1
|
Pandey GS, Pathak CR, Thapa S, Sadaula A, Manandhar P, Abdelbaset AE, Qiu Y, Kwak ML, Hayashi N, Nonaka N, Nakao R. Exploring tick-borne pathogens in community dogs in Nepal. Parasitol Int 2025; 106:103003. [PMID: 39617317 DOI: 10.1016/j.parint.2024.103003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Tick-borne pathogens (TBPs) in dogs are a major global health concern, with their zoonotic importance often being neglected in developing countries due to a lack of surveillance. This study aimed to highlight the incidence of six important TBPs belonging to the genera Babesia, Theileria, Hepatozoon, Anaplasma, Ehrlichia, and Rickettsia in a total of 230 community dogs from two sites: Lumbini and the Kathmandu Valley, of Nepal. A total of 75 (32.6 %) dogs were found to be infected with at least one TBP, with 11 (4.7 %) being co-infected with more than one TBP. The detection rates of TBPs were 13.9 % (n = 32) for Ehrlichia canis, 9.1 % (n = 21) for Anaplasma platys, 8.6 % (n = 20) for Babesia vogeli, and 6.5 % (n = 15) for Babesia gibsoni. None of the samples were positive for Theileria, Hepatozoon, or Rickettsia. There was a significant association between A. platys and E. canis infections, respectively, with the locations from which the samples were collected. Infections of TBPs in community dogs might be the source of infection for pet dogs or even humans in shared habitats. Further studies are needed to determine the prevalence and diversity of TBPs in dogs in other regions of Nepal. As some of these parasites are zoonotic, concerted efforts are required to raise awareness of, and control efforts for, these tick-borne pathogens.
Collapse
Affiliation(s)
- Gita Sadaula Pandey
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; National Cattle Research Program, Nepal Agricultural Research Council, Rampur, Chitwan, Nepal
| | | | - Sunil Thapa
- Agriculture and Forestry University, Rampur, Chitwan, Nepal
| | - Amir Sadaula
- National Trust for Nature Conservation - Biodiversity Conservation Center, Sauraha, Chitwan, Nepal
| | | | - Abdelbaset Eweda Abdelbaset
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Yongjin Qiu
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Mackenzie L Kwak
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Naoki Hayashi
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Nariaki Nonaka
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan.
| |
Collapse
|
2
|
Beugnet F, Madder M, Joubert A, Bouzaidi Cheikhi I, Chajia M, Besselaar JF, Tan DY. Assessment of the speed of transmission of Ehrlichia canis, Anaplasma phagocytophilum, and Borrelia burgdorferi sensu stricto by infected ticks through an in vitro experimental model. Parasit Vectors 2025; 18:182. [PMID: 40394702 DOI: 10.1186/s13071-025-06798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/11/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Canine vector-borne diseases (CVBDs) have significant clinical and public health implications. METHODS This experimental study used a validated continuous-flow in vitro feeding system (CFIFS) to investigate the speed of transmission (SOT) of three tick-borne pathogens (TBPs): Ehrlichia canis by laboratory-infected Rhipicephalus sanguineus (18.3% infection rate), Anaplasma phagocytophilum by laboratory-infected Ixodes ricinus (56%), and Borrelia burgdorferi sensu stricto (s.s.) by laboratory-infected I. ricinus (76%). Three experiments were conducted, one per pathogen/tick model. A total of 58-60 ticks were used per feeding system. Four to six replicates were obtained per experiment. All ticks were laboratory-reared. The tick infections were performed by feeding the nymphal stages on infected hosts. RESULTS All ticks began to attach and feed 3 h after being introduced to the feeding system. At the maximum attachment, 89.7% of R. sanguineus were attached at 57 h, with 4-30% attachment at 51 h for I. ricinus infected with A. phagocytophilum, and 6.3-47.9% at 48 h for I. ricinus infected with B. burgdorferi s.s. Polymerase chain reaction (PCR) tests were used to detect the presence of pathogens from blood samples collected every 3 h. Swab samples from the inner face of the feeding membrane were also collected and tested every 6 h during the B. burgdorferi s.s. STUDY In this experimental in vitro design, after the first tick attachments were observed, E. canis exhibited SOT of 3-6 h, A. phagocytophilum of 12-15 h, and B. burgdorferi of 42-45 h in blood but only 3-6 h on inner membrane swabs. CONCLUSIONS The findings of this in vitro study highlight the transmission time of some TBPs, confirming previous data obtained in vitro or in vivo, by using the same design for all tick/pathogen models. This is a way to estimate the possibility of using acaricidal drugs to block pathogen transmission based on the SOT and the speed of kill of these compounds.
Collapse
Affiliation(s)
- F Beugnet
- Boehringer Ingelheim Animal Health, 29 Av. Tony Garnier, Lyon, France.
| | - M Madder
- Clinvet, B.P., 301, 28815, Mohammedia, Morocco
| | - A Joubert
- Clinomics, Universitas, PO Box 11186, Bloemfontein, 9321, South Africa
| | | | - M Chajia
- Clinvet, B.P., 301, 28815, Mohammedia, Morocco
| | - J F Besselaar
- Clindata, Itec Building, 14 CP Hoogenhout Street, Langenhoven Park, Bloemfontein, 9301, South Africa
| | - D Y Tan
- Boehringer Ingelheim Animal Health, 29 Av. Tony Garnier, Lyon, France
| |
Collapse
|
3
|
Axt CW, Springer A, Besse A, Naucke TJ, Müller E, Strube C, Schäfer I. [Equine granulocytic anaplasmosis (EGA): Case description and overview of the epidemiological situation with focus on Germany]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2024; 52:352-360. [PMID: 39631410 DOI: 10.1055/a-2418-6540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Equine granulocytic anaplasmosis (EGA) is a tick-borne disease caused by Anaplasma (A.) phagocytophilum. In Central, Northern, Western, and Eastern Europe, ticks of the Ixodes (I.) ricinus/I. persulcatus complex, in Germany mainly I. ricinus, are considered as vectors. Ixodes ricinus ticks show peaks of activity during the spring and summer months, particularly April to July. Changing climatic conditions, however, have meanwhile led to a year-round risk of tick exposure and thus infections with A. phagocytophilum. The presented case report underlines the seasonal peak phase of the infection risk in that the presentation of the horse to the veterinarian occurred in June. Additionally, clinical signs - including fever - are mostly unspecific and thrombocytopenia represents the most significant hematological abnormality. Direct and indirect detection methods are available for the diagnosis of an infection or contact with the pathogen. A positive PCR confirms an acute infection, as in the presented case, while positive antibody levels indicate contact with the pathogen in the (recent) past. Additionally, inclusion bodies, so called morulae, may be detected rapidly and inexpensively in smears derived from the peripheral blood and are predominantly found in neutrophilic granulocytes, less frequently in eosinophilic granulocytes. However, microscopy has a lower sensitivity compared to PCR-testing. In the presented case, morulae could not be detected in EDTA blood despite positive PCR. Antibiotics with intracellular activity, such as oxytetracycline and/or doxycycline are the treatment of choice and, as in the described case, often result in rapid clinical improvement in horses suffering from EGA. The elimination of the pathogen should be confirmed by PCR-testing 5-8 days after the completion of the antibiotic therapy. Whether and how long antibodies against A. phagocytophilum could possibly be protective against reinfection remains unknown. In humans, A. phagocytophilum is classified as an emerging pathogen of increasing clinical importance in the northern hemisphere.
