1
|
Liao Y, Chen HW, Qiu C, Shen H, He ZY, Song ZC, Zhou W. Detection of Amyloid-β Peptides in Gingival Crevicular Fluid and Its Effect on Oral Pathogens. Mol Oral Microbiol 2025; 40:94-103. [PMID: 39668581 DOI: 10.1111/omi.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 12/14/2024]
Abstract
Periodontitis is the most common oral inflammatory disease, contributing to the onset and progression of Alzheimer's disease. However, a full investigation has not been performed on the expression level of amyloid-β (Aβ) peptides in gingival crevicular fluid (GCF) and its effects on oral pathogens. This study aimed to analyze the expression level of Aβ peptides in GCF of patients with periodontitis and the effects of Aβ peptides against common oral pathogens. GCF samples were collected from patients with periodontitis (n = 15) and periodontally healthy people (n = 10). The antimicrobial effects of Aβ peptides were evaluated on four common oral pathogenic strains using an MTT assay, crystal violet staining, fluorescence microscope, and transmission electron microscope. The protein levels of Aβ40 and Aβ42 were upregulated in the GCF of periodontitis group compared with the healthy group. Both Aβ40 and Aβ42 exhibited antimicrobial effects on Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Lactobacillus acidophilus in both planktonic and biofilm conditions. Further, only Aβ40 showed an antimicrobial effect on the Fusobacterium nucleatum. The results of this study demonstrate that Aβ peptides in GCF may be a relevant indicator of periodontitis status. Besides, the antimicrobial peptides derived from Aβ peptides have great potential in periodontal therapy.
Collapse
Affiliation(s)
- Yue Liao
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hui-Wen Chen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hui Shen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhi-Yan He
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong-Chen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wei Zhou
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Xu X, Zhao H, Ren S, He W, Zhang L, Cheng Z. Facile Surface Modification with Croconaine-Functionalized Polymer on Polypropylene for Antifouling and NIR-Light-Mediated Photothermal Sterilization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46947-46963. [PMID: 39225271 DOI: 10.1021/acsami.4c09963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biomedical-device-associated infection (BAI) is undoubtedly a major concern and a serious challenge in modern medicine. Therefore, the development of biomedical materials that are capable of resisting or killing bacteria is of great importance. In this work, a croconaine-functionalized polymer with antifouling and near-infrared (NIR) photothermal bactericidal properties was prepared and facilely modified on polypropylene (PP) to combat medical device infections. Croconaine dye is elaborately modified as a "living" initiator, termed CR-4EBiB, for preparing amphiphilic block polymers by atom transfer radical polymerization (ATRP). In the formed polymer coating, the hydrophobic block can strongly adhere to the surface of the PP substrate, whereas the hydrophilic block is located on the outer layer by solvent-induced resistance to bacterial adhesion. Under the irradiation of an NIR laser (808 nm), the croconaine dye in the coating achieved maximum conversion of light to heat to effectively kill E. coli, S. aureus, and methicillin-resistant Staphylococcus aureus (MRSA). This work provides a facile and promising strategy for the development of implantable antibacterial biomedical materials.
Collapse
Affiliation(s)
- Xiang Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Haitao Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shusu Ren
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weiwei He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RADX), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Wang F, Guan S, Xing M, Qian W, Qiu J, Liu X. A rechargeable coating with temporal-sequence antibacterial activity and soft tissue sealing. Bioact Mater 2024; 39:224-238. [PMID: 38832306 PMCID: PMC11145072 DOI: 10.1016/j.bioactmat.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Transcutaneous implants that penetrate through skin or mucosa are susceptible to bacteria invasion and lack proper soft tissue sealing. Traditional antibacterial strategies primarily focus on bacterial eradication, but excessive exposure to bactericidal agents can induce noticeable tissue damage. Herein, a rechargeable model (HPI-Ti) was constructed using perylene polyimide, an aqueous battery material, achieving temporal-sequence regulation of bacterial killing and soft tissue sealing. Charge storage within HPI-Ti is achieved after galvanostatic charge, and chemical discharge is initiated when immersed in physiological environments. During the early discharge stage, post-charging HPI-Ti demonstrates an antibacterial rate of 99.96 ± 0.01 % for 24 h, preventing biofilm formation. Contact-dependent violent electron transfer between bacteria and the material causes bacteria death. In the later discharge stage, the attenuated discharging status creates a gentler electron-transfer micro-environment for fibroblast proliferation. After discharge, the antibacterial activity can be reinstated by recharge against potential reinfection. The antibacterial efficacy and soft tissue compatibility were verified in vivo. These results demonstrate the potential of the charge-transfer-based model in reconciling antibacterial efficacy with tissue compatibility.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shiwei Guan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Min Xing
- Shanghai Xuhui District Dental Center, Shanghai, 200032, PR China
| | - Wenhao Qian
- Shanghai Xuhui District Dental Center, Shanghai, 200032, PR China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| |
Collapse
|
4
|
Wang F, Li Z, Gan XY, Lu XL, Jiao BH, Shen MH. Quality by design driven development and evaluation of thermosensitive hydrogel loaded with IgY and LL37-SLNs to combat experimental periodontitis. Eur J Pharm Sci 2023; 185:106444. [PMID: 37044199 DOI: 10.1016/j.ejps.2023.106444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/14/2023]
Abstract
Egg yolk immunoglobulin (IgY) and LL37, potent antibacterial substances, can fight against periodontitis. This work aimed to develop a locally injectable hydrogel for potential co-delivery of special IgY and LL37-loaded solid lipid nanoparticles (LL37-SLNs) to synergistically inhibit the proliferation of oral pathogens, thus relieving periodontal inflammation and redness. The formulation of thermosensitive hydrogel loaded with IgY and LL37-SLNs was developed by adopting the Quality by Design approach. Then the formulations were optimized by two-factor three-level full factorial design by Design-Expert software. Finally, the optimized formulation was characterized and estimated in vitro and in vivo. In vitro release and antibacterial activity studies have revealed that the optimized formulation was homogeneous and can be released slowly, with sustainably antibacterial power. And the physical and chemical composition analysis and morphological observations further confirmed the sustained-release capability. On the other hand, in vivo studies proved that the optimized formulation significantly decreased gingival redness, bleeding, and plaque formation, avoided excessive resorption of alveolar bone, and reduced the levels of inflammatory factor in periodontitis rats. In conclusion, the optimized thermosensitive hydrogel loaded with IgY and LL37-SLNs may be a promising local sustained-release preparation for the effective treatment of periodontal diseases.
