1
|
Dai X, Liang R, Dai M, Li X, Zhao W. Smoking Impacts Alzheimer's Disease Progression Through Oral Microbiota Modulation. Mol Neurobiol 2025; 62:19-44. [PMID: 38795302 DOI: 10.1007/s12035-024-04241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Alzheimer's disease (AD) is an important public health challenge with a limited understanding of its pathogenesis. Smoking is a significant modifiable risk factor for AD progression, and its specific mechanism is often interpreted from a toxicological perspective. However, microbial infections also contribute to AD, with oral microbiota playing a crucial role in its progression. Notably, smoking alters the ecological structure and pathogenicity of the oral microbiota. Currently, there is no systematic review or summary of the relationship between these three factors; thus, understanding this association can help in the development of new treatments. This review summarizes the connections between smoking, AD, and oral microbiota from existing research. It also explores how smoking affects the occurrence and development of AD through oral microbiota, and examines treatments for oral microbiota that delay the progression of AD. Furthermore, this review emphasizes the potential of the oral microbiota to act as a biomarker for AD. Finally, it considers the feasibility of probiotics and oral antibacterial therapy to expand treatment methods for AD.
Collapse
Affiliation(s)
- Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Liang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manqiong Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Song Z, Meng Y, Fricker M, Li X, Tian H, Tan Y, Qin L. The role of gut-lung axis in COPD: Pathogenesis, immune response, and prospective treatment. Heliyon 2024; 10:e30612. [PMID: 38742057 PMCID: PMC11089359 DOI: 10.1016/j.heliyon.2024.e30612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and healthcare burden worldwide. The progression of COPD is a combination of genetic predisposition and environmental factors, primarily cigarette smoking, and the underlying mechanisms are still unknown. Intestinal microecology impacts host immunity, metabolism, and resistance to pathogenic infections, which may be involved in pulmonary disease. Moreover, substantial interaction occurs between the intestinal and respiratory immune niches. After reviewing nearly 500 articles, we found the gut-lung axis plays an important role in the development of COPD. COPD patients often have dysbiosis of the intestinal microenvironment, which can affect host immunity through a series of mechanisms, exacerbating or protecting against COPD progression. This paper summarizes how the gut-lung axis influences COPD, including the alterations of intestinal microecology, the pathological mechanisms, and the involved immune responses. Finally, we summarize the latest research advances in COPD treatment from the perspective of regulating the gut-lung axis and intestinal immunity and evaluate the potential value of the gut-lung axis in improving COPD prognosis.
Collapse
Affiliation(s)
- Zhi Song
- The Second Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yifei Meng
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia
| | - Xin'ao Li
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haochen Tian
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Shunsheng Han C. Prebiotic supplements correct oral probiotic deficiency for lasting allergy relief. Am J Transl Res 2024; 16:136-146. [PMID: 38322553 PMCID: PMC10839399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
The prevalence of allergic rhinitis (common allergies) has increased in the last fifty years, from less than one percent to more than twenty-six percent of the population. Today, more than one hundred million people in the US suffer seasonal or yearlong allergies. The hygiene hypothesis was proposed 30 years ago as a potential explanation for this phenomenon, and we built on it with the specific oral hygiene hypothesis. Our longitudinal pilot study suggested that oral probiotic deficiency is the cause of allergic rhinitis. This clinical trial served to verify our theory and evaluate the effectiveness of AllerPops for allergy relief. We carried out a phase II, randomized, double-blind, controlled, single-center 21-day study to investigate the efficacy of AllerPops to reduce nasal symptoms in 72 adult volunteers with seasonal/year-long nasal allergies and its impact on oral microbiome using amplicon sequencing of 16S ribosome RNA genes. The volunteers were randomly separated into two equally sized groups: a control group and an investigational group. Both groups were given at least three doses of AllerPops, taken every other day, and asked to answer questions about observed allergy symptoms. Volunteers in the investigational group cleaned their mouths before taking a dose and slowly dissolve the lozenge, while those in the control did not. Through this trial, we show that AllerPops prebiotic supplements are effective in providing sustained allergy relief (P = 0.002) and can modulate oral beneficial bacteria that produce short-chain fatty acids (SCFA), such as Fusobacteria, Butyrivibrio, and Peptostreptococcus. The clinical improvements correlated with changes in the relative abundance of probiotics significantly: Fusobacteria (R = 0.32, P = 0.009), Butyrivibrio (R = 0.25, P = 0.044), and Peptostreptococcus (R = 0.34, P = 0.005). These results point to the root cause of allergic rhinitis: the lack of oral probiotics that produce SCFA to pacify the immune systems. Future study of AllerPops' theory will help society redefine the best oral hygiene practice to protect oral probiotics so that we may prevent allergic and autoimmune diseases and dental/gum infections. The trial was retrospectively registered at clinicaltrials.com, with registration number NCT05956691, on 21/07/2023.
