1
|
Ji C, Chen Y, Si M, Chen X. The impact of biocorrosion and titanium ions release on peri-implantitis. Clin Oral Investig 2025; 29:155. [PMID: 39998661 DOI: 10.1007/s00784-025-06186-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVES Biofilm accumulation is considered the primary cause of peri-implant inflammation. Still, metallosis caused by an increased concentration of titanium ions at the site of peri-implantitis site cannot be ignored. Whether titanium ions alone or in concert with bacterial biofilm trigger inflammation and bone destruction in peri-implant tissues remains unproven. MATERIALS AND METHODS Articles were retrieved from PubMed/Medline, Web of Science. All studies focusing on titanium ions release in peri-implant reactions were included and evaluated. RESULTS Titanium implants are considered non-inert and may release titanium ions in the intraoral microenvironment, the most important of which is the acidic environment created by bacterial biofilms. Although the correlation between titanium ion release and the incidence or progression of peri-implantitis is controversial, several studies have confirmed the potential role of titanium ions. Diffusion or entry of titanium ions into the circulation may be a scavenging effect on local titanium ions but can cause systemic adverse effects. However, existing measures are not yet able to balance reducing biocorrosion and maintaining osteogenic results, and the exploration of new materials requires long-term clinical data. CONCLUSIONS Titanium ions have potential impacts on peri-implant tissue and systemic circulation. Titanium ions are closely associated with bacterial biofilms in the occurrence and development of periimplantitis. The preventive strategies for the release and action of titanium ions remain to be explored. CLINICAL RELEVANCE Our findings may provide the hope of shedding light on the pathogenesis of peri-implantitis and its treatment.
Collapse
Affiliation(s)
- Chonghao Ji
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yaqian Chen
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, China
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Xiaoyan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Domingo MG, Kurtz M, Maglione G, Martin M, Brites F, Tasat DR, Olmedo DG. Chronic exposure to TiO 2 micro- and nano particles: A biochemical and histopathological experimental study. J Biomed Mater Res B Appl Biomater 2024; 112:e35443. [PMID: 38968028 DOI: 10.1002/jbm.b.35443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/08/2024] [Accepted: 06/09/2024] [Indexed: 07/07/2024]
Abstract
The aim of this work was to analyze the effects of long-term exposure to titanium dioxide (TiO2) micro- (MPs) and nanoparticles (NPs) (six and 12 months) on the biochemical and histopathological response of target organs using a murine model. Male Wistar rats were intraperitoneally injected with a suspension of TiO2 NPs (5 nm; TiO2-NP5 group) or MPs (45 μm; TiO2-NP5 group); the control group was injected with saline solution. Six and 12 months post-injection, titanium (Ti) concentration in plasma and target organs was determined spectrometrically (ICP-MS). Blood smears and organ tissue samples were evaluated by light microscopy. Liver and kidney function was evaluated using serum biochemical parameters. Oxidative metabolism was assessed 6 months post-injection (determination of superoxide anion by nitroblue tetrazolium (NBT) test, superoxide dismutase (SOD) and catalase (CAT), lipid peroxidation, and paraoxonase 1). Titanium (Ti) concentration in target organs and plasma was significantly higher in the TiO2-exposed groups than in the control group. Histological evaluation showed the presence of titanium-based particles in the target organs, which displayed no structural alterations, and in blood monocytes. Oxidative metabolism analysis showed that TiO2 NPs were more reactive over time than MPs (p < .05) and mobilization of antioxidant enzymes and membrane damage varied among the studied organs. Clearance of TiO2 micro and nanoparticles differed among the target organs, and lung clearance was more rapid than clearance from the lungs and kidneys (p < .05). Conversely, Ti concentration in plasma increased with time (p < .05). In conclusion, neither serum biochemical parameters nor oxidative metabolism markers appear to be useful as biomarkers of tissue damage in response to TiO2 micro- and nanoparticle deposits at chronic time points.
Collapse
Affiliation(s)
- Mariela Gisele Domingo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina
- Becario de Investigación de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Kurtz
- CONICET, Buenos Aires, Argentina
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Guillermo Maglione
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología, Buenos Aires, Argentina
| | | | - Fernando Brites
- CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Lipoproteínas, Buenos Aires, Argentina
| | - Deborah Ruth Tasat
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología, Buenos Aires, Argentina
| | - Daniel Gustavo Olmedo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Tchinda A, Didelot A, Choquet P, Lerebours A, Kouitat-Njiwa R, Bravetti P. Innovative Bioactive Ca-SZ Coating on Titanium Dental Implants: A Multidimensional Structural and Elemental Analysis. J Funct Biomater 2024; 15:155. [PMID: 38921529 PMCID: PMC11205193 DOI: 10.3390/jfb15060155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
The design of new, biomimetic biomaterials is of great strategic interest and is converging for many applications, including in implantology. This study explores a novel approach to improving dental implants. Although endosseous TA6V alloy dental implants are widely used in oral implantology, this material presents significant challenges, notably the prevalence of peri-implantitis. Therefore, in this study, we investigate a new advance in the design of hybrid medical devices. This involves the design of a Ca-SZ coating deposited by PVD on a TA6V substrate. This approach aims to overcome the inherent limitations of each of these materials, namely TA6V's susceptibility to peri-implantitis on the one hand and zirconia's excessively high Young's modulus compared with bone on the other, while benefiting from their respective advantages, such as the ductility of TA6V and the excellent biocompatibility of zirconia, offering relevant prospects for the design of high-performance implantable medical devices. This study integrates characterisation techniques, focusing on the structural and elemental analysis of the Ca-SZ coating by XRD and TEM. The results suggest that this coating combines a tetragonal structure, a uniform morphology with no apparent defects, a clean interface highlighting good adhesion, and a homogeneous composition of calcium, predisposing it to optimal biocompatibility. All of these findings make this innovative coating a particularly suitable candidate for application in dental implantology.