Collapse
Affiliation(s)
- Fang Wang
- Shanghai university of Medicine and Health Sciences Affiliated Zhoupu hospital, Shanghai, 201318, China; Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Zhen Li
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xin-Yue Gan
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiao-Ling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Bing-Hua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Min-Hua Shen
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
5
|
Kompuinen J, Keskin M, Yilmaz D, Gürsoy M, Gürsoy UK. Human β-Defensins in Diagnosis of Head and Neck Cancers. Cells 2023; 12:cells12060830. [PMID: 36980171 PMCID: PMC10047923 DOI: 10.3390/cells12060830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Head and neck cancers are malignant growths with high death rates, which makes the early diagnosis of the affected patients of utmost importance. Over 90% of oral cavity cancers come from squamous cells, and the tongue, oral cavity, and salivary glands are the most common locations for oral squamous cell carcinoma lesions. Human β-defensins (hBDs), which are mainly produced by epithelial cells, are cationic peptides with a wide antimicrobial spectrum. In addition to their role in antimicrobial defense, these peptides also take part in the regulation of the immune response. Recent studies produced evidence that these small antimicrobial peptides are related to the gene and protein expression profiles of tumors. While the suppression of hBDs is a common finding in head and neck cancer studies, opposite findings were also presented. In the present narrative review, the aim will be to discuss the changes in the hBD expression profile during the onset and progression of head and neck cancers. The final aim will be to discuss the use of hBDs as diagnostic markers of head and neck cancers.
Collapse
Affiliation(s)
- Jenna Kompuinen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Mutlu Keskin
- Oral and Dental Health Department, Altınbaş University, İstanbul 34147, Turkey
| | - Dogukan Yilmaz
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Department of Periodontology, Faculty of Dentistry, Sakarya University, Sakarya 54050, Turkey
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Welfare Division, Oral Health Care, 20101 Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
6
|
Neculae E, Gosav EM, Valasciuc E, Dima N, Floria M, Tanase DM. The Oral Microbiota in Valvular Heart Disease: Current Knowledge and Future Directions. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010182. [PMID: 36676130 PMCID: PMC9862471 DOI: 10.3390/life13010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Oral microbiota formation begins from birth, and everything from genetic components to the environment, alongside the host's behavior (such as diet, smoking, oral hygiene, and even physical activity), contributes to oral microbiota structure. Even though recent studies have focused on the gut microbiota's role in systemic diseases, the oral microbiome represents the second largest community of microorganisms, making it a new promising therapeutic target. Periodontitis and dental caries are considered the two main consequences of oral bacterial imbalance. Studies have shown that oral dysbiosis effects are not limited locally. Due to technological advancement, research identified oral bacterial species in heart valves. This evidence links oral dysbiosis with the development of valvular heart disease (VHD). This review focuses on describing the mechanism behind prolonged local inflammation and dysbiosis, that can induce bacteriemia by direct or immune-mediated mechanisms and finally VHD. Additionally, we highlight emerging therapies based on controlling oral dysbiosis, periodontal disease, and inflammation with immunological and systemic effects, that exert beneficial effects in VHD management.
Collapse
Affiliation(s)
- Ecaterina Neculae
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
7
|
Bessa LJ, Botelho J, Machado V, Alves R, Mendes JJ. Managing Oral Health in the Context of Antimicrobial Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16448. [PMID: 36554332 PMCID: PMC9778414 DOI: 10.3390/ijerph192416448] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 05/25/2023]
Abstract
The oral microbiome plays a major role in shaping oral health/disease state; thus, a main challenge for dental practitioners is to preserve or restore a balanced oral microbiome. Nonetheless, when pathogenic microorganisms install in the oral cavity and are incorporated into the oral biofilm, oral infections, such as gingivitis, dental caries, periodontitis, and peri-implantitis, can arise. Several prophylactic and treatment approaches are available nowadays, but most of them have been antibiotic-based. Given the actual context of antimicrobial resistance (AMR), antibiotic stewardship in dentistry would be a beneficial approach to optimize and avoid inappropriate or even unnecessary antibiotic use, representing a step towards precision medicine. Furthermore, the development of new effective treatment options to replace the need for antibiotics is being pursued, including the application of photodynamic therapy and the use of probiotics. In this review, we highlight the advances undergoing towards a better understanding of the oral microbiome and oral resistome. We also provide an updated overview of how dentists are adapting to better manage the treatment of oral infections given the problem of AMR.