Collapse
|
4
|
Cheng TY, Chang CC, Luo CS, Chen KY, Yeh YK, Zheng JQ, Wu SM. Targeting Lung-Gut Axis for Regulating Pollution Particle-Mediated Inflammation and Metabolic Disorders. Cells 2023; 12:901. [PMID: 36980242 PMCID: PMC10047528 DOI: 10.3390/cells12060901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Cigarette smoking (CS) or ambient particulate matter (PM) exposure is a risk factor for metabolic disorders, such as insulin resistance (IR), increased plasma triglycerides, hyperglycemia, and diabetes mellitus (DM); it can also cause gut microbiota dysbiosis. In smokers with metabolic disorders, CS cessation decreases the risks of serious pulmonary events, inflammation, and metabolic disorder. This review included recent studies examining the mechanisms underlying the effects of CS and PM on gut microbiota dysbiosis and metabolic disorder development; one of the potential mechanisms is the disruption of the lung-gut axis, leading to gut microbiota dysbiosis, intestinal dysfunction, systemic inflammation, and metabolic disease. Short-chain fatty acids (SCFAs) are the primary metabolites of gut bacteria, which are derived from the fermentation of dietary fibers. They activate G-protein-coupled receptor (GPCR) signaling, suppress histone deacetylase (HDAC) activity, and inhibit inflammation, facilitating the maintenance of gut health and biofunction. The aforementioned gut microbiota dysbiosis reduces SCFA levels. Treatment targeting SCFA/GPCR signaling may alleviate air pollution-associated inflammation and metabolic disorders, which involve lung-gut axis disruption.
Collapse
Affiliation(s)
- Tzu-Yu Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Cheng Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yun-Kai Yeh
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jing-Quan Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
5
|
Monje A, Kan JY, Borgnakke W. Impact of local predisposing/precipitating factors and systemic drivers on peri‐implant diseases. Clin Implant Dent Relat Res 2022. [PMID: 36533411 DOI: 10.1111/cid.13155] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Strong evidence suggests the infectious nature of peri-implant diseases occurring in susceptible hosts. Epidemiological reports, though, indicate that peri-implantitis is a site-specific entity. Hence, the significance of local factors that may predispose/precipitate plaque accumulation and the impact of systemic drivers that alter the immune response are relevant in the prevention and management of peri-implant disorders. PURPOSE The purpose of the present review is to shed light on the significance of local and systemic factors on peri-implant diseases, making special emphasis on the associations with peri-implantitis. METHODS The biologic plausibility and supporting evidence aiming at providing a concluding remark were explored in the recent scientific literature for local predisposing/precipitating factors and systemic drivers related to peri-implant diseases. RESULTS Local predisposing factors such as soft tissue characteristics, implant position and prosthetic design proved being strongly associated with the occurrence of peri-implant diseases. Hard tissue characteristics, however, failed to demonstrate having a direct association with peri-implant diseases. Robust data points toward the strong link between residual sub-mucosal cement and peri-implant diseases, while limited data suggests the impact of residual sub-mucosal floss and peri-implantitis. Systemic drivers/habits such as hyperglycemia and smoking showed a strong negative impact on peri-implantitis. However, there is insufficient evidence to claim for any link between metabolic syndrome, atherosclerotic cardiovascular disease, and obesity and peri-implant diseases. CONCLUSION Local predisposing/precipitating factors and systemic drivers may increase the risk of peri-implant diseases. Therefore, comprehensive anamnesis of the patients, educational/motivational programs and exhaustive prosthetically-driven treatment planning must be fostered aiming at reducing the rate of biological complications in implant dentistry.