Collapse
Affiliation(s)
- Alex Tchinda
- Department of Micro and Nanomechanics for Life, Jean Lamour Institute, University of Lorraine, UMR 7198, 54011 Nancy, France (R.K.-N.)
| | - Aurélien Didelot
- Department of Micro and Nanomechanics for Life, Jean Lamour Institute, University of Lorraine, UMR 7198, 54011 Nancy, France (R.K.-N.)
| | - Patrick Choquet
- Materials and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Augustin Lerebours
- Department of Micro and Nanomechanics for Life, Jean Lamour Institute, University of Lorraine, UMR 7198, 54011 Nancy, France (R.K.-N.)
| | - Richard Kouitat-Njiwa
- Department of Micro and Nanomechanics for Life, Jean Lamour Institute, University of Lorraine, UMR 7198, 54011 Nancy, France (R.K.-N.)
| | - Pierre Bravetti
- Department of Micro and Nanomechanics for Life, Jean Lamour Institute, University of Lorraine, UMR 7198, 54011 Nancy, France (R.K.-N.)
| |
Collapse
|
4
|
Quadros LCS, Silva-Lovato CH, Dotto MER, Ribeiro JS, Soto AF, Duque TM, Cuevas-Suárez CE, Coelho SM, Badaró MM. In situ study of the effect of endogenous and exogenous agents on color stability, hardness, and surface roughness of an elastomer for facial prostheses. J Prosthodont 2024. [PMID: 38812246 DOI: 10.1111/jopr.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE To evaluate in situ the influence of sweat, oil, sunscreen, and disinfectant solution on the color stability, hardness, and roughness of elastomer for facial prostheses. MATERIALS AND METHODS Standardized and intrinsically pigmented specimens remained in contact with human skin from the same person for 30 days, considering exposures (n = 36 per group), absent of exposition (Control, C); sweat and oiliness contact (SO); sweat and oiliness associated with sunscreen (SOS); 0.12% chlorhexidine digluconate immersion (CD0.12%); and all agents exposed (SOSCD). The main variables were color change (CIELab and National Standard Bureau system, NBS), Shore A hardness, and surface roughness, measured at baseline and 30 days. Qualitative analyses were performed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The data were analyzed by Kruskal-Wallis tests (color) and two-way ANOVA (hardness and roughness) with Sidak post-test (α = 0.05). RESULTS CD0.12% (1.54 ± 0.49) and SOSCD (2.10 ± 1.03) had similar effects and caused the smallest color changes, considered mild and noticeable (NBS), respectively. SOS promoted the greatest color change (6.99 ± 1.43, NBS: large) and hardness (17.97 ± 0.56); SOS promoted intermediate roughness (3.48 ± 1.05) between SOSCD (2.25 ± 0.53), and two similar groups: C (4.46 ± 0.95), and CD0.12% (4.39 ± 1.26). The qualitative analysis showed an irregular, dense, dry, and whitish layer on the surface of the specimens exposed to sunscreen, which was reduced when in contact with 0.12% chlorhexidine digluconate. CONCLUSIONS Endogenous and exogenous factors are capable of altering elastomer properties. The 0.12% chlorhexidine digluconate minimized the changes caused by sweat, oil, and sunscreen.
Collapse
Affiliation(s)
| | - Cláudia Helena Silva-Lovato
- Department of Dental Materials, Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marta Elisa Rosso Dotto
- Department of Physics, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Juliana Silva Ribeiro
- Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Artur Ferronato Soto
- Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Thais Mageste Duque
- Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Pachuca, Mexico
| | - Sérgio Murilo Coelho
- Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | |
Collapse
|
5
|
Kohal RJ, Riesterer E, Vach K, Patzelt SBM, Iveković A, Einfalt L, Kocjan A, Hillebrecht AL. Fracture Resistance of a Bone-Level Two-Piece Zirconia Oral Implant System-The Influence of Artificial Loading and Hydrothermal Aging. J Funct Biomater 2024; 15:122. [PMID: 38786633 PMCID: PMC11122605 DOI: 10.3390/jfb15050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Preclinical and clinical research on two-piece zirconia implants are warranted. Therefore, we evaluated the in vitro fracture resistance of such a zirconia oral implant system. The present study comprised 32 two-piece zirconia implants and abutments attached to the implants using a titanium (n = 16) or a zirconia abutment screw (n = 16). Both groups were subdivided (n = 8): group T-0 comprised implants with a titanium abutment screw and no artificial loading; group T-HL was the titanium screw group exposed to hydro-thermomechanical loading in a chewing simulator; group Z-0 was the zirconia abutment screw group with no artificial loading; and group Z-HL comprised the zirconia screw group with hydro-thermomechanical loading. Groups T-HL and Z-HL were loaded with 98 N and aged in 85 °C hot water for 107 chewing cycles. All samples were loaded to fracture. Kruskal-Wallis tests were executed to assess the loading/bending moment group differences. The significance level was established at a probability of 0.05. During the artificial loading, there was a single occurrence of an implant fracture. The mean fracture resistances measured in a universal testing machine were 749 N for group T-0, 828 N for group Z-0, 652 N for group T-HL, and 826 N for group Z-HL. The corresponding bending moments were as follows: group T-0, 411 Ncm; group Z-0, 452 Ncm; group T-HL, 356 Ncm; and group Z-HL, 456 Ncm. There were no statistically significant differences found between the experimental groups. Therefore, the conclusion was that loading and aging did not diminish the fracture resistance of the evaluated implant system.