Collapse
Affiliation(s)
| | - Andrea Springer
- Institut für Parasitologie, Zentrum für Infektionsmedizin, Stiftung Tierärztliche Hochschule Hannover, Hannover
| | | | | | | | - Christina Strube
- Institut für Parasitologie, Zentrum für Infektionsmedizin, Stiftung Tierärztliche Hochschule Hannover, Hannover
| | | |
Collapse
|
4
|
Geisen V, Pantchev N, Zablotski Y, Kim O, Globokar Vrhovec M, Hartmann K, Bergmann M. Molecular Detection of Anaplasma phagocytophilum in Cats in Europe and Associated Risk Factors. Animals (Basel) 2024; 14:2368. [PMID: 39199902 PMCID: PMC11350889 DOI: 10.3390/ani14162368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Infections with Anaplasma (A.) phagocytophilum in cats seem to be rare. The study aimed to determine whether infections in cats are underestimated and to identify the risk factors for infection. Blood samples of 1015 cats across Europe (2017-2022), sent to IDEXX Laboratories, Germany, were tested for A. phagocytophilum DNA. The influence of the cats' origin on A. phagocytophilum infection was assessed by univariable analysis, while multivariable logistic regression evaluated associations with the cats' sex and age, and the years, and seasonality of the samples' submission. Furthermore, univariable linear regression was used to determine patterns in PCR orders. The number of submitted samples increased significantly during the 6 years (p = 0.042). Anaplasma phagocytophilum DNA was detected in 76/1015 of cats (7.5%, 95% CI 6.0-9.3%). Infections were significantly more common in Northern compared to Central (p < 0.001, OR: 8.70) and Southern Europe (p < 0.001, OR: 39.94). A significantly higher likelihood for infections during the summer compared with winter (p = 0.047, OR: 3.13) was found. Bacteremia with A. phagocytophilum in European cats is not uncommon. Anaplasma phagocytophilum infection should be considered an important risk, particularly in Northern Europe. Effective tick prevention is crucial for managing feline health across Europe, not just in the Mediterranean region.
Collapse
Affiliation(s)
- Vera Geisen
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU, D-80539 Munich, Germany; (Y.Z.); (K.H.); (M.B.)
| | - Nikola Pantchev
- IDEXX Laboratories, D-70806 Kornwestheim, Germany; (N.P.); (O.K.); (M.G.V.)
| | - Yury Zablotski
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU, D-80539 Munich, Germany; (Y.Z.); (K.H.); (M.B.)
| | - Olga Kim
- IDEXX Laboratories, D-70806 Kornwestheim, Germany; (N.P.); (O.K.); (M.G.V.)
| | | | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU, D-80539 Munich, Germany; (Y.Z.); (K.H.); (M.B.)
| | - Michéle Bergmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU, D-80539 Munich, Germany; (Y.Z.); (K.H.); (M.B.)
| |
Collapse
|
5
|
LeVine DN, Goggs R, Kohn B, Mackin AJ, Kidd L, Garden OA, Brooks MB, Eldermire ERB, Abrams-Ogg A, Appleman EH, Archer TM, Bianco D, Blois SL, Brainard BM, Callan MB, Fellman CL, Haines JM, Hale AS, Huang AA, Lucy JM, O'Marra SK, Rozanski EA, Thomason JM, Walton JE, Wilson HE. ACVIM consensus statement on the treatment of immune thrombocytopenia in dogs and cats. J Vet Intern Med 2024; 38:1982-2007. [PMID: 38779941 PMCID: PMC11256181 DOI: 10.1111/jvim.17079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
Management of immune thrombocytopenia (ITP) in dogs and cats is evolving, but there are no evidence-based guidelines to assist clinicians with treatment decisions. Likewise, the overall goals for treatment of ITP have not been established. Immunosuppressive doses of glucocorticoids are the first line treatment, but optimal treatment regimens beyond glucocorticoids remain uncertain. Additional options include secondary immunosuppressive drugs such as azathioprine, modified cyclosporine, and mycophenolate mofetil, usually selected based on clinician preference. Vincristine, human IV immunoglobulin (hIVIg), and transfusion of platelet or red blood cell-containing products are often used in more severe cases. Splenectomy and thrombopoietin receptor agonists are usually reserved for refractory cases, but when and in which patient these modalities should be employed is under debate. To develop evidence-based guidelines for individualized treatment of ITP patients, we asked 20 Population Intervention Comparison Outcome (PICO) format questions. These were addressed by 17 evidence evaluators using a literature pool of 288 articles identified by a structured search strategy. Evidence evaluators, using panel-designed templates and data extraction tools, summarized evidence and created guideline recommendations. These were integrated by treatment domain chairs and then refined by iterative Delphi survey review to reach consensus on the final guidelines. In addition, 19 non-PICO questions covering scenarios in which evidence was lacking or of low quality were answered by expert opinion using iterative Delphi surveys with panelist integration and refinement. Commentary was solicited from multiple relevant professional organizations before finalizing the consensus. The rigorous consensus process identified few comparative treatment studies, highlighting many areas of ITP treatment requiring additional studies. This statement is a companion manuscript to the ACVIM Consensus Statement on the Diagnosis of Immune Thrombocytopenia in Dogs and Cats.
Collapse
Affiliation(s)
- Dana N LeVine
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Barbara Kohn
- Small Animal Clinic, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrew J Mackin
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Linda Kidd
- Linda Kidd Veterinary Internal Medicine Consulting, Carlsbad, California, USA
| | - Oliver A Garden
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Marjory B Brooks
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Erin R B Eldermire
- Flower-Sprecher Veterinary Library, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Anthony Abrams-Ogg
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Elizabeth H Appleman
- Department of Internal Medicine, The Animal Medical Center, New York, New York, USA
| | - Todd M Archer
- Bluff City Veterinary Specialists, Memphis, Tennessee, USA
| | - Domenico Bianco
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Shauna L Blois
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Benjamin M Brainard
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Mary Beth Callan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claire L Fellman
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Jillian M Haines
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anne S Hale
- Zia Pet Hospital, Rio Rancho, New Mexico, USA
| | | | - John M Lucy
- Oradell Animal Hospital, Paramus, New Jersey, USA
| | - Shana K O'Marra
- Northwest Veterinary Critical Care Services, Vancouver, Washington, USA
| | - Elizabeth A Rozanski
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - John M Thomason
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jenny E Walton
- Veterinary Apheresis Service UK, Washington, Tyne and Wear, United Kingdom
| | - Helen E Wilson
- Langford Vets, University of Bristol, Langford, Somerset, United Kingdom
| |
Collapse
|
6
|
LeVine DN, Kidd L, Garden OA, Brooks MB, Goggs R, Kohn B, Mackin AJ, Eldermire ERB, Chang YM, Allen J, Christopherson PW, Glanemann B, Maruyama H, Naskou MC, Nielsen LN, Shropshire S, Viall AK, Birkenheuer AJ, Forman MA, Hanzlicek AS, Langner KF, Lashnits E, Lunn KF, Makielski KM, Roura X, Spada E. ACVIM consensus statement on the diagnosis of immune thrombocytopenia in dogs and cats. J Vet Intern Med 2024; 38:1958-1981. [PMID: 38752421 PMCID: PMC11256148 DOI: 10.1111/jvim.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 07/19/2024] Open
Abstract
Immune thrombocytopenia (ITP) is the most common acquired primary hemostatic disorder in dogs. Immune thrombocytopenia less commonly affects cats but is an important cause of mortality and treatment-associated morbidity in both species. Immune thrombocytopenia remains a diagnosis of exclusion for which diagnostic guidelines are lacking. Primary, or non-associative, ITP refers to autoimmune platelet destruction. Secondary, or associative, ITP arises in response to an underlying disease trigger. However, evidence for which comorbidities serve as ITP triggers has not been systematically evaluated. To identify key diagnostic steps for ITP and important comorbidities associated with secondary ITP, we developed 12 Population Evaluation/Exposure Comparison Outcome (PECO) format questions. These questions were addressed by evidence evaluators utilizing a literature pool of 287 articles identified by the panelists using a structured search strategy. Evidence evaluators, using panel-designed templates and data extraction tools, summarized evidence and created guideline recommendations that then were integrated by diagnosis and comorbidity domain chairs. The revised PECO responses underwent a Delphi survey process to reach consensus on final guidelines. A combination of panel expertise and PECO responses were employed to develop algorithms for diagnosis of ITP in dogs and cats, which also underwent 4 iterations of Delphi review. Comorbidity evidence evaluators employed an integrated measure of evidence (IME) tool to determine evidence quality for each comorbidity; IME values combined with evidence summaries for each comorbidity were integrated to develop ITP screening recommendations, which also were subjected to Delphi review. Commentary was solicited from multiple relevant professional organizations before finalizing the consensus. The final consensus statement provides clinical guidelines for the diagnosis of, and underlying disease screening for, ITP in dogs and cats. The systematic consensus process identified numerous knowledge gaps that should guide future studies. This statement is a companion manuscript to the ACVIM Consensus Statement on the Treatment of Immune Thrombocytopenia.