Collapse
Affiliation(s)
- Alberto Monje
- Department of Periodontology and Oral Medicine University of Michigan Ann Arbor Michigan USA
- Department of Periodontology Universitat Internacional de Catalunya Barcelona Spain
- Department of Periodontology, ZMK University of Bern Bern CH Switzerland
| | - Joseph Y. Kan
- Department of Implantology Loma Linda University Loma Linda California USA
| | - Wenche Borgnakke
- Department of Periodontology and Oral Medicine University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
6
|
Lower plasma concentrations of short-chain fatty acids (SCFAs) in patients with ADHD. J Psychiatr Res 2022; 156:36-43. [PMID: 36228390 DOI: 10.1016/j.jpsychires.2022.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Short-chain fatty acids (SCFAs), produced during bacterial fermentation, have been shown to be mediators in the microbiota-gut-brain axis. This axis has been proposed to influence psychiatric symptoms seen in attention deficit hyperactivity disorder (ADHD). However, there is no report of plasma SCFA concentrations in ADHD. The aim of this study was to explore the plasma concentrations of SCFAs in children and adults with ADHD and the possible factors that could influence those levels. We collected data on age group, sex, serum vitamin D levels, delivery mode, body mass index, diet, medication and blood samples from 233 ADHD patients and 36 family-related healthy controls. The concentrations of SCFAs and the intermediary metabolite succinic acid, were measured using liquid chromatography-mass spectrometry. Adults with ADHD had lower plasma concentrations of formic, acetic, propionic and succinic acid than their healthy family members. When adjusting for SCFA-influential factors among those with ADHD, children had lower concentrations of formic, propionic and isovaleric acid than adults, and those who had more antibiotic medications during the last 2 years had lower concentrations of formic, propionic and succinic acid. When adjusting for antibiotic medication, we found that among children, those currently on stimulant medication had lower acetic and propionic acid levels, and adults with ADHD had lower formic and propionic acid concentrations than adult healthy family members. In all, our findings show lower-than-normal plasma concentrations of SCFAs in ADHD explained in-part by antibiotic medication, age and stimulant medication. Whether or not this is of clinical significance is yet to be explored.
Collapse
|
7
|
Qian Y, Wang W, Chen D, Zhu Y, Wang Y, Wang X. Cigarette smoking induces the activation of RIP2/caspase-12/NF- κB axis in oral squamous cell carcinoma. PeerJ 2022; 10:e14330. [PMID: 36353608 PMCID: PMC9639427 DOI: 10.7717/peerj.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Cigarette smoking is one of the major risk factors for the occurrence and progression of oral squamous cell carcinoma (OSCC). Receptor-interacting protein 2 (RIP2) has been involved in mucosal immunity and homeostasis via a positive regulation of nuclear factor κB (NF-κB) transcription factor activity. Caspase-12 can bind to RIP2 and dampen mucosal immunity. However, the roles of RIP2/NF-κB and caspase-12 in OSCC induced by cigarette smoking remain unknown. Herein, we investigated the effects of cigarette smoking on the RIP2/NF-κB and caspase-12 in human OSCC tissues and OSCC cell lines (HSC-3). We first observed that RIP2 mediated NF-κB activation and caspase-12 upregulation in OSCC patients with cigarette smoking and cigarette smoke extract (CSE)-treated HSC-3 cells, respectively. Moreover, we confirmed that the downregulation of RIP2 by siRNA resulted in the reduction of caspase-12 expression and NF-κB activity in the presence of CSE treatment in vitro. In summary, our results indicated that cigarette smoking induced the activation of the RIP2/caspase-12/NF-κB axis and it played an important role in the development of OSCC. The RIP2/caspase-12/NF-κB axis could be a target for OSCC prevention and treatment in the future.