Collapse
Affiliation(s)
- Ralf J. Kohal
- Medical Center—University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (E.R.)
| | - Ellen Riesterer
- Medical Center—University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (E.R.)
| | - Kirstin Vach
- Medical Center—University of Freiburg, Institute of Medical Biometry and Statistics, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Sebastian B. M. Patzelt
- Medical Center—University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (E.R.)
- Private Dental Clinic, 78658 Zimmern ob Rottweil, Germany
| | - Aljaž Iveković
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (A.I.); (L.E.)
| | - Lara Einfalt
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (A.I.); (L.E.)
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Andraž Kocjan
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (A.I.); (L.E.)
| | - Anna-Lena Hillebrecht
- Medical Center—University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (E.R.)
| |
Collapse
|
6
|
Insua A, Galindo-Moreno P, Miron RJ, Wang HL, Monje A. Emerging factors affecting peri-implant bone metabolism. Periodontol 2000 2024; 94:27-78. [PMID: 37904311 DOI: 10.1111/prd.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/05/2023] [Accepted: 09/10/2023] [Indexed: 11/01/2023]
Abstract
Implant dentistry has evolved to the point that standard implant osseointegration is predictable. This is attributed in part to the advancements in material sciences that have led toward improvements in implant surface technology and characteristics. Nonetheless, there remain several cases where implant therapy fails (specifically at early time points), most commonly attributed to factors affecting bone metabolism. Among these patients, smokers are known to have impaired bone metabolism and thus be subject to higher risks of early implant failure and/or late complications related to the stability of the peri-implant bone and mucosal tissues. Notably, however, emerging data have unveiled other critical factors affecting osseointegration, namely, those related to the metabolism of bone tissues. The aim of this review is to shed light on the effects of implant-related factors, like implant surface or titanium particle release; surgical-related factors, like osseodensification or implanted biomaterials; various drugs, like selective serotonin reuptake inhibitors, proton pump inhibitors, anti-hypertensives, nonsteroidal anti-inflammatory medication, and statins, and host-related factors, like smoking, diet, and metabolic syndrome on bone metabolism, and aseptic peri-implant bone loss. Despite the infectious nature of peri-implant biological complications, these factors must be surveyed for the effective prevention and management of peri-implantitis.
Collapse
Affiliation(s)
- Angel Insua
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pablo Galindo-Moreno
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Oral Surgery and Implant Dentistry, University of Granada, Granada, Spain
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Hom-Lay Wang
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alberto Monje
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Periodontology, University of Bern, Bern, Switzerland
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
7
|
Baima G, Romano F, Roato I, Mosca Balma A, Pedraza R, Faga MG, Amoroso F, Orrico C, Genova T, Aimetti M, Mussano F. Efficacy of a Solution Containing 33% Trichloroacetic Acid and Hydrogen Peroxide in Decontaminating Machined vs. Sand-Blasted Acid-Etched Titanium Surfaces. J Funct Biomater 2024; 15:21. [PMID: 38248688 PMCID: PMC10816840 DOI: 10.3390/jfb15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
This in vitro study assessed the efficacy of a solution containing 33% trichloroacetic acid (CCl3COOH; TCA) and hydrogen peroxide (H2O2) in decontaminating machined (MAC) and sand-blasted acid-etched (SBAE) titanium surfaces. A total of 80 titanium disks were prepared (40 MAC and 40 SBAE). Streptococcus sanguinis and Enterococcus faecalis strains were incubated on 36 samples, while the remaining 44 were kept as controls. Roughness analysis and scanning electron microscopy were used to evaluate the surface features before and after TCAH2O2 treatment. The viability of human adipose-derived mesenchymal stem cells (ASCs) after TCAH2O2 decontamination was assessed with a chemiluminescent assay along with cell morphology through fluorescent staining. TCAH2O2 preserved the surface topography of MAC and SBAE specimens. It also effectively eradicated bacteria on both types of specimens without altering the surface roughness (p > 0.05). Also, no significant differences in protein adsorption between the pristine and TCAH2O2-treated surfaces were found (p = 0.71 and p = 0.94). While ASC proliferation remained unchanged on MAC surfaces, a decrease was observed on the decontaminated SBAE specimens at 24 and 48 h (p < 0.05), with no difference at 72 h (p > 0.05). Cell morphology showed no significant changes after 72 h on both surface types even after decontamination. This study suggests TCAH2O2 as a promising decontamination agent for titanium surfaces, with potential implications for peri-implant health and treatment outcomes.
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (F.R.); (I.R.); (A.M.B.); (R.P.); (F.A.); (M.A.); (F.M.)
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| | - Federica Romano
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (F.R.); (I.R.); (A.M.B.); (R.P.); (F.A.); (M.A.); (F.M.)
| | - Ilaria Roato
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (F.R.); (I.R.); (A.M.B.); (R.P.); (F.A.); (M.A.); (F.M.)
| | - Alessandro Mosca Balma
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (F.R.); (I.R.); (A.M.B.); (R.P.); (F.A.); (M.A.); (F.M.)
| | - Riccardo Pedraza
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (F.R.); (I.R.); (A.M.B.); (R.P.); (F.A.); (M.A.); (F.M.)