Collapse
Affiliation(s)
- Dana N LeVine
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Linda Kidd
- Western University of Health Sciences College of Veterinary Medicine, Pomona, California, USA
- Zoetis Animal Health Diagnostics, Parsippany, New Jersey, USA
| | - Oliver A Garden
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Marjory B Brooks
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Barbara Kohn
- Clinic for Small Animals, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrew J Mackin
- College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, USA
| | - Erin R B Eldermire
- Flower-Sprecher Veterinary Library, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yu-Mei Chang
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Julie Allen
- Veterinary Information Network, Davis, California, USA
| | - Peter W Christopherson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Barbara Glanemann
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Haruhiko Maruyama
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Chiyoda City, Japan
| | - Maria C Naskou
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lise N Nielsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Shropshire
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Austin K Viall
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Adam J Birkenheuer
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Marnin A Forman
- Cornell University Veterinary Specialists, Stamford, Connecticut, USA
| | | | - Kathrin F Langner
- Western Australian Veterinary Emergency and Specialty, Perth, Australia
| | - Erin Lashnits
- School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Kelly M Makielski
- College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Xavier Roura
- Hospital Clinic Veterinari, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Eva Spada
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| |
Collapse
|
7
|
Murdock BK, Bach JF, Qurollo BA, Lashnits EW, Friedrichs KR. Detection of Anaplasma phagocytophilum in an inflammatory pericardial effusion of a dog. J Vet Intern Med 2024; 38:2339-2343. [PMID: 38703185 PMCID: PMC11256139 DOI: 10.1111/jvim.17090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
An 11-year-old female spayed German Wirehaired Pointer with a 1-week history of lethargy, hyporexia, diarrhea, and coughing presented with pericardial effusion causing cardiac tamponade. An echocardiogram revealed no structural cause for pericardial effusion. The pericardial effusion was an exudate with mixed macrophagic and neutrophilic inflammation. Morulae occasionally were found within neutrophils. The pericardial fluid and blood were qPCR and cPCR positive for Anaplasma phagocytophilum (NC State University, Vector-borne Disease Diagnostic Laboratory, Raleigh, NC). The dog's blood was negative by ELISA (Vetscan Flex4 Rapid Test, Zoetis, Parsippany, NJ) for A. phagocytophilum antibodies at initial presentation and subsequently positive (SNAP4DxPlus, IDEXX, Westbrook, ME) 7 days later. After pericardiocentesis and administration of doxycycline (5 mg/kg PO q12h for 14 days), a repeat echocardiogram performed 1 month later showed no recurrence of pericardial effusion.
Collapse
Affiliation(s)
- Betsy K. Murdock
- School of Veterinary Medicine, Department of Pathobiological SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Jonathan F. Bach
- School of Veterinary Medicine, Department of Medical SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Barbara A. Qurollo
- College of Veterinary Medicine, Department of Clinical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Erin W. Lashnits
- School of Veterinary Medicine, Department of Medical SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kristen R. Friedrichs
- School of Veterinary Medicine, Department of Pathobiological SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
8
|
Martinescu GV, Ivănescu L, Ștefănescu R, Andronic L, Mătiuț S, Mîndru R, Solcan G, Miron L. Strategies for the Diagnosis of Granulocytic Anaplasmosis in Two Naturally Infected Dogs. Animals (Basel) 2023; 14:49. [PMID: 38200780 PMCID: PMC10778014 DOI: 10.3390/ani14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
This study describes granulocytic anaplasmosis in two dogs naturally infected with Anaplasma phagocytophilum. The 3-year-old dogs (male and female) came from the same household and were referred to the Faculty of Veterinary Medicine in Iasi for blood donation. They were subject to standard routine tests: haematology blood test, blood smear, and serological tests (VETSCAN® FLEX4 and IDEXX SNAP 4Dx Plus). The female dog had no medical problems, while the male dog experienced joint pain. The blood smear was negative for tick-borne pathogens, and the haematology findings indicated thrombocytopenia in both dogs, with the male dog also displaying eosinophilia. The two dogs were mildly positive in the ELISA tests for the detection of Anaplasma spp. antibodies; therefore, the blood samples were tested using the qRT-PCR method for Anaplasma platys and Anaplasma phagocytophilum. The qRT-PCR result was negative for A. platys, but it was positive for A. phagocytophilum. The treatment consisted of the administration of doxycycline for 28 days. In conclusion, the high number of cases with non-specific clinical signs, the different sensitivity and specificity of the immunochromatographic serological tests, as well as the possibility of confusing the morula during the cytological examination, make the molecular test mandatory for precise diagnosis.
Collapse
Affiliation(s)
- Gabriela-Victoria Martinescu
- Faculty of Veterinary Medicine, Iasi University of Life Sciences, 8 Mihail Sadoveanu Alley, 700490 Iasi, Romania; (G.-V.M.); (R.Ș.); (L.A.); (R.M.); (G.S.); (L.M.)
| | - Larisa Ivănescu
- Faculty of Veterinary Medicine, Iasi University of Life Sciences, 8 Mihail Sadoveanu Alley, 700490 Iasi, Romania; (G.-V.M.); (R.Ș.); (L.A.); (R.M.); (G.S.); (L.M.)
| | - Raluca Ștefănescu
- Faculty of Veterinary Medicine, Iasi University of Life Sciences, 8 Mihail Sadoveanu Alley, 700490 Iasi, Romania; (G.-V.M.); (R.Ș.); (L.A.); (R.M.); (G.S.); (L.M.)
| | - Lavinia Andronic
- Faculty of Veterinary Medicine, Iasi University of Life Sciences, 8 Mihail Sadoveanu Alley, 700490 Iasi, Romania; (G.-V.M.); (R.Ș.); (L.A.); (R.M.); (G.S.); (L.M.)
| | - Simona Mătiuț
- Praxis Medical Laboratory, 33 Independentei Boulevard, 700102 Iasi, Romania;
| | - Raluca Mîndru
- Faculty of Veterinary Medicine, Iasi University of Life Sciences, 8 Mihail Sadoveanu Alley, 700490 Iasi, Romania; (G.-V.M.); (R.Ș.); (L.A.); (R.M.); (G.S.); (L.M.)
| | - Gheorghe Solcan
- Faculty of Veterinary Medicine, Iasi University of Life Sciences, 8 Mihail Sadoveanu Alley, 700490 Iasi, Romania; (G.-V.M.); (R.Ș.); (L.A.); (R.M.); (G.S.); (L.M.)
| | - Liviu Miron
- Faculty of Veterinary Medicine, Iasi University of Life Sciences, 8 Mihail Sadoveanu Alley, 700490 Iasi, Romania; (G.-V.M.); (R.Ș.); (L.A.); (R.M.); (G.S.); (L.M.)