Collapse
Affiliation(s)
- Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Deyan Chen
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yanan Zhu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Xiang Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Corrêa RO, Castro PR, Moser R, Ferreira CM, Quesniaux VFJ, Vinolo MAR, Ryffel B. Butyrate: Connecting the gut-lung axis to the management of pulmonary disorders. Front Nutr 2022; 9:1011732. [PMID: 36337621 PMCID: PMC9631819 DOI: 10.3389/fnut.2022.1011732] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites released by bacterial components of the microbiota. These molecules have a wide range of effects in the microbiota itself, but also in host cells in which they are known for contributing to the regulation of cell metabolism, barrier function, and immunological responses. Recent studies indicate that these molecules are important players in the gut-lung axis and highlight the possibility of using strategies that alter their intestinal production to prevent or treat distinct lung inflammatory diseases. Here, we review the effects of the SCFA butyrate and its derivatives in vitro and in vivo on murine models of respiratory disorders, besides discussing the potential therapeutic use of butyrate and the other SCFAs in lung diseases.
Collapse
Affiliation(s)
- Renan Oliveira Corrêa
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Laboratory of Intestinal Immunology, Institut Imagine, INSERM U1163, Paris, France
| | - Pollyana Ribeiro Castro
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Caroline Marcantonio Ferreira
- Department of Pharmaceutics Science, Institute of Environmental, Chemistry, and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | | | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, Institute of Biology, University of Campinas, Campinas, Brazil
- Center for Research on Obesity and Comorbidities, University of Campinas, Campinas, Brazil
- *Correspondence: Marco Aurélio Ramirez Vinolo,
| | - Bernhard Ryffel
- CNRS, INEM, UMR 7355, University of Orléans, Orléans, France
- Bernhard Ryffel,
| |
Collapse
|
9
|
Predictive and Preventive Mucosal Communications in Particulate Matter Exposure-Linked Renal Distress. J Pers Med 2021; 11:jpm11020118. [PMID: 33670188 PMCID: PMC7916923 DOI: 10.3390/jpm11020118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
Despite research into the epidemiological link between exposure to particulate matter (PM) and renal disorder, there is limited information available on the etiological complexity and molecular mechanisms. Among the early responsive tissues to PM exposure, the mucosal barrier of the airway and alimentary tract may be a crucial source of pathologic mediators leading to inflammatory renal diseases, including chronic kidney disease (CKD). Given that harmful responses and products in mucosa exposed to PM may enter the circulation and cause adverse outcomes in the kidney, the aim of the present review was to address the impact of PM exposure on the mucosal barrier and the vicious feedback cycle in the mucosal environment. In addition to the PM-induced alteration of mucosal barrier integrity, the microbial community has a pivotal role in the xenobiotic metabolism and individual susceptibility to PM toxicity. The dysbiosis-induced deleterious metabolites of PM and nutrients are introduced systemically via a disrupted mucosal barrier, contributing to renal injuries and pathologic severity. In contrast, the progress of mucosa-associated renal disease is counteracted by endogenous protective responses in the mucosa. Along with direct elimination of the toxic mediators, modulators of the mucosal microbial community should provide a promising platform for mucosa-based personalized interventions against renal disorders caused by air pollution.
Collapse
|
10
|
Coppola S, Avagliano C, Calignano A, Berni Canani R. The Protective Role of Butyrate against Obesity and Obesity-Related Diseases. Molecules 2021; 26:molecules26030682. [PMID: 33525625 PMCID: PMC7865491 DOI: 10.3390/molecules26030682] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Worldwide obesity is a public health concern that has reached pandemic levels. Obesity is the major predisposing factor to comorbidities, including type 2 diabetes, cardiovascular diseases, dyslipidemia, and non-alcoholic fatty liver disease. The common forms of obesity are multifactorial and derive from a complex interplay of environmental changes and the individual genetic predisposition. Increasing evidence suggest a pivotal role played by alterations of gut microbiota (GM) that could represent the causative link between environmental factors and onset of obesity. The beneficial effects of GM are mainly mediated by the secretion of various metabolites. Short-chain fatty acids (SCFAs) acetate, propionate and butyrate are small organic metabolites produced by fermentation of dietary fibers and resistant starch with vast beneficial effects in energy metabolism, intestinal homeostasis and immune responses regulation. An aberrant production of SCFAs has emerged in obesity and metabolic diseases. Among SCFAs, butyrate emerged because it might have a potential in alleviating obesity and related comorbidities. Here we reviewed the preclinical and clinical data that contribute to explain the role of butyrate in this context, highlighting its crucial contribute in the diet-GM-host health axis.