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
- Institute of Sciences and Technologies for Sustainable Energy and Mobility, National Council of Research, 10135 Turin, Italy;
| | - Maria Giulia Faga
- Institute of Sciences and Technologies for Sustainable Energy and Mobility, National Council of Research, 10135 Turin, Italy;
| | - Federico Amoroso
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (F.R.); (I.R.); (A.M.B.); (R.P.); (F.A.); (M.A.); (F.M.)
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| | - Clarissa Orrico
- Fondazione Ricerca Molinette—Onlus, A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy;
| | | | - Mario Aimetti
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (F.R.); (I.R.); (A.M.B.); (R.P.); (F.A.); (M.A.); (F.M.)
| | - Federico Mussano
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (F.R.); (I.R.); (A.M.B.); (R.P.); (F.A.); (M.A.); (F.M.)
| |
Collapse
|
8
|
Sharma V, Agrawal S, Sharma D, Thorat R, Srichand R, Dalave P. Assessment of Metal Ions Levels in Blood of Dental Implant Patients. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S913-S915. [PMID: 37693986 PMCID: PMC10485422 DOI: 10.4103/jpbs.jpbs_47_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 09/12/2023] Open
Abstract
Background Dental implants use has significantly increased and the concentration of metal ions into blood may have detrimental effect of human body. The present study aimed to determine metal ions levels in blood of dental implants patients. Materials and Methods 48 patients scheduled for dental implant surgery was assessed for measurement of titanium and aluminum pre-operatively and post-operatively at 6 weeks, 3 months, 6 months, and 1 year. Results Out of 48 patients, males were 22 (45.8%), and females were 26 (54.2%). The mean ± SD titanium metal levels in blood pre-operatively was 2.34 ± 0.47 mg/dl, at 6 weeks was 2.35 ± 0.48 mg/dl, at 3 months was 2.37 ± 0.52 mg/dl, at 6 months was 2.37 ± 0.42 mg/dl, and at 1 year was 2.38 ± 0.51 mg/dl. A non-significant difference was seen (P > 0.05). The mean ± SD aluminum metal levels in blood pre-operatively was 4.4 ± 0.12 mg/dl, at 6 weeks was 4.45 ± 0.14 mg/dl, at 3 months was 4.7 ± 0.13 mg/dl, at 6 months was 4.7 ± 0.21 mg/dl, and at 1 year was 4.8 ± 0.17 mg/dl. A non-significant difference was seen (P > 0.05). Conclusion A non- significant increase in titanium and aluminum ions level in blood of patients receiving dental implants was observed.
Collapse
Affiliation(s)
- Vivek Sharma
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, Maharashtra, India
| | - Sneh Agrawal
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, Maharashtra, India
| | - Deepak Sharma
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, Maharashtra, India
| | - Rohit Thorat
- Department of Prosthodontics and Crown and Bridge, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, Maharashtra, India
| | - Reema Srichand
- Department of Prosthodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, Maharashtra, India
| | - Pranita Dalave
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, Maharashtra, India
| |
Collapse
|
9
|
Vishnu J, Kesavan P, Shankar B, Dembińska K, Swiontek Brzezinska M, Kaczmarek-Szczepańska B. Engineering Antioxidant Surfaces for Titanium-Based Metallic Biomaterials. J Funct Biomater 2023; 14:344. [PMID: 37504839 PMCID: PMC10381466 DOI: 10.3390/jfb14070344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Prolonged inflammation induced by orthopedic metallic implants can critically affect the success rates, which can even lead to aseptic loosening and consequent implant failure. In the case of adverse clinical conditions involving osteoporosis, orthopedic trauma and implant corrosion-wear in peri-implant region, the reactive oxygen species (ROS) activity is enhanced which leads to increased oxidative stress. Metallic implant materials (such as titanium and its alloys) can induce increased amount of ROS, thereby critically influencing the healing process. This will consequently affect the bone remodeling process and increase healing time. The current review explores the ROS generation aspects associated with Ti-based metallic biomaterials and the various surface modification strategies developed specifically to improve antioxidant aspects of Ti surfaces. The initial part of this review explores the ROS generation associated with Ti implant materials and the associated ROS metabolism resulting in the formation of superoxide anion, hydroxyl radical and hydrogen peroxide radicals. This is followed by a comprehensive overview of various organic and inorganic coatings/materials for effective antioxidant surfaces and outlook in this research direction. Overall, this review highlights the critical need to consider the aspects of ROS generation as well as oxidative stress while designing an implant material and its effective surface engineering.
Collapse
Affiliation(s)
- Jithin Vishnu
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana 690525, India
| | - Praveenkumar Kesavan
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Balakrishnan Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana 690525, India
| | - Katarzyna Dembińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
10
|
AjitSankardas P, Stein SH, Tipton D, Abhyankar V, Morrow BR. Impact of Metal Particles Released during Ultrasonic Scaling of Titanium Surfaces on Human Gingival Fibroblasts. J Long Term Eff Med Implants 2022; 33:9-22. [PMID: 36382700 DOI: 10.1615/jlongtermeffmedimplants.2022043080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Metal particles found in tissues around dental implants have been proposed to play a pathogenic role in peri-implantitis. Ultrasonic scaling has been suggested as a mechanism by which these particles can be inadvertently released into surrounding tissues. Furthermore, risk factors like diabetes can result in exacerbation of this inflammatory condition. The current study aimed to analyze metal particles released from titanium surfaces during ultrasonic scaling and their impact on pro-inflammatory cytokine production by human gingival fibroblasts. METHODS Metal particles generated from ultrasonic scaling of titanium discs using two different tips (metal and poly-etheretherketone tips) were characterized using scanning electron microscopy and elemental analysis. Endotoxin levels and Human gingival fibroblast viability, in the presence commercial and ultrasonically generated particles were determined. Fibroblasts, cultured in high or low glucose growth medium, were incubated with commercial titanium particles or ultrasonically generated particles in the presence or absence of interluekin-1β. Interleukin 6 and interleukin 8 production were then quantified using Enzyme linked immunosorbent assay. RESULTS Analysis of particles after scaling of titanium discs showed significant levels of titanium particles. Commercial titanium particles and generated particles had no effect of fibroblast viability. Endotoxin levels of all particles were too low to stimulate HGF cells. IL-1β significantly stimulated IL-6 and IL-8 production. However, commercial, and generated particles generally had no significant effect on IL- 6 and IL-8 production. CONCLUSION Our study concluded that particles generated during ultrasonic scaling had no significant effect on viability of HGF cells and cytokine production.