| |
Collapse
|
9
|
Richardson SS, Mainville CA, Arguello-Marin A, Whalley D, Burton W, Breitschwerdt EB, Qurollo BA. A second-generation, point-of-care immunoassay provided improved detection of Anaplasma and Ehrlichia antibodies in PCR-positive dogs naturally infected with Anaplasma or Ehrlichia species. J Vet Diagn Invest 2023; 35:366-373. [PMID: 37161312 PMCID: PMC10331380 DOI: 10.1177/10406387231172723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
A validated second-generation SNAP 4Dx Plus (Idexx) incorporates new peptides for improved detection of antibodies against Anaplasma and Ehrlichia tick-borne pathogens in dogs. We compared the first- and second-generation SNAP 4Dx Plus using dogs naturally infected with Anaplasma or Ehrlichia species, or dogs seroreactive by an E. canis indirect fluorescent antibody test (IFAT). The second-generation immunoassay was more sensitive than the first-generation for dogs infected with A. phagocytophilum (51.1% and 29.2%, respectively), A. platys (63.6% and 35.3%, respectively), E. canis (96.2% and 88.3%, respectively), or E. ewingii (73.7% and 70.8%, respectively), and for dogs seroreactive by E. canis IFAT (87.3% and 83.9%, respectively). The second-generation immunoassay detected significantly more Anaplasma- or Ehrlichia-infected dogs that were Anaplasma (p < 0.001) or Ehrlichia (p = 0.031) seroreactive, respectively, than did the first-generation test. When Ehrlichia seroreactivity by E. canis IFAT and both immunoassays was compared, significantly more E. canis-infected dogs were seroreactive by E. canis IFAT than the first-generation (p = 0.006) but not the second-generation (p = 0.125) immunoassay. Significantly more E. ewingii-infected dogs were seroreactive by the first- (p = 0.011) and second-generation (p = 0.049) immunoassays than the E. canis IFAT. Medical records available for 7 dogs that were Anaplasma seroreactive by the second-generation but not the first-generation immunoassay revealed case management decisions that might have been different with an immediate anaplasmosis diagnosis, including earlier doxycycline therapy and less hospitalization. The second-generation SNAP 4Dx Plus test offered improved serologic detection of Anaplasma and Ehrlichia in naturally infected dogs.
Collapse
Affiliation(s)
- Safari S. Richardson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | - Edward B. Breitschwerdt
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Barbara A. Qurollo
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
10
|
Athanasiou LV, Tsokana CN, Gougoulis DA, Tzivara AH, Dedousi A, Katsoulos PD. Natural Co-Exposure to Borrelia burgdorferi s.l. and Anaplasma phagocytophilum: Unraveling the Hematological Profile in Sheep. Life (Basel) 2023; 13:life13020469. [PMID: 36836826 PMCID: PMC9959091 DOI: 10.3390/life13020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The occurrence of co-infected hosts and questing ticks with more than one tick-borne pathogen-as in the case of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato-is expected in endemic regions. Their synergy-in terms of pathogenesis and disease severity-has been suggested previously in humans. Limited data exist on the clinicopathological alterations in co-infected sheep. In this study, we investigated the impact of A. phagocytophilum and B. burgdorferi s.l. seropositivity, alone and in combination, on the hematological parameters of naturally infected sheep. A complete blood count was performed, and indirect immunofluorescence assays were used to detect IgG antibodies against A. phagocytophilum and IgG and IgM antibodies against B. burgdorferi s.l. Single natural exposure to B. burgdorferi s.l. was characterized by low Packed Cell Volume (PCV) values and platelet (PLT) counts, while single exposure to A. phagocytophilum was characterized by low PCV values, low white blood cell (WBC) counts, and an increased risk for leukopenia and neutropenia. Co-exposure resulted in the most severe blood abnormalities; all the blood parameters decreased, and the sheep presented an increased risk for anemia. Our study showed that natural co-exposure to A. phagocytophilum and B. burgdorferi s.l. in sheep leads to more severe blood abnormalities and enhances the pathogenic processes. More studies are needed to clarify the possible background mechanisms.
Collapse
Affiliation(s)
- Labrini V. Athanasiou
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece
- Correspondence: ; Tel.: +30-24410-66-009; Fax: +30-24410-66-053
| | - Constantina N. Tsokana
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece
| | - Dimitris A. Gougoulis
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece
| | - Athanasia H. Tzivara
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece
| | - Anna Dedousi
- Veterinary Research Institute, HAO-Demeter, 57001 Thessaloniki, Greece
| | - Panagiotis D. Katsoulos
- Clinic of Farm Animals, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| |
Collapse
|
11
|
Huggins LG, Koehler AV, Gasser RB, Traub RJ. Advanced approaches for the diagnosis and chemoprevention of canine vector-borne pathogens and parasites-Implications for the Asia-Pacific region and beyond. ADVANCES IN PARASITOLOGY 2023; 120:1-85. [PMID: 36948727 DOI: 10.1016/bs.apar.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vector-borne pathogens (VBPs) of canines are a diverse range of infectious agents, including viruses, bacteria, protozoa and multicellular parasites, that are pernicious and potentially lethal to their hosts. Dogs across the globe are afflicted by canine VBPs, but the range of different ectoparasites and the VBPs that they transmit predominate in tropical regions. Countries within the Asia-Pacific have had limited prior research dedicated to exploring the epidemiology of canine VBPs, whilst the few studies that have been conducted show VBP prevalence to be high, with significant impacts on dog health. Moreover, such impacts are not restricted to dogs, as some canine VBPs are zoonotic. We reviewed the status of canine VBPs in the Asia-Pacific, with particular focus on nations in the tropics, whilst also investigating the history of VBP diagnosis and examining recent progress in the field, including advanced molecular methods, such as next-generation sequencing (NGS). These tools are rapidly changing the way parasites are detected and discovered, demonstrating a sensitivity equal to, or exceeding that of, conventional molecular diagnostics. We also provide a background to the armoury of chemopreventive products available for protecting dogs from VBP. Here, field-based research within high VBP pressure environments has underscored the importance of ectoparasiticide mode of action on their overall efficacy. The future of canine VBP diagnosis and prevention at a global level is also explored, highlighting how evolving portable sequencing technologies may permit diagnosis at point-of-care, whilst further research into chemopreventives will be essential if VBP transmission is to be effectively controlled.
Collapse
Affiliation(s)
- Lucas G Huggins
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia.
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Rebecca J Traub
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Weingart C, Helm CS, Müller E, Schäfer I, Skrodzki M, von Samson‐Himmelstjerna G, Krücken J, Kohn B. Autochthonous Babesia canis infections in 49 dogs in Germany. Vet Med (Auckl) 2023; 37:140-149. [PMID: 36629833 PMCID: PMC9889677 DOI: 10.1111/jvim.16611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Vector-borne diseases are of increasing importance in Germany. Since 2015, autochthonous cases have been increasingly documented in Berlin/Brandenburg. OBJECTIVES Describe autochthonous Babesia canis infection in the Berlin/Brandenburg region. ANIMALS Forty-nine dogs with autochthonous B. canis infection. METHODS Evaluation of history, clinical signs, laboratory abnormalities, treatment, and outcome. RESULTS Dogs were presented between March and August (9) and September and January (40) in the years 2015-2021. Historical and clinical findings were lethargy (100%), pale mucous membranes (63%), fever (50%), and pigmenturia (52%). Common clinicopathological findings were thrombocytopenia (100%), anemia (85%), intravascular hemolysis (52%), pancytopenia (41%), and systemic inflammatory response syndrome (SIRS; 37%). Babesia detection was based on blood smear evaluation (n = 40) and PCR targeting the 18S rRNA gene of piroplasms (n = 49). Sequencing indicated 99.47% to 100% identity to B. canis sequences from GenBank. All dogs were treated with imidocarb (2.4-6.3 mg/kg; median, 5 mg/kg); 8 dogs received 1, 35 received 2, and 1 dog each received 3, 4, or 5 injections, respectively. Continued PCR-positive results were detected in 7 dogs after the 1st, in 5 after the 2nd, in 2 after the 3rd, and in 1 28 days after the 4th injection. Four dogs were euthanized and 3 dogs died. CONCLUSIONS AND CLINICAL IMPORTANCE Autochthonous B. canis infections in Berlin/Brandenburg were associated with severe clinicopathological changes, SIRS, and multiorgan involvement. Testing by PCR during and after treatment is advisable to monitor treatment success. Screening of blood donors in high-risk areas and year-round tick protection is strongly recommended.