Collapse
Affiliation(s)
- Lucinda J. Bessa
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - João Botelho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - Vanessa Machado
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - Ricardo Alves
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - José João Mendes
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| |
Collapse
|
8
|
Lobognon VD, Alard JE. Could AMPs and B-cells be the missing link in understanding periodontitis? Front Immunol 2022; 13:887147. [PMID: 36211356 PMCID: PMC9532695 DOI: 10.3389/fimmu.2022.887147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Periodontal diseases are common inflammatory conditions characterized by bone loss in response to simultaneous bacterial aggression and host defenses. The etiology of such diseases is still not completely understood, however. It has been shown that specific pathogens involved in the build-up of dysbiotic biofilms participate actively in the establishment of periodontitis. This multifactorial pathology also depends on environmental factors and host characteristics, especially defenses. The immune response to the pathogens seems to be critical in preventing the disease from starting but also contributes to tissue damage. It is known that small molecules known as antimicrobial peptides (AMPs) are key actors in the innate immune response. They not only target microbes, but also act as immuno-modulators. They can help to recruit or activate cells such as neutrophils, monocytes, dendritic cells, or lymphocytes. AMPs have already been described in the periodontium, and their expression seems to be connected to disease activity. Alpha and beta defensins and LL37 are the AMPs most frequently linked to periodontitis. Additionally, leukocyte infiltrates, especially B-cells, have also been linked to the severity of periodontitis. Indeed, the particular subpopulations of B-cells in these infiltrates have been linked to inflammation and bone resorption. A link between B-cells and AMP could be relevant to understanding B-cells' action. Some AMP receptors, such as chemokines receptors, toll-like receptors, or purinergic receptors, have been shown to be expressed by B-cells. Consequently, the action of AMPs on B-cell subpopulations could participate to B-cell recruitment, their differentiation, and their implication in both periodontal defense and destruction.
Collapse
Affiliation(s)
- Vanessa Dominique Lobognon
- B lymphocytes, Autoimmunity and Immunotherapies (LBAI), Mixed Research Unit (UMR)1227 INSERM, University of Brest, Brest, France
| | - Jean-Eric Alard
- B lymphocytes, Autoimmunity and Immunotherapies (LBAI), Mixed Research Unit (UMR)1227 INSERM, University of Brest, Brest, France,Service d’Odontologie, University Hospital (CHU) de Brest, Brest, France,*Correspondence: Jean-Eric Alard,
| |
Collapse
|
9
|
Tokajuk J, Deptuła P, Piktel E, Daniluk T, Chmielewska S, Wollny T, Wolak P, Fiedoruk K, Bucki R. Cathelicidin LL-37 in Health and Diseases of the Oral Cavity. Biomedicines 2022; 10:1086. [PMID: 35625823 PMCID: PMC9138798 DOI: 10.3390/biomedicines10051086] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
The mechanisms for maintaining oral cavity homeostasis are subject to the constant influence of many environmental factors, including various chemicals and microorganisms. Most of them act directly on the oral mucosa, which is the mechanical and immune barrier of the oral cavity, and such interaction might lead to the development of various oral pathologies and systemic diseases. Two important players in maintaining oral health or developing oral pathology are the oral microbiota and various immune molecules that are involved in controlling its quantitative and qualitative composition. The LL-37 peptide is an important molecule that upon release from human cathelicidin (hCAP-18) can directly perform antimicrobial action after insertion into surface structures of microorganisms and immunomodulatory function as an agonist of different cell membrane receptors. Oral LL-37 expression is an important factor in oral homeostasis that maintains the physiological microbiota but is also involved in the development of oral dysbiosis, infectious diseases (including viral, bacterial, and fungal infections), autoimmune diseases, and oral carcinomas. This peptide has also been proposed as a marker of inflammation severity and treatment outcome.
Collapse
Affiliation(s)
- Joanna Tokajuk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
- Dentistry and Medicine Tokajuk, Zelazna 9/7, 15-297 Bialystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland;
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Sylwia Chmielewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| |
Collapse
|
10
|
In silico targeting of red complex bacteria virulence factors of periodontitis with β-defensin 1. J Genet Eng Biotechnol 2022; 20:59. [PMID: 35438383 PMCID: PMC9019007 DOI: 10.1186/s43141-022-00342-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Periodontitis is a multi-factorial infection with red complex bacteria playing a crucial role in the pathogenesis. As bacteria are tending to develop resistance against conventional antibiotics, new treatment modalities need to be developed. Antimicrobial peptides (AMPs) are potential tools for drug development and are gaining widespread interest. β-defensin 1 is an important AMP and forms the first-line host defense mechanism. The present study analyzed the structure and molecular docking of β-defensin 1 with the virulence factors of red complex bacteria of periodontitis. The physico-chemical properties of β-defensin 1 were determined by various online tools such as ProtParam, ProteinPredict, ToxinPred, and BioPep web servers. The structure of β-defensin 1was predicted by the SWISS-MODEL web server and the structure was evaluated by different web tools. The structure of lipopolysaccharide of Porphyromonas gingivalis was drawn using Chem3D ultra 11.0 software. The structure of important protein virulence factors of red complex bacteria of periodontitis was determined by the SWISS-MODEL web server. The interaction study between β-defensin 1 and virulence factors was carried out by molecular docking using Auto dock version 4.0 software and pyDock WEB server. RESULTS Using online tools, β-defensin 1 was predicted to be stable and non-toxic. SWISS-MODEL web server predicted Ramachandran score as 94.12% and clash score 0.0 for β-defensin 1. Auto dock version 4.0 software and pyDock WEB server analyzed the interaction to have low binding energies and hydrogen bonds were formed between the peptide and virulence factors. CONCLUSION β-defensin 1 was found to have good binding interaction with the disease-causing factors of red complex bacteria of periodontitis and in turn could play a role in reducing the severity of infection. β-defensin 1 could be a potential candidate for drug development for periodontitis.