Collapse
Affiliation(s)
- Pooja AjitSankardas
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - Sidney H Stein
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - David Tipton
- Department of Bioscience Research, University of Tennessee Health Science Center, College of Dentistry, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - Vrushali Abhyankar
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - Brian R Morrow
- Department of Bioscience Research, University of Tennessee Health Science Center, College of Dentistry, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| |
Collapse
|
11
|
Gaur S, Agnihotri R, Albin S. Bio-Tribocorrosion of Titanium Dental Implants and Its Toxicological Implications: A Scoping Review. ScientificWorldJournal 2022; 2022:4498613. [PMID: 36312451 PMCID: PMC9616655 DOI: 10.1155/2022/4498613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Bio-tribocorrosion is a phenomenon that combines the essentials of tribology (friction, wear, and lubrication) and corrosion with microbiological processes. Lately, it has gained attention in implant dentistry because dental implants are exposed to wear, friction, and biofilm formation in the corrosive oral environment. They may degrade upon exposure to various microbial, biochemical, and electrochemical factors in the oral cavity. The mechanical movement of the implant components produces friction and wear that facilitates the release of metal ions, promoting adverse oro-systemic reactions. This review describes the bio-tribocorrosion of the titanium (Ti) dental implants in the oral cavity and its toxicological implications. The original research related to the bio-tribo or tribocorrosion of the dental implants was searched in electronic databases like Medline (Pubmed), Embase, Scopus, and Web of Science. About 34 studies included in the review showed that factors like the type of Ti, oral biofilm, acidic pH, fluorides, and micromovements during mastication promote bio-tribocorrosion of the Ti dental implants. Among the various grades of Ti, grade V, i.e., Ti6Al4V alloy, is most susceptible to tribocorrosion. Oral pathogens like Streptococcus mutans and Porphyromonas gingivalis produce acids and lipopolysaccharides (LPS) that cause pitting corrosion and degrade the TiO2. The low pH and high fluoride concentration in saliva hinder passive film formation and promote metal corrosion. The released metal ions promote inflammatory reactions and bone destruction in the surrounding tissues resulting in peri-implantitis, allergies, and hyper-sensitivity reactions. However, further validation of the role of bio-tribocorrosion on the durability of the Ti dental implants and Ti toxicity is warranted through clinical trials.
Collapse
Affiliation(s)
- Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Rupali Agnihotri
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, India
| | - Sacharia Albin
- Engineering Department, Norfolk State University, Norfolk, VA 23504, USA
| |
Collapse
|
12
|
Meyer F, Enax J, Amaechi BT, Limeback H, Fabritius HO, Ganss B, Pawinska M, Paszynska E. Hydroxyapatite as Remineralization Agent for Children's Dental Care. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.859560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Children are prone to develop dental caries. This is supported by epidemiological data confirming early childhood caries (ECC) as a highly prevalent disease affecting more than every second child worldwide. ECC is known to result from an imbalance between re- and demineralization where demineralization dominates due to frequent acid production by cariogenic bacteria present in oral biofilms. The application of oral care formulations containing remineralizing agents helps to prevent dental caries. As young children are sensitive and usually swallow (intended or unintended) a majority of toothpaste or other oral care products during daily dental care, all ingredients, especially the actives, should be non-toxic. Biomimetic hydroxyapatite [HAP; Ca5(PO4)3(OH)] is known to have favorable remineralizing properties combined with an excellent biocompatibility, i.e., it is safe if accidently swallowed. Several clinical trials as well as in situ and in vitro studies have shown that HAP remineralizes enamel and dentin. Remineralization occurs due to deposition of HAP particles on tooth surfaces forming mineral-mineral bridges with enamel crystals, but also indirectly through calcium and phosphate ions release as well as HAP's buffering properties in acidic environments (i.e., in plaque). HAP induces a homogenous remineralization throughout the subsurface enamel lesions. This review summarizes the current evidence showing HAP as an effective remineralizing agent in oral care products for children. Additional studies showing also further beneficial effects of HAP such as the reduction of biofilm formation and the relief of hypersensitivity in children with molar incisor hypomineralization (MIH). It can be concluded that HAP is an effective and safe remineralizing agent for child dental care.