Collapse
Affiliation(s)
- Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy;
- ImmunoNutriton Lab at CEINGE Advanced Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.A.); (A.C.)
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.A.); (A.C.)
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy;
- ImmunoNutriton Lab at CEINGE Advanced Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-7462680
| |
Collapse
|
11
|
Abstract
Periodontal diseases are chronic inflammatory, multifactorial diseases where the major triggering factors for disease onset are bacteria and their toxins, but the major part of tissue destruction occurs as a result of host response towards the periodontal microbiome. Periodontal microbiome consists of a wide range of microorganisms including obligate and facultative anaerobes. In health, there is a dynamic balance between the host, environment, and the microbiome. Environmental factors, mainly tobacco smoking and psychological stress, disrupt the symbiotic relationship. Tobacco smoke and its components alter the bacterial surface and functions such as growth. Psychological stressors and stress hormones may affect the outcome of an infection by changing the virulence factors and/or host response. This review aims to provide currently available data on the effects of the major environmental factors on the periodontal microbiome.
Collapse
Affiliation(s)
- Nurcan Buduneli
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
| |
Collapse
|
12
|
Ibraheem WI, Fageeh HI, Preethanath RS, Alzahrani FA, Al-Zawawi AS, Divakar DD, Al-Kheraif AA. Comparison of RANKL and osteoprotegerin levels in the gingival crevicular fluid of young cigarette- and waterpipe-smokers and individuals using electronic nicotine delivery systems. Arch Oral Biol 2020; 115:104714. [DOI: 10.1016/j.archoralbio.2020.104714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/08/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
|
13
|
Determination of butyric acid dosage based on clinical and experimental studies - a literature review. GASTROENTEROLOGY REVIEW 2020; 15:119-125. [PMID: 32550943 PMCID: PMC7294979 DOI: 10.5114/pg.2020.95556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Short-chain fatty acids produced by bacteria living in the large intestine are the main energy substrate for the colonocytes. Butyric acid is used for the treatment and prevention of exacerbations of various gastrointestinal diseases: diarrhoea, intestinal inflammations, functional disorders, dysbiosis, and post-surgery or post-chemotherapy conditions. The current standard doses of butyric acid (150–300 mg) range between 1.5–3% and 15–30% of the reported daily demand. Increased metabolism of the colonocytes in conditions involving intestine damage or inflammation, increased energy expenditure during a disease, stimulation of intestine growth in ‘stress’ conditions with accelerated intestinal passage and increased intestinal excretion, and decreased production of endogenous butyrate due to changes in bacterial flora in different pathological conditions require a significant increase of the supply of this acid. Physiological high demand for butyrate and known mechanisms of pathological conditions indicate that current supplementation doses do not cover the demand and their increase should be considered.