Collapse
Affiliation(s)
- Christiane Weingart
- Clinic for Small Animals, Faculty of Veterinary MedicineFreie Universität BerlinBerlinGermany
| | - Christina S. Helm
- Institute for Parasitology and Tropical Veterinary MedicineFreie Universität BerlinBerlinGermany
| | | | | | - Marianne Skrodzki
- Clinic for Small Animals, Faculty of Veterinary MedicineFreie Universität BerlinBerlinGermany
| | | | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary MedicineFreie Universität BerlinBerlinGermany
| | - Barbara Kohn
- Clinic for Small Animals, Faculty of Veterinary MedicineFreie Universität BerlinBerlinGermany
| |
Collapse
|
13
|
Diniz PPV, Moura de Aguiar D. Ehrlichiosis and Anaplasmosis. Vet Clin North Am Small Anim Pract 2022; 52:1225-1266. [DOI: 10.1016/j.cvsm.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Tayler S, Hazuchova K, Riddle A, Swann JW, Glanemann B. Investigation of single-nucleotide polymorphisms in the NR3C1a glucocorticoid receptor gene in Cocker Spaniels with primary immune thrombocytopenia. J Vet Intern Med 2022; 36:1281-1286. [PMID: 35689373 PMCID: PMC9308442 DOI: 10.1111/jvim.16468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/27/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In dogs, 6 single-nucleotide polymorphisms (SNPs) have been described in the glucocorticoid receptor gene NR3C1a, 2 of which were nonsynonymous SNPs in exons 2 and 8. The clinical importance of these SNPs is unknown. OBJECTIVES To investigate whether SNPs in NR3C1a are associated with clinical outcome in Cocker Spaniels with primary immune thrombocytopenia (pITP). ANIMALS Twenty-four Cocker Spaniels with pITP presented to a referral center. Dogs were classified as slow (n = 11) or fast responders (n = 12) based on time required after initiating glucocorticoid treatment to achieve a platelet count >70 000/μL. METHODS Deoxyribonucleic acid was extracted from stored blood samples before amplification by PCR and sequencing of exons 2 and 8 of NR3C1a. Associations between genotype and clinical response variables were investigated. RESULTS Neither previously identified nonsynonymous SNPs were identified. The synonymous SNP NR3C1a:c.798C>T in exon 2 was found at an increased prevalence compared to a previous report. No difference was found in prevalence of any genotype at NR3C1a:c.798C>T between fast and slow responders (P = .70). CONCLUSIONS AND CLINICAL IMPORTANCE None of the previously reported nonsynonymous SNPs in exons 2 and 8 of the NR3C1a gene were detected in our cohort of Cocker Spaniels with pITP. The synonymous SNP NR3C1a:c.798C>T in exon 2 was reported at a higher frequency than previously, but was not associated with outcome measures that estimated responsiveness to glucocorticoids.
Collapse
Affiliation(s)
- Sarah Tayler
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Katarina Hazuchova
- Small Animal Clinic, Internal Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Anna Riddle
- Clinical Investigation Centre, Royal Veterinary College, Hatfield, United Kingdom
| | - James W Swann
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom.,Columbia Stem Cell Initiative, Columbia University, New York, New York, USA
| | - Barbara Glanemann
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
15
|
Miranda EA, Han SW, Rim JM, Cho YK, Choi KS, Chae JS. Serological evidence of Anaplasma spp., Borrelia burgdorferi and Ehrlichia canis in dogs from the Republic of Korea by rapid diagnostic test kits. J Vet Sci 2022; 23:e20. [PMID: 35187878 PMCID: PMC8977546 DOI: 10.4142/jvs.21215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/03/2021] [Accepted: 12/05/2021] [Indexed: 11/24/2022] Open
Abstract
Background Emergent and re-emergent canine tick-borne infections are attracting increasing attention worldwide. The rise in pet ownership and the close relationship between dogs and their owners are the most concerning factors because dogs may act as competent reservoirs for human tick-transmitted infectious agents. Objectives This study contributes to the epidemiological surveillance of canine tick-transmitted infections with zoonotic risk in the Republic of Korea (ROK) by investigating the seroprevalence of the pathogens, Anaplasma spp., Borrelia burgdorferi, and Ehrlichia canis. Methods Four hundred and thirty whole blood samples from domestic dogs were collected in seven metropolitan cities and nine provinces in the ROK and tested using SensPERT Ab test kits (VetAll Laboratories®) to detect seroreactive animals. Results The seroprevalence rates identified were 9.8% (42/430) for Anaplasma spp., 2.8% (12/430) for B. burgdorferi, and 1.4% (6/430) for E. canis. The risk factors evaluated in this study that could be associated with the development of a humoral immune response, such as sex, age, and history of tick exposure, were similar. There was only one exception for dogs seroreactive to Anaplasma spp., where the risk factor “tick exposure” was statistically significant (p = 0.047). Conclusions This serological survey exhibited the widespread presence of Anaplasma spp., B. burgdorferi, and E. canis throughout the ROK. Hence, dogs may play a key role as the sentinel animals of multiple zoonotic infectious agents in the country.
Collapse
Affiliation(s)
- Evelyn Alejandra Miranda
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Ji-Min Rim
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Yoon-Kyoung Cho
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Kyoung-Seong Choi
- College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Bauer BU, Răileanu C, Tauchmann O, Fischer S, Ambros C, Silaghi C, Ganter M. Anaplasma phagocytophilum and Anaplasma ovis-Emerging Pathogens in the German Sheep Population. Pathogens 2021; 10:1298. [PMID: 34684247 PMCID: PMC8537415 DOI: 10.3390/pathogens10101298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge on the occurrence of pathogenic tick-borne bacteria Anaplasma phagocytophilum and Anaplasma ovis is scarce in sheep from Germany. In 2020, owners from five flocks reported ill thrift lambs and ewes with tick infestation. Out of 67 affected sheep, 55 animals were clinically examined and hematological values, blood chemistry and fecal examinations were performed to investigate the underlying disease causes. Serological tests (cELISA, IFAT) and qPCR were applied to all affected sheep to rule out A. phagocytophilum and A. ovis as a differential diagnosis. Ticks were collected from selected pastures and tested by qPCR. Most animals (n = 43) suffered from selenium deficiency and endoparasites were detected in each flock. Anaplasma spp. antibodies were determined in 59% of examined sheep. Seventeen animals tested positive for A. phagocytophilum by qPCR from all flocks and A. phagocytophilum was also detected in eight pools of Ixodes ricinus. Anaplasma phagocytophilum isolates from sheep and ticks were genotyped using three genes (16S rRNA, msp4 and groEL). Anaplasma ovis DNA was identified in six animals from one flock. Clinical, hematological and biochemical changes were not significantly associated with Anaplasma spp. infection. The 16S rRNA analysis revealed known variants of A. phagocytophilum, whereas the msp4 and groEL showed new genotypes. Further investigations are necessary to evaluate the dissemination and health impact of both pathogens in the German sheep population particularly in case of comorbidities.
Collapse
Affiliation(s)
- Benjamin Ulrich Bauer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Cristian Răileanu
- Institute of Infectiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald Isle of Riems, Germany; (C.R.); (O.T.); (S.F.); (C.S.)
| | - Oliver Tauchmann
- Institute of Infectiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald Isle of Riems, Germany; (C.R.); (O.T.); (S.F.); (C.S.)
| | - Susanne Fischer
- Institute of Infectiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald Isle of Riems, Germany; (C.R.); (O.T.); (S.F.); (C.S.)
| | - Christina Ambros
- Sheep Health Service, Bavarian Animal Health Service, Senator-Gerauer-Straße 23, 85586 Poing-Grub, Germany;
| | - Cornelia Silaghi
- Institute of Infectiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald Isle of Riems, Germany; (C.R.); (O.T.); (S.F.); (C.S.)