Collapse
|
13
|
Electrochemical Corrosion of Titanium and Titanium Alloys Anodized in H2SO4 and H3PO4 Solutions. COATINGS 2022. [DOI: 10.3390/coatings12030325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Titanium and its alloys have superior electrochemical properties compared to other alloy systems due to the formation of a protective TiO2 film on metal surfaces. The ability to generate the protective oxide layer will depend upon the type of alloy to be used. The aim of this work was to characterize the electrochemical corrosion behavior of titanium Ti-CP2 and alloys Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-4V, and Ti Beta-C. Samples were anodized in 1 M H2SO4 and H3PO4 solutions with a current density of 0.025 A/cm2. Electrochemical tests on anodized alloys were carried out using a three-electrode cell and exposed in two electrolytes, i.e., 3.5 wt % NaCl and 3.5 wt % H2SO4 solutions at room temperature. Scanning electron microscopy (SEM) was used to observe the morphology of anodized surfaces. The electrochemical techniques used were cyclic potentiodynamic polarization (CPP) and electrochemical noise (EN), based on the ASTM-G61 and G199 standards. Regarding EN, two methods of data analysis were used: the frequency domain (power spectral density, PSD) and time-frequency domain (discrete wavelet transform). For non-anodized alloys, the results by CCP and EN indicate icorr values of ×10−6 A/cm2. However, under anodizing conditions, the icorr values vary from ×10−7 to ×10−9 A/cm2. The PSD Ψ0 values are higher for non-anodized alloys, while in anodized conditions, the values range from −138/−122 dBi (A2·Hz−1)1/2 to −131/−180 dBi (A2·Hz−1)1/2. Furthermore, the results indicated that the alloys anodized in the H3PO4 bath showed an electrochemical behavior that can be associated with a more homogeneous passive layer when exposed to the 3.5 wt % NaCl electrolyte. Alloys containing more beta-phase stabilizers formed a less homogeneous anodized layer. These alloys are widely used in aeronautical applications; thus, it is essential that these alloys have excellent corrosion performance in chloride and acid rain environments.
Collapse
|
14
|
Vinel A, Al Halabi A, Roumi S, Le Neindre H, Millavet P, Simon M, Cuny C, Barthet JS, Barthet P, Laurencin-Dalicieux S. Non-surgical Periodontal Treatment: SRP and Innovative Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:303-327. [DOI: 10.1007/978-3-030-96881-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Shuto T, Mine Y, Makihira S, Nikawa H, Wachi T, Kakimoto K. Alterations to Titanium Surface Depending on the Fluorides and Abrasives in Toothpaste. MATERIALS (BASEL, SWITZERLAND) 2021; 15:51. [PMID: 35009198 PMCID: PMC8746240 DOI: 10.3390/ma15010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Fluoride and abrasives in toothpastes may cause corrosion and deterioration of the titanium used for implants and other prostheses. The purpose of this study was to investigate how the presence or absence and types of fluoride and abrasives affected the titanium surface texture. Brushing with toothpastes was performed on pure-titanium discs using an abrasive testing machine. Unprocessed titanium discs without brushing were used as control samples. Surface roughness, color, and gloss of titanium were measured and the differences compared with the control were analyzed. Additionally, titanium surfaces and abrasives in toothpastes were observed using a scanning electron microscope to compare the surface texture of each sample. Some toothpastes (abrasive+) significantly increased the difference in surface roughness, color, and gloss, compared with ultrapure water. Toothpaste (fluoride+/abrasive+) that had many polygonal abrasive particles led to the largest color differences and exhibited notable scratches and a larger number of contaminant- or corrosion-like black spots. In contrast, brushing with toothpaste without fluoride or abrasives (fluoride-/abrasive-) caused little change to the titanium surface. These results suggest that both fluoride and abrasives in toothpaste used for brushing may be factors that affect surface texture and corrosion resistance of titanium.
Collapse
Affiliation(s)
- Takahiro Shuto
- Department of Oral Health Engineering, Faculty of Health Sciences, Osaka Dental University, 1-4-4 Makinohonmachi, Osaka 573-1144, Japan;
| | - Yuichi Mine
- Department of Medical System Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan;
| | - Seicho Makihira
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan; (S.M.); (H.N.)
| | - Hiroki Nikawa
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan; (S.M.); (H.N.)
| | - Takanori Wachi
- Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan;
| | - Kazutoshi Kakimoto
- Department of Oral Health Engineering, Faculty of Health Sciences, Osaka Dental University, 1-4-4 Makinohonmachi, Osaka 573-1144, Japan;
| |
Collapse
|
16
|
Abstract
The high specific strength, good corrosion resistance, and great biocompatibility make titanium and its alloys the ideal materials for biomedical metallic implants. Ti-6Al-4V alloy is the most employed in practical biomedical applications because of the excellent combination of strength, fracture toughness, and corrosion resistance. However, recent studies have demonstrated some limits in biocompatibility due to the presence of toxic Al and V. Consequently, scientific literature has reported novel biomedical β-Ti alloys containing biocompatible β-stabilizers (such as Mo, Ta, and Zr) studying the possibility to obtain similar performances to the Ti-6Al-4V alloys. The aim of this review is to highlight the corrosion resistance of the passive layers on biomedical Ti-6Al-4V and β-type Ti alloys in the human body environment by reviewing relevant literature research contributions. The discussion is focused on all those factors that influence the performance of the passive layer at the surface of the alloy subjected to electrochemical corrosion, among which the alloy composition, the method selected to grow the oxide coating, and the physicochemical conditions of the body fluid are the most significant.