Collapse
|
11
|
Yilmaz D, Yilmaz N, Polat R, Nissilä V, Aydın EG, Rautava J, Gürsoy M, Gürsoy UK. Salivary levels of hBDs in children and adolescents with type 1 diabetes mellitus and gingivitis. Clin Oral Investig 2022; 26:4897-4904. [PMID: 35313357 DOI: 10.1007/s00784-022-04457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Type 1 diabetes mellitus (T1DM), a chronic autoimmune disease characterized by insulin deficiency, is related to periodontal diseases in children and adolescents. Our aim was to profile salivary human beta-defensin (hBD)-2 and hBD-3 concentrations in relation to periodontal and T1DM status in children and adolescent populations. MATERIAL AND METHODS Unstimulated saliva samples were collected from 66 participants including periodontally healthy T1DM patients (T1DM + C; n = 18), T1DM patients with gingivitis (T1DM + G; n = 20), systemically and periodontally healthy individuals (SH + C: n = 15), and systemically healthy gingivitis patients (SH + G; n = 13). Full mouth plaque index (PI), bleeding on probing (BOP), probing pocket depth (PPD), and clinical attachment level (CAL) were recorded. Salivary hBD-2 and hBD-3 concentrations were evaluated by sandwich ELISA method. A p value of < 0.05 was considered statistically significant. RESULTS Salivary hBD-3 concentrations were lower in T1DM groups in comparison to systemically healthy counterparts (SH + G vs. T1DM + G; p < 0.001 and SH + C vs. T1DM + C; p < 0.001). Salivary hBD-2 levels did not differ between related groups. The difference in hBD-3 concentrations between T1DM and control groups was still significant (p = 0.008) after being adjusted for PI%, BOP%, and age. CONCLUSION In the limits of study, T1DM patients were found to have decreased salivary hBD-3 concentrations, regardless of their gingival inflammatory status. CLINICAL RELEVANCE Altered salivary hBD-3 concentration can partly explain why diabetic children are more prone to periodontal diseases.
Collapse
Affiliation(s)
- Dogukan Yilmaz
- Department of Periodontology, Faculty of Dentistry, Sakarya University, Sakarya, Turkey.
| | - Neslihan Yilmaz
- Department of Pediatric Dentistry, Faculty of Dentistry, Sakarya University, Sakarya, Turkey.,Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Recep Polat
- Department of Pediatric Endocrinology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Verneri Nissilä
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Elif Gül Aydın
- Department of Pediatric Dentistry, Faculty of Dentistry, Sakarya University, Sakarya, Turkey
| | - Jaana Rautava
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, ClinicumHelsinki, Finland.,Department of Pathology, Faculty of Medicine, University of Helsinki, HUS Diagnostic Center, HUSLAB, Helsinki University Hospital, MedicumHelsinki, Finland
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Yang H, Xu F, Zheng X, Yang S, Ren Z, Yang J. Human Umbilical Cord Mesenchymal Stem Cells Prevent Bacterial Biofilm Formation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1530525. [PMID: 35281594 PMCID: PMC8913149 DOI: 10.1155/2022/1530525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/02/2022] [Indexed: 01/08/2023]
Abstract
Biofilm formation is easily found in patients suffered from ventilator-associated pneumonia (VAP) in neonatal intensive care unit (NICU) and makes the VAP infections not only harder to be treated but easier to relapse. In order to find some novel ways to inhibit biofilm formation, this study describe a previously unrecognized role for the human umbilical cord mesenchymal stem cells (hUCMSCs). In addition to multiple differentiation, hUCMSCs have the ability to prevent the biofilms formation in vitro by secreting antibacterial peptides (LL-37 and hBD-2). This occurred while P. aeruginosa PA27853 and hUCMSCs were cocultured, and the filtrated medium, which was the supernatant containing antibacterial peptides (5.9 ng/ml of LL-37, 1.77 ng/ml of hBD-2), and inhibited the growth of the bacterial biofilm on the surface of tracheal tube (2.5#, for preterm infant). Using microarrays, we were able to demonstrate that the antibacterial peptides from hUCMSC affected biofilm formation by downregulating the gene-encoded polysaccharide biosynthesis protein. In addition, in order to find out the most suitable concentration of hUCMSCs, P. aeruginosa was cocultured with eight-level concentrations of hUCMSCs, and we found that the concentration of LL-37 was positively correlated with the concentration of hUCMSCs. Meanwhile, the concentration of LL-37 became stable while the hUCMSC concentration reaches higher than 5 × 106 cells/ml. But the concentration of hBD-2 had no significant correlation with hUCMSCs. The collection of these stem cells is not only limited by ethics but also reduces host rejection. This makes it possible to use autologous hUCMSCs to treat neonatal VAP.
