hydroxy-cis-12-octadecenoic acid—and their potent biologic effects on the regulation of inflammation have initiated a new era of nutritional immunology. In this review, we update our understanding of the role of lipid metabolites in intestinal inflammation.
Collapse
Affiliation(s)
- Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Asagi Saito, Ibaraki, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Asagi Saito, Ibaraki, Osaka, Japan.,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, Japan.,International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan.,Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Dentistry, Osaka University, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
14
|
Yokoji-Takeuchi M, Takahashi N, Yamada-Hara M, Sulijaya B, Tsuzuno T, Aoki-Nonaka Y, Tabeta K, Kishino S, Ogawa J, Yamazaki K. A bacterial metabolite induces Nrf2-mediated anti-oxidative responses in gingival epithelial cells by activating the MAPK signaling pathway. Arch Oral Biol 2020; 110:104602. [DOI: 10.1016/j.archoralbio.2019.104602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/06/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022]
|
15
|
Sulijaya B, Yamada‐Hara M, Yokoji‐Takeuchi M, Matsuda‐Matsukawa Y, Yamazaki K, Matsugishi A, Tsuzuno T, Sato K, Aoki‐Nonaka Y, Takahashi N, Kishino S, Ogawa J, Tabeta K, Yamazaki K. Antimicrobial function of the polyunsaturated fatty acid KetoC in an experimental model of periodontitis. J Periodontol 2019; 90:1470-1480. [DOI: 10.1002/jper.19-0130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Benso Sulijaya
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Department of PeriodontologyFaculty of DentistryUniversitas Indonesia Jakarta Indonesia
| | - Miki Yamada‐Hara
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Research Center for Advanced Oral ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Mai Yokoji‐Takeuchi
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Yumi Matsuda‐Matsukawa
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Kyoko Yamazaki
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Aoi Matsugishi
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Takahiro Tsuzuno
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Keisuke Sato
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Yukari Aoki‐Nonaka
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Naoki Takahashi
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Research Center for Advanced Oral ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Shigenobu Kishino
- Division of Applied Life SciencesGraduate School of AgricultureKyoto University Kyoto Japan
| | - Jun Ogawa
- Division of Applied Life SciencesGraduate School of AgricultureKyoto University Kyoto Japan
| | - Koichi Tabeta
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| |
Collapse
|
16
|
Sulijaya B, Takahashi N, Yamazaki K. Host modulation therapy using anti-inflammatory and antioxidant agents in periodontitis: A review to a clinical translation. Arch Oral Biol 2019; 105:72-80. [PMID: 31288144 DOI: 10.1016/j.archoralbio.2019.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To highlight the shifting paradigm of periodontitis, describe mechanism of periodontal bone destruction, and propose an updated host modulation therapy (HMT) strategy. To add further clinical relevance, related studies investigating the efficacy of several HMT agents in periodontitis will be discussed. DESIGN Literature searches were conducted from articles published in PubMed using keywords "periodontal disease AND periodontitis AND host modulation therapy AND anti-inflammatory AND antioxidant", and then the findings were comprehensively summarized and elaborated. RESULT Accumulating evidence indicates that periodontitis is no longer defined solely as a pathogen-induced disease; rather, it is now recognized as a consequence of uncontrolled immune response and oxidative stress leading to periodontal tissue damage. Although periodontopathic bacteria initiate the disease, inflammation and oxidative stress were reported to be the main causes for the severity of tissue destruction. Thus, since the concept of periodontitis has shifted, our approach to its management needs to be adjusted to accommodate the latest paradigm. Nowadays, the modulation of inflammation and oxidative stress is considered a target of HMT. HMT agents, such as probiotics, anti-inflammatory drugs, anti-chemokines, lipid mediators, and bio-active fatty acids, have been extensively investigated for their remarkable functions in modulating the immune response and providing antioxidant effects. CONCLUSION Findings from in vitro, in vivo, and human studies frequently demonstrate positive association by the administration of HMT in periodontitis. HMT strategy targeted on anti-inflammatory and antioxidant in periodontitis might serve as an excellent therapeutic approach to reach the level of clinical benefit.
Collapse
Affiliation(s)
- Benso Sulijaya
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Periodontology, Department of Oral Biological Science, Niigata University Faculty of Dentistry, Niigata, Japan; Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Naoki Takahashi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Faculty of Dentistry, Niigata, Japan; Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
17
|
Aoki-Nonaka Y, Tabeta K, Yokoji M, Matsugishi A, Matsuda Y, Takahashi N, Sulijaya B, Domon H, Terao Y, Taniguchi M, Yamazaki K. A peptide derived from rice inhibits alveolar bone resorption via suppression of inflammatory cytokine production. J Periodontol 2019; 90:1160-1169. [PMID: 31032912 DOI: 10.1002/jper.18-0630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Periodontitis is an inflammatory disease that results in alveolar bone resorption due to inflammatory cytokine production induced by bacterial antigens such as lipopolysaccharides (LPS). Here, the preventive effect of the Amyl-1-18 peptide derived from rice in an experimental model of periodontitis and the effect on the anti-inflammatory response were assessed. METHODS Alveolar bone resorption, gene transcription of proinflammatory cytokines in the gingiva, and the endotoxin level in the oral cavity were evaluated after oral administration of the Amyl-1-18 peptide for 14 days using a ligature-induced periodontitis model in mice. Additionally, murine macrophages were incubated with LPS of Escherichia coli or Porphyromonas gingivalis in the presence of Amyl-1-18 to analyze the suppressive effects of Amyl-1-18 on the cell signaling pathways associated with proinflammatory cytokine production, including inflammasome activities. RESULTS Oral administration of Amyl-1-18 suppressed alveolar bone resorption and gene transcription of interleukin (il)6 in the gingiva of the periodontitis model, and decreased endotoxin levels in the oral cavity, suggesting modulation of periodontal inflammation by inhibition of endotoxin activities in vivo. Also, Amyl-1-18 suppressed IL-6 production induced by LPS and recombinant IL-1β in macrophages in vitro but had no effect on inflammasome activity. CONCLUSIONS The Amyl-1-18 peptide from rice inhibited alveolar bone destruction in mouse periodontitis model via suppressing inflammatory cytokine production induced by LPS. It was suggested that Amyl-1-18 peptide has anti-inflammatory property against LPS, not only by neutralization of LPS and subsequent inhibition of nuclear factor-κB signaling but also by inhibition of the IL-1R-related signaling cascade.
Collapse
Affiliation(s)
- Yukari Aoki-Nonaka
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mai Yokoji
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Aoi Matsugishi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yumi Matsuda
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Benso Sulijaya
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
18
|
Sulijaya B, Takahashi N, Yamazaki K, Yamazaki K. Nutrition as Adjunct Therapy in Periodontal Disease Management. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40496-019-0216-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|