Collapse
|
17
|
Afradh KM, Gopi G, Shanmugasundaram S, Krishnakumar Raja VB. Evaluation of serum metal ion levels in dental implant patients: A prospective study. Ann Maxillofac Surg 2021; 11:261-265. [PMID: 35265495 PMCID: PMC8848711 DOI: 10.4103/ams.ams_70_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/03/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction: Titanium is the most commonly used bio-inert implant material. Nevertheless, there is a possibility of systemic release of metal ions, which could have clinical implications like implant failure and toxicity. This prospective study focuses on the evaluation of serum metal ion levels in patients receiving dental implants. The aim of the study is to evaluate the release of titanium, aluminium, and vanadium from dental implants by comparing the preoperative and postoperative serum levels of these ions. Methodology: Serum samples were collected from 30 patients undergoing dental implant placement preoperatively and postoperatively at intervals of 6 weeks, 3, 6, and 12 months. These samples were analyzed for titanium, aluminium, and vanadium levels using Inductively Coupled Plasma Optical Emission Spectrometry. The difference in preoperative and postoperative serum levels was measured and statistically analyzed using the paired t-test. Results: There was a slight difference in the postoperative levels of titanium and aluminium (2.30 and 4.07 mg/dl) as compared to the preoperative levels (2.28 and 2.30 mg/dl), which was statistically insignificant (P > 0.5). The serum levels of vanadium were too insignificant to be detected by the instrument (<0.0088 mg/dl). Discussion: Mild increase in the titanium and aluminium levels in blood serum was noted. These metallic ion levels might increase significantly due to which further clinical research with larger sample sizes and a long-term follow-up period is required to evaluate the clinical effects of metallic ion release from dental implants. There is no significant difference in the serum metal ion levels before and after the implant placement, although a little increase is observed in the aluminium ion levels after the implant placement.
Collapse
|
18
|
Batool F, Özçelik H, Stutz C, Gegout PY, Benkirane-Jessel N, Petit C, Huck O. Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration. J Tissue Eng 2021; 12:20417314211041428. [PMID: 34721831 PMCID: PMC8554547 DOI: 10.1177/20417314211041428] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022] Open
Abstract
Control of inflammation is indispensable for optimal oral wound healing and tissue regeneration. Several biomaterials have been used to enhance the regenerative outcomes; however, the biomaterial implantation can ensure an immune-inflammatory response. The interface between the cells and the biomaterial surface plays a critical role in determining the success of soft and hard tissue regeneration. The initial inflammatory response upon biomaterial implantation helps in tissue repair and regeneration, however, persistant inflammation impairs the wound healing response. The cells interact with the biomaterials through extracellular matrix proteins leading to protein adsorption followed by recruitment, attachment, migration, and proliferation of several immune-inflammatory cells. Physical nanotopography of biomaterials, such as surface proteins, roughness, and porosity, is crucial for driving cellular attachment and migration. Similarly, modification of scaffold surface chemistry by adapting hydrophilicity, surface charge, surface coatings, can down-regulate the initiation of pro-inflammatory cascades. Besides, functionalization of scaffold surfaces with active biological molecules can down-regulate pro-inflammatory and pro-resorptive mediators' release as well as actively up-regulate anti-inflammatory markers. This review encompasses various strategies for the optimization of physical, chemical, and biological properties of biomaterial and the underlying mechanisms to modulate the immune-inflammatory response, thereby, promoting the tissue integration and subsequent soft and hard tissue regeneration potential of the administered biomaterial.
Collapse
Affiliation(s)
- Fareeha Batool
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Céline Stutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Pierre-Yves Gegout
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Catherine Petit
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Huck
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
19
|
Markowska-Szczupak A, Endo-Kimura M, Paszkiewicz O, Kowalska E. Are Titania Photocatalysts and Titanium Implants Safe? Review on the Toxicity of Titanium Compounds. NANOMATERIALS 2020; 10:nano10102065. [PMID: 33086609 PMCID: PMC7603142 DOI: 10.3390/nano10102065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Titanium and its compounds are broadly used in both industrial and domestic products, including jet engines, missiles, prostheses, implants, pigments, cosmetics, food, and photocatalysts for environmental purification and solar energy conversion. Although titanium/titania-containing materials are usually safe for human, animals and environment, increasing concerns on their negative impacts have been postulated. Accordingly, this review covers current knowledge on the toxicity of titania and titanium, in which the behaviour, bioavailability, mechanisms of action, and environmental impacts have been discussed in detail, considering both light and dark conditions. Consequently, the following conclusions have been drawn: (i) titania photocatalysts rarely cause health and environmental problems; (ii) despite the lack of proof, the possible carcinogenicity of titania powders to humans is considered by some authorities; (iii) titanium alloys, commonly applied as implant materials, possess a relatively low health risk; (iv) titania microparticles are less toxic than nanoparticles, independent of the means of exposure; (v) excessive accumulation of titanium in the environment cannot be ignored; (vi) titanium/titania-containing products should be clearly marked with health warning labels, especially for pregnant women and young children; (vi) a key knowledge gap is the lack of comprehensive data about the environmental content and the influence of titania/titanium on biodiversity and the ecological functioning of terrestrial and aquatic ecosystems.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
- Correspondence: (A.M.-S.); (E.K.)
| | - Maya Endo-Kimura
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
- Correspondence: (A.M.-S.); (E.K.)
| |
Collapse
|
20
|
Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2020; 124:274-349. [PMID: 32811666 DOI: 10.1016/j.prosdent.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/20/2023]
Abstract
This comprehensive review of the 2019 restorative dental literature is offered to inform busy dentists regarding remarkable publications and noteworthy progress made in the profession. Developed by the Scientific Investigation Committee of the American Academy of Restorative Dentistry, each author brings discipline-specific expertise to 1 of 8 sections of the report: (1) prosthodontics; (2) periodontics, alveolar bone, and peri-implant tissues; (3) implant dentistry; (4) dental materials and therapeutics; (5) occlusion and temporomandibular disorders; (6) sleep-related breathing disorders; (7) oral medicine and oral and maxillofacial surgery; and (8) dental caries and cariology. The report targets important information likely to influence day-to-day dental treatment decisions. Each review is not intended to stand alone but to update interested readers so that they may visit source material when greater detail is desired. As the profession moves toward evidence-based clinical decision-making, an incredible volume of potentially valuable dental literature continues to increase. It is the intention of this review and its authors to provide assistance in negotiating the extensive dental literature published in 2019. It is our hope that readers find this work useful in the clinical management of dental patients.