Collapse
Affiliation(s)
- Haoming Yang
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Fang Xu
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Xuaner Zheng
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Shumei Yang
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Zhuxiao Ren
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Jie Yang
- Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
13
|
Vinel A, Al Halabi A, Roumi S, Le Neindre H, Millavet P, Simon M, Cuny C, Barthet JS, Barthet P, Laurencin-Dalicieux S. Non-surgical Periodontal Treatment: SRP and Innovative Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:303-327. [DOI: 10.1007/978-3-030-96881-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Cicalău GIP, Babes PA, Calniceanu H, Popa A, Ciavoi G, Iova GM, Ganea M, Scrobotă I. Anti-Inflammatory and Antioxidant Properties of Carvacrol and Magnolol, in Periodontal Disease and Diabetes Mellitus. Molecules 2021; 26:6899. [PMID: 34833990 PMCID: PMC8623889 DOI: 10.3390/molecules26226899] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
Periodontal disease and diabetes mellitus are two pathologies that are extremely widespread worldwide and share the feature of chronic inflammation. Carvacrol is a phenolic monoterpenoid, produced by a variety of herbs, the most well-known of which is Origanum vulgare. Magnolol is a traditional polyphenolic compound isolated from the stem bark of Magnolia officinalis, mainly used in Chinese medicine. The purpose of this paper is to review the therapeutic properties of these bioactive compounds, in the treatment of periodontitis and diabetes. Based on our search strategy we conducted a literature search in the PubMed and Google Scholar databases to identify studies. A total of one hundred eighty-four papers were included in the current review. The results show that carvacrol and magnolol have anti-inflammatory, antioxidant, antimicrobial, anti-osteoclastic, and anti-diabetic properties that benefit both pathologies. Knowledge of the multiple activities of carvacrol and magnolol can assist with the development of new treatment strategies, and the design of clinical animal and human trials will maximize the potential benefits of these extracts in subjects suffering from periodontitis or diabetes.
Collapse
Affiliation(s)
- Georgiana Ioana Potra Cicalău
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Petru Aurel Babes
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
| | - Horia Calniceanu
- Department of Periodontology, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Periodontal and Periimplant Diseases Research Center “Prof. Dr. Anton Sculean”, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adelina Popa
- Department of Orthodontics, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Gabriela Ciavoi
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Gilda Mihaela Iova
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania;
| | - Ioana Scrobotă
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| |
Collapse
|
15
|
Dubar M, Lizambard M, Delcourt-Debruyne E, Batool F, Huck O, Siepmann F, Agossa K. In-situforming drug-delivery systems for periodontal treatment: current knowledge and perspectives. Biomed Mater 2021; 16. [PMID: 34500442 DOI: 10.1088/1748-605x/ac254c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Several chemical compounds are considered to be promising as adjuvants in the treatment of periodontitis. Antimicrobials, anti-inflammatory drugs or, more recently, pro-regenerative or antioxidant molecules have shown a very interesting potential to improve the outcomes of mechanical biofilm removal and promote the healing of the damaged tissues. However, their clinical effect is often limited by the challenge of achieving effective and prolonged drug delivery within the periodontal lesion, while limiting the risk of toxicity.In-situforming implants (ISFI) are 'implantable' drug-delivery systems that have gained considerable attention over the last few decades due to their multiple biomedical applications. They are liquids that, when injected at the site to be treated, form a semi-solid or solid dosage form that provides safe and locally controlled drug release. This review discusses current data and future prospects for the use of ISFI in periodontal treatment.
Collapse
Affiliation(s)
- Marie Dubar
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| | - Martin Lizambard
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| | | | - Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Florence Siepmann
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| | - Kevimy Agossa
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| |
Collapse
|
16
|
Li W, Thian ES, Wang M, Wang Z, Ren L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100368. [PMID: 34351704 PMCID: PMC8498904 DOI: 10.1002/advs.202100368] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/27/2021] [Indexed: 05/14/2023]
Abstract
Healthcare-acquired infections as well as increasing antimicrobial resistance have become an urgent global challenge, thus smart alternative solutions are needed to tackle bacterial infections. Antibacterial materials in biomedical applications and hospital hygiene have attracted great interest, in particular, the emergence of surface design strategies offer an effective alternative to antibiotics, thereby preventing the possible development of bacterial resistance. In this review, recent progress on advanced surface modifications to prevent bacterial infections are addressed comprehensively, starting with the key factors against bacterial adhesion, followed by varying strategies that can inhibit biofilm formation effectively. Furthermore, "super antibacterial systems" through pre-treatment defense and targeted bactericidal system, are proposed with increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies to resist healthcare-associated infections are discussed, with promising prospects of developing novel antimicrobial materials.