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Domstraße 11, 17489 Greifswald, Germany
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| |
Collapse
|
17
|
Rubel W, Schoneberg C, Wolf A, Ganter M, Bauer BU. Seroprevalence and Risk Factors of Anaplasma spp. in German Small Ruminant Flocks. Animals (Basel) 2021; 11:2793. [PMID: 34679815 PMCID: PMC8532635 DOI: 10.3390/ani11102793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Knowledge about the distribution of Anaplasma spp. in small ruminants from Germany is limited. Therefore, serum samples were examined from 71 small ruminant flocks (2731 sheep, 447 goats) located in the five German federal states: Schleswig-Holstein (SH), Lower Saxony (LS), North Rhine-Westphalia (NRW), Baden-Wuerttemberg (BW) and Bavaria (BAV). Antibodies to Anaplasma spp. were determined by a cELISA based on the MSP5 antigen. A risk factor analysis at animal and flock level was also performed. Antibodies to Anaplasma spp. were detected in 70/71 flocks without significant difference in the intra-flock prevalence (IFP) between the federal states. The mean antibody levels from sheep were significantly lower in northern Germany (LS, SH) compared to west (NRW) and south Germany (BW, BAV). Sheep had a 2.5-fold higher risk of being seropositive than goats. Females and older animals (>2 years) were more likely to have antibodies to Anaplasma spp. in one third and one quarter of cases, respectively. Flocks used for landscape conservation had a five times higher risk of acquiring an IFP greater than 20%. Cats and dogs on the farms increased the probability for small ruminant flocks to have an IFP of above 20% 10-fold and 166-fold, respectively. Further studies are necessary to assess the impact of Anaplasma species on the health of small ruminants in Germany.
Collapse
Affiliation(s)
- Wiebke Rubel
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (A.W.); (M.G.); (B.U.B.)
| | - Clara Schoneberg
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Annika Wolf
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (A.W.); (M.G.); (B.U.B.)
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (A.W.); (M.G.); (B.U.B.)
| | - Benjamin Ulrich Bauer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (A.W.); (M.G.); (B.U.B.)
| |
Collapse
|
18
|
El Hamiani Khatat S, Daminet S, Duchateau L, Elhachimi L, Kachani M, Sahibi H. Epidemiological and Clinicopathological Features of Anaplasma phagocytophilum Infection in Dogs: A Systematic Review. Front Vet Sci 2021; 8:686644. [PMID: 34250067 PMCID: PMC8260688 DOI: 10.3389/fvets.2021.686644] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Anaplasma phagocytophilum is a worldwide emerging zoonotic tick-borne pathogen transmitted by Ixodid ticks and naturally maintained in complex and incompletely assessed enzootic cycles. Several studies have demonstrated an extensive genetic variability with variable host tropisms and pathogenicity. However, the relationship between genetic diversity and modified pathogenicity is not yet understood. Because of their proximity to humans, dogs are potential sentinels for the transmission of vector-borne pathogens. Furthermore, the strong molecular similarity between human and canine isolates of A. phagocytophilum in Europe and the USA and the positive association in the distribution of human and canine cases in the USA emphasizes the epidemiological role of dogs. Anaplasma phagocytophilum infects and survives within neutrophils by disregulating neutrophil functions and evading specific immune responses. Moreover, the complex interaction between the bacterium and the infected host immune system contribute to induce inflammatory injuries. Canine granulocytic anaplasmosis is an acute febrile illness characterized by lethargy, inappetence, weight loss and musculoskeletal pain. Hematological and biochemistry profile modifications associated with this disease are unspecific and include thrombocytopenia, anemia, morulae within neutrophils and increased liver enzymes activity. Coinfections with other tick-borne pathogens (TBPs) may occur, especially with Borrelia burgdorferi, complicating the clinical presentation, diagnosis and response to treatment. Although clinical studies have been published in dogs, it remains unclear if several clinical signs and clinicopathological abnormalities can be related to this infection.
Collapse
Affiliation(s)
- Sarah El Hamiani Khatat
- Department of Medicine, Surgery and Reproduction, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Sylvie Daminet
- Department of Companion Animals, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Latifa Elhachimi
- Department of Pathology and Veterinary Public Health, Unit of Parasitology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Malika Kachani
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Hamid Sahibi
- Department of Pathology and Veterinary Public Health, Unit of Parasitology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| |
Collapse
|
19
|
Keyte S, Abdullah S, James K, Newbury H, Helps C, Tasker S, Wall R. Prevalence and distribution of Anaplasma phagocytophilum in ticks collected from dogs in the United Kingdom. Vet Rec 2021; 188:e12. [PMID: 33818768 DOI: 10.1002/vetr.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/07/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Anaplasma phagocytophilum is the etiological agent of canine granulocytic anaplasmosis in dogs and causes human granulocytic anaplasmosis (HGA). Tick-borne anaplasmosis has been recognised as an emerging zoonotic health concern worldwide. The aim of the present study was to determine the prevalence of A. phagocytophilum in ticks collected from dogs in the UK and map its distribution. Routine surveillance of tick-borne disease is essential as part of a "One Health" approach to infectious disease management. METHODS Tick DNA samples collected in 2015 as part of a large-scale tick surveillance programme were analysed using a previously validated diagnostic quantitative PCR for A. phagocytophilum. RESULTS PCR analysis indicated that 138 out of 2994 tick DNA samples analysed were positive for A. phagocytophilum, a prevalence of 4.6% (95% CI: 3.89-5.42). Among these 138 tick DNA samples, 131 were from Ixodes ricinus, six were from Ixodes hexagonus and one was from Ixodes canisuga. Three of the I. ricinus tick DNA samples positive for A. phagocytophilum DNA were also positive for Borrelia spp. DNA and one was positive for Babesia spp. DNA, indicating co-infection. The ticks positive for the pathogen DNA were found widely distributed throughout the UK. CONCLUSIONS These data provide important information on the prevalence and wide distribution of A. phagocytophilum in ticks infesting dogs within the UK.
Collapse
Affiliation(s)
- Sophie Keyte
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Swaid Abdullah
- School of Biological Sciences, University of Bristol, Bristol, UK.,School of Veterinary Science, University of Queensland, Queensland, Australia
| | - Kate James
- Molecular Diagnostic Unit, Diagnostic Laboratories, Langford Vets, University of Bristol, Bristol, UK
| | | | - Chris Helps
- Molecular Diagnostic Unit, Diagnostic Laboratories, Langford Vets, University of Bristol, Bristol, UK
| | - Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol, UK.,Molecular Diagnostic Unit, Diagnostic Laboratories, Langford Vets, University of Bristol, Bristol, UK
| | - Richard Wall
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
20
|
Schäfer I, Kohn B. Anaplasma phagocytophilum infection in cats: A literature review to raise clinical awareness. J Feline Med Surg 2020; 22:428-441. [PMID: 32326861 PMCID: PMC7787687 DOI: 10.1177/1098612x20917600] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PRACTICAL RELEVANCE Granulocytic anaplasmosis is a disease in humans and animals caused by the Gram-negative bacterium Anaplasma phagocytophilum within the family Anaplasmataceae. The pathogen is transmitted by ticks of the Ixodes species. Infections with A phagocytophilum have often been described in dogs but reports on natural infections in cats are rare. An infection with A phagocytophilum should be considered as a differential diagnosis in cats if the history reveals tick infestation and/or outdoor access in combination with the relevant clinical signs. GLOBAL IMPORTANCE A phagocytophilum is also important in human medicine because of its zoonotic potential. Due to the risk of vector-borne infections for both feline and public health, cats should be protected with ectoparasiticides, especially in endemic areas. AIM The aim of this review is to give an overview of the published data and summarise the epidemiology, pathogenesis, diagnosis, clinical signs and therapy of feline granulocytic anaplasmosis. As clinical signs are vague and non-specific, this review aims to raise awareness of A phagocytophilum infection, both among clinicians, so that they consider testing potentially exposed cats, and scientists, in order to prompt further research. EVIDENCE BASE Sixteen publications describing 55 cats have been reviewed. Thirty-four cats were well diagnosed based on guidelines of the European Advisory Board on Cat Diseases and blood analyses were performed to varying extents for these cats. Because of the limited number of studies and a lack of knowledge in cats, clinical signs and blood analyses are compared with available data in dogs.