Collapse
|
21
|
Chen WQ, Zhang SM, Qiu J. Surface analysis and corrosion behavior of pure titanium under fluoride exposure. J Prosthet Dent 2020; 124:239.e1-239.e8. [PMID: 32402439 DOI: 10.1016/j.prosdent.2020.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
Abstract
STATEMENT OF PROBLEM The corrosive effects of oral fluoride products on titanium have been reported, and chronic fluorosis, which causes hyperfluoemia, is one of the world's health problems. Nevertheless, the relationship between high serum fluoride and corrosion on the titanium surface, which might have adverse effects on titanium implant osseointegration, has not been elucidated. PURPOSE The purpose of this in vitro study was to investigate the corrosion behavior of pure titanium exposed to high serum fluoride with different pH values based on surface analysis. MATERIAL AND METHODS Pure titanium specimens, exposed to different electrolytes with 0.04 and 0.4 ppm NaF at pH 7.3 and 5.0 values, were examined for surface microstructure by using scanning electron microscopy (SEM) and for surface element composition with X-ray photoelectron spectroscopy (XPS). The corrosion behavior and metal ion release of specimens immersed in the Hanks' balanced salt solution (HBSS) containing 0.04 and 0.4 ppm serum fluoride concentrations (NaF) at 7.3 and 5.0 pH values were measured by electrochemical impedance spectroscopy (EIS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). RESULTS Pitting holes were observed on pure titanium surfaces exposed to high serum fluoride. The surfaces became rougher with the increase of serum fluoride concentration, especially under acidic conditions. XPS analysis revealed a reduction of dominant titanium dioxide (TiO2) on the pure titanium surface under serum fluoride exposure, corresponding to an increase in the relative level of F. EIS data showed an active corrosion behavior of pure titanium exposed to high serum fluoride and gradually decreased corrosion resistance with increasing concentration of serum fluoride, which was more severe under acidic conditions. The release of titanium ions was also induced by high serum fluoride and acidic conditions. CONCLUSIONS High serum fluoride had a negative influence on the corrosion behavior of pure titanium. The titanium oxide film barrier could be broken down in the fluoride ions condition, and the corrosion resistance of pure titanium decreased with the increasing concentration of serum fluoride. The increased corrosion susceptibility of pure titanium accelerated the release of titanium ions after exposure to high serum fluoride; this was more pronounced in an acidic environment.
Collapse
Affiliation(s)
- Wan-Qing Chen
- Graduate student, Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Song-Mei Zhang
- Resident, Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY
| | - Jing Qiu
- Professor, Department of Oral Implantology, Affiliated Hospital of Stomatology, Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
22
|
Kim KT, Eo MY, Nguyen TTH, Kim SM. General review of titanium toxicity. Int J Implant Dent 2019; 5:10. [PMID: 30854575 PMCID: PMC6409289 DOI: 10.1186/s40729-019-0162-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Background Titanium is a commonly used inert bio-implant material within the medical and dental fields. Although the use of titanium is thought to be safe with a high success rate, in some cases, there are rare reports of problems caused by titanium. In most of these problematic reports, only individual reports are dominant and comprehensive reporting has not been performed. This comprehensive article has been prepared to review the toxicity of titanium materials within the medical and dental fields. Methods We used online searching tools including MEDLINE (PubMed), Embase, Cochrane Library, and Google Scholar by combining keywords such as “titanium implant toxicity,” “titanium implant corrosion,” “titanium implant allergy,” and “yellow nail syndrome.” Recently updated data has been collected and compiled into one of four categories: “the toxicity of titanium,” “the toxicity of titanium alloys,” “the toxicity of titanium implants,” and “diseases related to titanium.” Results Recent studies with regard to titanium toxicity have been increasing and have now expanded to the medical field in addition to the fields of environmental research and basic science. Problems that may arise in titanium-based dental implants include the generation of titanium and titanium alloy particles and ions deposited into surrounding tissues due to the corrosion and wear of implants, resulting in bone loss due to inflammatory reactions, which may lead to osseointegration failure of the dental implant. These titanium ions and particles are systemically deposited and can lead to toxic reactions in other tissues such as yellow nail syndrome. Additionally, implant failure and allergic reactions can occur due to hypersensitivity reactions. Zirconia implants can be considered as an alternative; however, limitations still exist due to a lack of long-term clinical data. Conclusions Clinicians should pay attention to the use of titanium dental implants and need to be aware of the problems that may arise from the use of titanium implants and should be able to diagnose them, in spite of very rare occurrence. Within the limitation of this study, it was suggested that we should be aware the rare problems of titanium toxicity.
Collapse
Affiliation(s)
- Kyeong Tae Kim
- Department of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Mi Young Eo
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Truc Thi Hoang Nguyen
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Soung Min Kim
- Department of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea. .,Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea. .,Oral and Maxillofacial Microvascular Reconstruction LAB, Ghana Health Service, Regional Hospital, P.O. Box 27, Sunyani, Brong Ahafo, Ghana.
| |
Collapse
|