Collapse
Affiliation(s)
- Wenlong Li
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Eng San Thian
- Department of Mechanical EngineeringNational University of SingaporeSingapore117576Singapore
| | - Miao Wang
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Zuyong Wang
- College of Materials Science and EngineeringHunan UniversityChangsha410082P. R. China
| | - Lei Ren
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
17
|
Thomas C, Minty M, Vinel A, Canceill T, Loubières P, Burcelin R, Kaddech M, Blasco-Baque V, Laurencin-Dalicieux S. Oral Microbiota: A Major Player in the Diagnosis of Systemic Diseases. Diagnostics (Basel) 2021; 11:1376. [PMID: 34441309 PMCID: PMC8391932 DOI: 10.3390/diagnostics11081376] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is host to a complex and diverse microbiota community which plays an important role in health and disease. Major oral infections, i.e., caries and periodontal diseases, are both responsible for and induced by oral microbiota dysbiosis. This dysbiosis is known to have an impact on other chronic systemic diseases, whether triggering or aggravating them, making the oral microbiota a novel target in diagnosing, following, and treating systemic diseases. In this review, we summarize the major roles that oral microbiota can play in systemic disease development and aggravation and also how novel tools can help investigate this complex ecosystem. Finally, we describe new therapeutic approaches based on oral bacterial recolonization or host modulation therapies. Collaboration in diagnosis and treatment between oral specialists and general health specialists is of key importance in bridging oral and systemic health and disease and improving patients' wellbeing.
Collapse
Affiliation(s)
- Charlotte Thomas
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Matthieu Minty
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Alexia Vinel
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Thibault Canceill
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR CNRS 5085, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT), Université Paul Sabatier, 35 Chemin des Maraichers, CEDEX 9, 31062 Toulouse, France
| | - Pascale Loubières
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Remy Burcelin
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Myriam Kaddech
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Vincent Blasco-Baque
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Sara Laurencin-Dalicieux
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- INSERM UMR 1295, Centre d’Epidémiologie et de Recherche en Santé des Populations de Toulouse (CERPOP), Epidémiologie et Analyse en Santé Publique, Risques, Maladies Chroniques et Handicaps, 37 Allées Jules Guesdes, 31000 Toulouse, France
| |
Collapse
|
18
|
Davidovich NV, Solovieva NV, Galieva AS, Lepeshkin SY, Bashilova EN, Pisareva SN, Bazhukova TA. Role of antimicrobial peptides system in inflammatory periodontal diseases non-specific oral cavity protection. Klin Lab Diagn 2021; 66:422-427. [PMID: 34292685 DOI: 10.51620/0869-2084-2021-66-7-422-427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The system of antimicrobial peptides (AMP) is one of the most ancient mechanisms of the macroorganism resistance to infectious pathogens invasion. The aim of the study was to determine the role of the antimicrobial peptides system and periodontal pathogenic markers in the development and progression of inflammatory periodontal diseases. Gingival pocket washes (91 samples in total) for the research were received from patients with inflammatory periodontal diseases (chronic periodontitis and gingivitis) and intact periodontium. Using ELISA, the content of antimicrobial peptides was determined: human alpha-defensin (HNP 1-3), beta-defensin (HBD 1-3) and cathelicidin (LL-37). Periodontal pathogenic markers were isolated during RT-PCR. The study revealed differences in AMP concentrations by groups: level of HBD 2 in patients with chronic periodontitis was 1,36 times higher than those in the group of patients with chronic gingivitis (p=0,023) and 2,39 times higher than those in the control group (p<0,001), the content of HNP 1-3 in the group of patients with chronic periodontitis was reduced by 1,23 times compared with the indicators of the group of patients with gingivitis (p=0,045) and by 1,97 times compared with the indicators of the control group (p<0,001). The frequency of detection of periodontal pathogenic bacteria genes was 88,0% in patients with periodontitis, 76,92% in patients with gingivitis and 33,3% in the group with intact periodontium. HBD 2 content moderately correlated with the definition of P. gingivalis (r=0,612; p=0,022), T. forsythensis (r= 0,434; p=0,015), A. actinomycetemcomitans (r=0,483; p=0,006), a moderate negative correlation was detected between the content of HNP 1-3 and the release of periodontal pathogens in associations (P. gingivalis with T. forsythensis and T. denticola) (r=-0,388; p=0,031) in the group of patients with chronic periodontitis. Thus, the revealed relationships and correlations indicate shifts in the processes of reparative regeneration of the oral cavity and the regulation of local immunity in response to microbial invasion.
Collapse
Affiliation(s)
- N V Davidovich
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - N V Solovieva
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - A S Galieva
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - S Yu Lepeshkin
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - E N Bashilova
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - S N Pisareva
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - T A Bazhukova
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| |
Collapse
|
19
|
Hirtz C, O'Flynn R, Voisin PM, Deville de Périère D, Lehmann S, Guedes S, Amado F, Ferreira R, Trindade F, Vitorino R. The potential impact of salivary peptides in periodontitis. Crit Rev Clin Lab Sci 2021; 58:479-492. [PMID: 33849374 DOI: 10.1080/10408363.2021.1907298] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periodontitis is a complex immune-inflammatory condition characterized by the disruption of the periodontal ligament and subsequent formation of periodontal pockets, and by alveolar bone loss, often resulting in tooth loss. A myriad of factors, namely, genetic, metabolic, immunological, and inflammatory, is associated with progression of periodontitis. Periodontitis is also associated with systemic conditions such as neoplastic disorders, obesity, and diabetes. The current diagnosis of this disease relies on clinical measurements such as clinical attachment loss and probing depth, which have poor precision due to patient, operator and probe-related factors. Thus, there is a need to develop reliable, objective, and reproducible biomarkers for early diagnosis of periodontitis. In this regard, saliva, with contributions from the gingival crevicular fluid, holds great potential. However, most of the information on biomarkers of periodontium-related salivary proteins has come from studies on the molecular pathogenesis of periodontitis. In periodontitis, a more holistic approach, such as the use of -omics technologies, for biomarker discovery, is needed. Herein, we review the biomarkers proposed to date for the assessment of periodontitis, with emphasis on the role of salivary peptides in periodontitis and their assessment by high-throughput saliva proteomics. We also discuss the challenges pertaining to the identification of new periodontitis biomarkers in saliva.