Collapse
Affiliation(s)
- Ingo Schäfer
- Faculty of Veterinary Medicine, Clinic for Small Animals, Freie Universität Berlin, Oertzenweg 19b, Building 1, 14163 Berlin, Germany
| | - Barbara Kohn
- Faculty of Veterinary Medicine, Clinic for Small Animals, Freie Universität Berlin, Oertzenweg 19b, Building 1, 14163 Berlin, Germany
| |
Collapse
|
21
|
Lee S, Lee H, Park JW, Yoon SS, Seo HJ, Noh J, Yoo MS, Kim KH, Park Y, Cho YS, So BJ. Prevalence of antibodies against Anaplasma spp., Borrelia burgdorferi sensu lato, Babesia gibsoni, and Ehrlichia spp. in dogs in the Republic of Korea. Ticks Tick Borne Dis 2020; 11:101412. [PMID: 32173299 DOI: 10.1016/j.ttbdis.2020.101412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 11/20/2022]
Abstract
There is a lack of comprehensive studies on the seroprevalence of tick-borne pathogens in the Republic of Korea. Therefore, the aim of this study was to investigate the seroprevalences of Anaplasma spp. (A. phagocytophilum/A. platys), Borrelia burgdorferi sensu lato, Babesia gibsoni, Ehrlichia spp. (E. canis/E. ewingii), and Ehrlichia chaffeensis in dogs across the Republic of Korea in 2017 and 2018. A total of 2215 serum samples collected from 938 companion dogs, 969 shelter dogs, and 308 military working dogs were examined using commercial enzyme-linked immunosorbent assay (ELISA) and indirect fluorescence immunoassay (IFA) kits. Data collected for each animal, including breed, sex, age, region, season, and dog type, were used for statistical analysis. The overall seroprevalence was highest for Anaplasma spp. (15.1 %), followed by Ehrlichia spp. (10.3 %), B. burgdorferi sensu lato (6.4 %), E. chaffeensis (2.3 %), and B. gibsoni (1.7 %). One hundred and sixty-one dogs had antibodies against two or three different pathogens. The most common combinations were Anaplasma spp. - Ehrlichia spp. (2.1 %), Anaplasma spp. - E. chaffeensis (1.4 %), and Anaplasma spp. - B. burgdorferi sensu lato (1.2 %). Season was significantly associated with the seroprevalences of B. burgdorferi sensu lato and Ehrlichia spp., with dogs presenting the highest percentage of positive results during summer. Anaplasma spp. and B. gibsoni were significantly more prevalent in the northern and southern regions, respectively. The seroprevalences of Anaplasma spp., B. burgdorferi sensu lato, and Ehrlichia spp. were significantly higher in military working dogs, while the seroprevalence of E. chaffeensis was higher in companion dogs. The current findings are important for future surveillance of canine tick-borne pathogens and designing appropriate approaches for the diagnosis and control of these pathogens in the Republic of Korea.
Collapse
Affiliation(s)
- Seunghee Lee
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Hyunkyoung Lee
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Jung-Won Park
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Soon-Seek Yoon
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Hyun-Ji Seo
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Jinhyeong Noh
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Mi-Sun Yoo
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Keun-Ho Kim
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Yeojin Park
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Yun Sang Cho
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Byung Jae So
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| |
Collapse
|
22
|
LeVine DN, Brooks MB. Immune thrombocytopenia (ITP): Pathophysiology update and diagnostic dilemmas. Vet Clin Pathol 2019; 48 Suppl 1:17-28. [PMID: 31538353 DOI: 10.1111/vcp.12774] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/28/2019] [Accepted: 05/20/2019] [Indexed: 01/19/2023]
Abstract
Immune thrombocytopenia (ITP) is a common autoimmune bleeding disorder. The understanding of ITP pathogenesis is rapidly evolving. We now recognize ITP as a complex and heterogeneous syndrome that results from a combination of humoral and cell-mediated attacks on platelets peripherally and megakaryocytes in the bone marrow. Autoantibody-mediated ITP also varies in the pathway used to clear platelets, which depends on the platelet glycoprotein being targeted. Moreover, ITP patients present with variable bleeding severities and treatment responses that do not closely correlate with platelet count. A gold standard diagnostic test for ITP is lacking, and biomarkers to assess disease severity are in their infancy. This review provides an update on the immunopathogenesis of ITP and summarizes currently available tests for ITP diagnosis, prediction of disease severity, and treatment responses. Given the heterogeneous pathogenesis and clinical presentation of ITP, we highlight the need for the development of diagnostic and prognostic tests that would allow for the individualized management of a complex disease.
Collapse
Affiliation(s)
- Dana N LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Marjory B Brooks
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
23
|
Webster CRL, Center SA, Cullen JM, Penninck DG, Richter KP, Twedt DC, Watson PJ. ACVIM consensus statement on the diagnosis and treatment of chronic hepatitis in dogs. J Vet Intern Med 2019; 33:1173-1200. [PMID: 30844094 PMCID: PMC6524396 DOI: 10.1111/jvim.15467] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
This consensus statement on chronic hepatitis (CH) in dogs is based on the expert opinion of 7 specialists with extensive experience in diagnosing, treating, and conducting clinical research in hepatology in dogs. It was generated from expert opinion and information gathered from searching of PubMed for manuscripts on CH, the Veterinary Information Network for abstracts and conference proceeding from annual meetings of the American College of Veterinary Medicine and the European College of Veterinary Medicine, and selected manuscripts from the human literature on CH. The panel recognizes that the diagnosis and treatment of CH in the dog is a complex process that requires integration of clinical presentation with clinical pathology, diagnostic imaging, and hepatic biopsy. Essential to this process is an index of suspicion for CH, knowledge of how to best collect tissue samples, access to a pathologist with experience in assessing hepatic histopathology, knowledge of reasonable medical interventions, and a strategy for monitoring treatment response and complications.
Collapse
Affiliation(s)
- Cynthia R. L. Webster
- Department of Clinical SciencesCummings School of Veterinary Medicine at Tufts UniversityGraftonMassachusetts
| | - Sharon A. Center
- Department of Clinical SciencesNew York State College of Veterinary Medicine at Cornell UniversityIthacaNew York
| | - John M. Cullen
- Population Health and PathobiologyNorth Carolina State Veterinary MedicineRaleighNorth Carolina
| | - Dominique G. Penninck
- Department of Clinical SciencesCummings School of Veterinary Medicine at Tufts UniversityGraftonMassachusetts
| | - Keith P. Richter
- Ethos Veterinary Health and Veterinary Specialty Hospital of San DiegoSan DiegoCalifornia
| | - David C. Twedt
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColorado
| | - Penny J. Watson
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
24
|
Fourie JJ, Evans A, Labuschagne M, Crafford D, Madder M, Pollmeier M, Schunack B. Transmission of Anaplasma phagocytophilum (Foggie, 1949) by Ixodes ricinus (Linnaeus, 1758) ticks feeding on dogs and artificial membranes. Parasit Vectors 2019; 12:136. [PMID: 30909972 PMCID: PMC6434881 DOI: 10.1186/s13071-019-3396-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/11/2019] [Indexed: 11/16/2022] Open
Abstract
Background The interplay of speed of activity of acaricidal products and tick-borne pathogen transmission time is the major driver for disease prevention. This study aimed to investigate the time required for transmission of Anaplasma phagocytophilum by adult Ixodes ricinus ticks in vivo on dogs, and to confirm the time required for transmission observed in vivo, in vitro. Methods Nymphs of I. ricinus were experimentally infected with an A. phagocytophilum strain of canine origin. Dogs were allocated to 6 groups of 3 dogs each. Groups 1–5 were infested with 50 A. phagocytophilum-infected female adult ticks on Day 0. Ticks were removed post-infestation at 3, 6, 12, 24 and 48 h. Dogs in Group 6 were infested with 60 A. phagocytophilum-infected female adult ticks (left on dogs until engorged). Dogs were observed daily for general health and clinically examined on Day 0, and weekly from Day 14. Blood was collected for qPCR and serological analysis on Day 0 (pre-challenge) and weekly thereafter. In the in vitro study each artificial feeding chamber was seeded with 10 adult ticks (5 male/5 female), attachment assessed, and blood pools sampled for qPCR at 6 h intervals up to 72 h after first tick attachment. Results Anaplasma phagocytophilum specific antibodies and DNA were detected in all 3 dogs in Group 6. No A. phagocytophilum-specific antibodies or DNA were detected in any dogs in Groups 1–5. All dogs remained healthy. Female tick attachment in 60 artificial feeding chambers over 72 h ranged between 20–60%. Anaplasma phagocytophilum DNA was detected in the blood collected from 5% of chambers sampled at 6 h, with the highest number of positive samples (16.3%) observed at 36 h. Conclusions Transmission of A. phagocytophilum by I. ricinus ticks starts within a few hours after attachment but establishment of infections in dogs is apparently dependent on a minimum inoculation dose that was only observed when ticks attached for greater than 48 h. These findings highlight the need for acaricidal products to exert a repellent and/or rapid killing effect on ticks to forestall transmission and subsequent disease.