Collapse
|
14
|
Jiang Y, Zhou X, Cheng L, Li M. The Impact of Smoking on Subgingival Microflora: From Periodontal Health to Disease. Front Microbiol 2020; 11:66. [PMID: 32063898 PMCID: PMC7000377 DOI: 10.3389/fmicb.2020.00066] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/13/2020] [Indexed: 02/05/2023] Open
Abstract
Periodontal disease is one of the most common diseases of the oral cavity affecting up to 90% of the worldwide population. Smoking has been identified as a major risk factor in the development and progression of periodontal disease. It is essential to assess the influence of smoking on subgingival microflora that is the principal etiological factor of the disease to clarify the contribution of smoking to periodontal disease. Therefore, this article reviews the current research findings regarding the impact of smoking on subgingival microflora and discusses several potential mechanisms. Cultivation-based and targeted molecular approaches yield controversial results in determining the presence or absence of smoking-induced differences in the prevalence or levels of certain periodontal pathogens, such as the “red complex.” However, substantial changes in the subgingival microflora of smokers, regardless of their periodontal condition (clinical health, gingivitis, or periodontitis), have been demonstrated in recent microbiome studies. Available literature suggests that smoking facilitates early acquisition and colonization of periodontal pathogens, resulting in an “at-risk-for-harm” subgingival microbial community in the healthy periodontium. In periodontal diseases, the subgingival microflora in smokers is characterized by a pathogen-enriched community with lower resilience compared to that in non-smokers, which increases the difficulty of treatment. Biological changes in key pathogens, such as Porphyromonas gingivalis, together with the ineffective host immune response for clearance, might contribute to alterations in the subgingival microflora in smokers. Nonetheless, further studies are necessary to provide solid evidence for the underlying mechanisms.
Collapse
Affiliation(s)
- Yaling Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Zeller I, Malovichko MV, Hurst HE, Renaud DE, Scott DA. Cigarette smoke reduces short chain fatty acid production by a Porphyromonas gingivalis clinical isolate. J Periodontal Res 2019; 54:566-571. [PMID: 30982987 PMCID: PMC6776670 DOI: 10.1111/jre.12660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/13/2019] [Accepted: 03/18/2019] [Indexed: 01/13/2023]
Abstract
Objectives We hypothesized that short chain fatty acid (SCFA) production by oral pathogens is suppressed by exposure to cigarette smoke extract (CSE). Background Tobacco smoking is a major risk factor for plaque‐induced periodontal diseases. Despite increased disease susceptibility, overt oral inflammation is suppressed in smokers, presenting a diagnostic conundrum. Bacterial‐derived SCFAs can penetrate into oral tissues where they influence multiple components of immune and healing responses. Indeed, the SCFA burden has been correlated with the inflammatory condition of the gingiva. However, the influence of cigarette consumption on SCFA production is unknown. Methods GC/MS was employed to monitor the production of several SCFAs (propionic acid, isobutyric acid, butyric acid, and isovaleric acid) by representative anaerobic oral pathogens (Filifactor alocis 35896, Fusobacterium nucleatum 25586, Porphyromonas gingivalis 33277) that were exposed, or not, to a physiologically relevant dose of CSE (2000 ng/ml nicotine equivalents) generated from 3R4F reference cigarettes. Results The growth of all three bacterial species was unaffected by CSE. The capacity to produce SCFAs by these bacteria was highly varied. F alocis produced the highest concentration of a specific SCFA (butyrate); P gingivalis provided the most robust overall SCFA signal, while F alocis and F nucleatum did not release detectable levels of isobutyrate or isovalerate. As P gingivalis 33277 was the broadest SCFA producer, three low‐passage clinical isolates (10208C, 5607, and 10512) were also examined. Compared to unconditioned microbes, reduced SCFA release was apparent in CSE‐exposed low‐passage clinical isolates of P gingivalis which reached significance for one of the three isolates (propionic, isobutyric, butyric, and isovaleric acids, all P < 0.05). Conclusions There is high disparity in the SCFA profiles of variant chronic periodontitis‐associated bacteria, while CSE exposure reduces SCFA production by a specific clinical strain of P gingivalis. If the latter phenomenon occurs in vivo, a reduced SCFA burden may help explain the reduced vascular response to dental plaque in tobacco smokers.
Collapse
Affiliation(s)
- Iris Zeller
- Departments of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky
| | - Marina V Malovichko
- University of Louisville Superfund Research Center and Envirome Institute, University of Louisville, Louisville, Kentucky.,American Heart Association Tobacco Regulatory Science and Addiction Center, University of Louisville, Louisville, Kentucky
| | - Harrell E Hurst
- Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Diane E Renaud
- Departments of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky
| | - David A Scott
- Departments of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky
| |
Collapse
|