Collapse
Affiliation(s)
- Christophe Hirtz
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Robin O'Flynn
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | | | | | - Sylvain Lehmann
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Sofia Guedes
- REQUIMTE-QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Francisco Amado
- REQUIMTE-QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- REQUIMTE-QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,UnIC - Unidade de Investigação & Desenvolvimento Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Rui Vitorino
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,UnIC - Unidade de Investigação & Desenvolvimento Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Keles Yucel ZP, Afacan B, Atmaca İlhan H, Kose T, Emingil G. The trefoil factor family 1 (TFF-1) and 3 (TFF-3) are upregulated in the saliva, gingival crevicular fluid and serum of periodontitis patients. Oral Dis 2021; 28:1240-1249. [PMID: 33660336 DOI: 10.1111/odi.13820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study aimed to investigate the levels of trefoil factor family (TFF)-1, TFF-3 and interleukin (IL)-1β in gingival crevicular fluid (GCF), saliva and serum of patients with gingivitis, stage 3 periodontitis and healthy individuals. MATERIALS AND METHODS A total of 100 individuals consisting of 25 periodontally healthy, 25 gingivitis and 50 stage 3 periodontitis, were enrolled in the study. Clinical periodontal examinations were recorded and GCF, saliva and serum samples were obtained. TFF-1, TFF-3 and IL-1β were measured by ELISA. RESULTS TFF-1 and TFF-3 levels in both GCF, saliva and serum were higher in periodontitis patients than healthy controls (p < .001) and gingivitis group (p < .01). The levels of these peptides in all biofluids were similar between gingivitis and healthy control groups (p > .05). GCF, saliva and serum IL-1β levels were also higher in periodontitis patients than the controls (p < .01). Periodontitis patients had elevated GCF and saliva IL-β levels than gingivitis group (p < .001). CONCLUSION Elevated TFF-1 and TFF-3 levels both locally and systemically in periodontitis in parallel to increased IL-1β levels might suggest that these peptides are involved in host response during the periodontal tissue destruction.
Collapse
Affiliation(s)
| | - Beral Afacan
- Department of Periodontology, Faculty of Dentistry, Adnan Menderes University, Aydin, Turkey
| | - Harika Atmaca İlhan
- Department of Biology, Section of Molecular Biology, Faculty of Science, Celal Bayar University, Manisa, Turkey
| | - Timur Kose
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Gulnur Emingil
- Department of Periodontology, Faculty of Dentistry, Ege University, Izmir, Turkey
| |
Collapse
|
21
|
Floden AM, Sohrabi M, Nookala S, Cao JJ, Combs CK. Salivary Aβ Secretion and Altered Oral Microbiome in Mouse Models of AD. Curr Alzheimer Res 2021; 17:1133-1144. [PMID: 33463464 PMCID: PMC8122496 DOI: 10.2174/1567205018666210119151952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/24/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Beta amyloid (Aβ) peptide containing plaque aggregations in the brain are a hallmark of Alzheimer's Disease (AD). However, Aβ is produced by cell types outside of the brain suggesting that the peptide may serve a broad physiologic purpose. OBJECTIVE Based upon our prior work documenting expression of amyloid β precursor protein (APP) in intestinal epithelium we hypothesized that salivary epithelium might also express APP and be a source of Aβ. METHODS To begin testing this idea, we compared human age-matched control and AD salivary glands to C57BL/6 wild type, AppNL-G-F , and APP/PS1 mice. RESULTS Both male and female AD, AppNL-G-F , and APP/PS1 glands demonstrated robust APP and Aβ immunoreactivity. Female AppNL-G-F mice had significantly higher levels of pilocarpine stimulated Aβ 1-42 compared to both wild type and APP/PS1 mice. No differences in male salivary Aβ levels were detected. No significant differences in total pilocarpine stimulated saliva volumes were observed in any group. Both male and female AppNL-G-F but not APP/PS1 mice demonstrated significant differences in oral microbiome phylum and genus abundance compared to wild type mice. Male, but not female, APP/PS1 and AppNL-G-F mice had significantly thinner molar enamel compared to their wild type counterparts. CONCLUSION These data support the idea that oral microbiome changes exist during AD in addition to changes in salivary Aβ and oral health.
Collapse
Affiliation(s)
- Angela M Floden
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, United States
| | - Mona Sohrabi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, United States
| | - Suba Nookala
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, United States
| | - Jay J Cao
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Colin K Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, United States
| |
Collapse
|
22
|
Yamamoto Y, Morozumi T, Hirata T, Takahashi T, Fuchida S, Toyoda M, Nakajima S, Minabe M. Effect of Periodontal Disease on Diabetic Retinopathy in Type 2 Diabetic Patients: A Cross-sectional Pilot Study. J Clin Med 2020; 9:E3234. [PMID: 33050355 PMCID: PMC7600038 DOI: 10.3390/jcm9103234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
Both periodontal disease and diabetes are common chronic inflammatory diseases. One of the major problems with type 2 diabetes is that unregulated blood glucose levels damage the vascular endothelium and cause complications. A bidirectional relationship between periodontal disease and diabetic complications has been reported previously. However, whether periodontal disease affects the presence of diabetic complications has not been clarified. Therefore, we examined the effect of the periodontal disease status on diabetic complications in patients with type 2 diabetes. Periodontal doctors examined the periodontal disease status of 104 type 2 diabetic patients who visited a private diabetes medical clinic once a month between 2016 and 2018. The subject's diabetic status was obtained from their medical records. Bayesian network analysis showed that bleeding on probing directly influenced the presence of diabetic retinopathy in type 2 diabetes patients. In addition, bleeding on probing was higher in the diabetic retinopathy group (n = 36) than in the group without diabetic retinopathy (n = 68, p = 0.006, Welch's t-test). Bleeding on probing represents gingival inflammation, which might affect the presence of diabetic retinopathy in type 2 diabetes patients who regularly visit diabetic clinics.
Collapse
Affiliation(s)
- Yuko Yamamoto
- Department of Dental Hygiene, Kanagawa Dental University, Junior College, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan;
| | - Toshiya Morozumi
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan; (T.H.); (M.M.)
| | - Takahisa Hirata
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan; (T.H.); (M.M.)
| | - Toru Takahashi
- Department of Health and Nutrition, Faculty of Human Health, Kanazawa Gakuin University, 10 Sue-machi, Kanazawa 9201392, Ishikawa, Japan;
| | - Shinya Fuchida
- Department of Disaster Medicine and Dental Sociology, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan;
| | - Masami Toyoda
- Nakajima Internal Medicine Clinic, 1-17 Yonegahamadori, Yokosuka 2380011, Kanagawa, Japan; (M.T.); (S.N.)
| | - Shigeru Nakajima
- Nakajima Internal Medicine Clinic, 1-17 Yonegahamadori, Yokosuka 2380011, Kanagawa, Japan; (M.T.); (S.N.)
| | - Masato Minabe
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan; (T.H.); (M.M.)
| |
Collapse
|
23
|
Lachowicz JI, Szczepski K, Scano A, Casu C, Fais S, Orrù G, Pisano B, Piras M, Jaremko M. The Best Peptidomimetic Strategies to Undercover Antibacterial Peptides. Int J Mol Sci 2020; 21:7349. [PMID: 33027928 PMCID: PMC7583890 DOI: 10.3390/ijms21197349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Health-care systems that develop rapidly and efficiently may increase the lifespan of humans. Nevertheless, the older population is more fragile, and is at an increased risk of disease development. A concurrently growing number of surgeries and transplantations have caused antibiotics to be used much more frequently, and for much longer periods of time, which in turn increases microbial resistance. In 1945, Fleming warned against the abuse of antibiotics in his Nobel lecture: "The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant". After 70 years, we are witnessing the fulfilment of Fleming's prophecy, as more than 700,000 people die each year due to drug-resistant diseases. Naturally occurring antimicrobial peptides protect all living matter against bacteria, and now different peptidomimetic strategies to engineer innovative antibiotics are being developed to defend humans against bacterial infections.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Alessandra Scano
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Cinzia Casu
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Sara Fais
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Germano Orrù
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
24
|
Özdemir M, Caglayan F, Bikker FJ, Pussinen P, Könönen E, Yamalik N, Gürsoy M, Fteita D, Nazmi K, Güncü GN, Pietiäinen M, Tolvanen M, Gürsoy UK. Gingival tissue human beta-defensin levels in relation to infection and inflammation. J Clin Periodontol 2020; 47:309-318. [PMID: 31799742 DOI: 10.1111/jcpe.13227] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 12/28/2022]
Abstract
AIM To profile gingival tissue levels of human beta-defensin (hBD)-2 and hBD-3 in relation to gingival inflammation, Th17-related cytokine concentrations, Porphyromonas gingivalis counts, and gingipain and total protease activities. MATERIALS AND METHODS Gingival tissue and subgingival plaque samples were collected from 21 periodontitis patients including 48 periodontal pocket sites with marginal, mild, or moderate to severe inflammation. hBD levels were determined by immunodetection, P. gingivalis counts with real-time polymerase chain reaction, protease activities with fluorogenic substrates, and cytokine concentrations with Luminex technique. Data were statistically analysed using Kruskal-Wallis and Mann-Whitney U tests and Spearman correlation coefficients. RESULTS Subgingival plaque counts of P. gingivalis (p = .001) and gingipain activity (p < .001), as well as interleukin (IL)-1β (p = .012), IL-10 (p = .024), IL-17A (p = .002), IL-17F (p = .006), and IL-23 (p = .036) concentrations were elevated in severely inflamed sites, whereas no change was observed in hBD-2 and hBD-3 levels. Negative correlations were found between protease activity and hBD-2 (p = .033) and hBD-3(p = .003) levels. CONCLUSIONS Shift in gingival inflammation from marginal to mild stage is related to elevations in subgingival plaque P. gingivalis counts and gingipain activity, but not to tissue hBD levels. Negative correlations between hBDs and total protease activity suggest the degradation of these antimicrobial peptides in progressed inflammation.
Collapse
Affiliation(s)
- Meltem Özdemir
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland.,Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Feriha Caglayan
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | - Pirkko Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland.,Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| | - Nermin Yamalik
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Dareen Fteita
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | - Güliz N Güncü
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Milla Pietiäinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Mimmi Tolvanen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|