Collapse
|
25
|
Garden OA, Kidd L, Mexas AM, Chang YM, Jeffery U, Blois SL, Fogle JE, MacNeill AL, Lubas G, Birkenheuer A, Buoncompagni S, Dandrieux JRS, Di Loria A, Fellman CL, Glanemann B, Goggs R, Granick JL, LeVine DN, Sharp CR, Smith-Carr S, Swann JW, Szladovits B. ACVIM consensus statement on the diagnosis of immune-mediated hemolytic anemia in dogs and cats. J Vet Intern Med 2019; 33:313-334. [PMID: 30806491 PMCID: PMC6430921 DOI: 10.1111/jvim.15441] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022] Open
Abstract
Immune-mediated hemolytic anemia (IMHA) is an important cause of morbidity and mortality in dogs. IMHA also occurs in cats, although less commonly. IMHA is considered secondary when it can be attributed to an underlying disease, and as primary (idiopathic) if no cause is found. Eliminating diseases that cause IMHA may attenuate or stop immune-mediated erythrocyte destruction, and adverse consequences of long-term immunosuppressive treatment can be avoided. Infections, cancer, drugs, vaccines, and inflammatory processes may be underlying causes of IMHA. Evidence for these comorbidities has not been systematically evaluated, rendering evidence-based decisions difficult. We identified and extracted data from studies published in the veterinary literature and developed a novel tool for evaluation of evidence quality, using it to assess study design, diagnostic criteria for IMHA, comorbidities, and causality. Succinct evidence summary statements were written, along with screening recommendations. Statements were refined by conducting 3 iterations of Delphi review with panel and task force members. Commentary was solicited from several professional bodies to maximize clinical applicability before the recommendations were submitted. The resulting document is intended to provide clinical guidelines for diagnosis of, and underlying disease screening for, IMHA in dogs and cats. These should be implemented with consideration of animal, owner, and geographical factors.
Collapse
Affiliation(s)
- Oliver A Garden
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linda Kidd
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Angela M Mexas
- College of Veterinary Medicine, Midwestern University, Downers Grove, Illinois
| | - Yu-Mei Chang
- Royal Veterinary College, University of London, London, United Kingdom
| | - Unity Jeffery
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Shauna L Blois
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jonathan E Fogle
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Amy L MacNeill
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - George Lubas
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Adam Birkenheuer
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Simona Buoncompagni
- Internal Medicine Service, Central Oklahoma Veterinary Specialists, Oklahoma City, Oklahoma
| | - Julien R S Dandrieux
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Antonio Di Loria
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Claire L Fellman
- Cummings School of Veterinary Medicine, Tufts University, Massachusetts
| | - Barbara Glanemann
- Royal Veterinary College, University of London, London, United Kingdom
| | - Robert Goggs
- College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Jennifer L Granick
- College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Dana N LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Claire R Sharp
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | | | - James W Swann
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Balazs Szladovits
- Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
26
|
Regier Y, Komma K, Weigel M, Kraiczy P, Laisi A, Pulliainen AT, Hain T, Kempf VAJ. Combination of microbiome analysis and serodiagnostics to assess the risk of pathogen transmission by ticks to humans and animals in central Germany. Parasit Vectors 2019; 12:11. [PMID: 30616666 PMCID: PMC6322329 DOI: 10.1186/s13071-018-3240-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/28/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Arthropod-borne diseases remain a major health-threat for humans and animals worldwide. To estimate the distribution of pathogenic agents and especially Bartonella spp., we conducted tick microbiome analysis and determination of the infection status of wild animals, pets and pet owners in the state of Hesse, Germany. RESULTS In total, 189 engorged ticks collected from 163 animals were tested. Selected ticks were analyzed by next generation sequencing (NGS) and confirmatory PCRs, blood specimens of 48 wild animals were analyzed by PCR to confirm pathogen presence and sera of 54 dogs, one cat and 11 dog owners were analyzed by serology. Bartonella spp. were detected in 9.5% of all ticks and in the blood of 17 roe deer. Further data reveal the presence of the human and animal pathogenic species of genera in the family Spirochaetaceae (including Borrelia miyamotoi and Borrelia garinii), Bartonella spp. (mainly Bartonella schoenbuchensis), Rickettsia helvetica, Francisella tularensis and Anaplasma phagocytophilum in ticks. Co-infections with species of several genera were detected in nine ticks. One dog and five dog owners were seropositive for anti-Bartonella henselae-antibodies and one dog had antibodies against Rickettsia conorii. CONCLUSIONS This study provides a snapshot of pathogens circulating in ticks in central Germany. A broad range of tick-borne pathogens are present in ticks, and especially in wild animals, with possible implications for animal and human health. However, a low incidence of Bartonella spp., especially Bartonella henselae, was detected. The high number of various detected pathogens suggests that ticks might serve as an excellent sentinel to detect and monitor zoonotic human pathogens.
Collapse
Affiliation(s)
- Yvonne Regier
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Kassandra Komma
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Peter Kraiczy
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Arttu Laisi
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Arto T. Pulliainen
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
- German Centre for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Giessen, Germany
| | - Volkhard A. J. Kempf
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Qurollo BA, Buch J, Chandrashekar R, Beall MJ, Breitschwerdt EB, Yancey CB, Caudill AH, Comyn A. Clinicopathological findings in 41 dogs (2008-2018) naturally infected with Ehrlichia ewingii. J Vet Intern Med 2019; 33:618-629. [PMID: 30604457 PMCID: PMC6430920 DOI: 10.1111/jvim.15354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022] Open
Abstract
Background Ehrlichia ewingii is the most seroprevalent Ehrlichia‐infecting dogs in the southern and mid‐western United States. Fever, lameness, and polyarthritis are commonly reported findings in dogs naturally infected with E. ewingii. Objectives To evaluate clinicopathologic findings in a population of dogs naturally infected with E. ewingii. Animals Forty‐one dogs PCR positive for E. ewingii and PCR negative for other targeted vector‐borne organisms. Methods Retrospective study. Clinical and clinicopathologic data including physical examination findings, CBC, serum biochemistry, urinalysis (UA), symmetric dimethylarginine (SDMA), and vector‐borne disease diagnostic results were reviewed. Results Frequent clinical diagnoses other than ehrlichiosis (28/41; 68.3%) were renal disease (7/41; 17.1%) and immune‐mediated hemolytic anemia (IMHA) (6/41; 14.6%). The most frequent physical examination finding was joint pain (14/41; 34.1%). Prominent hematologic and biochemical abnormalities included abnormal lymphocyte counts (22/36; 61.1%); neutrophilia (21/37; 56.8%); increased alkaline phosphatase (20/35; 57.1%) and alanine transaminase (14/35; 40%) activities; and increased SDMA concentration (11/34; 32.4%). Urinalysis abnormalities included proteinuria (20/27; 74%), most with inactive sediments (16/20; 80%). Dogs were seroreactive by Ehrlichia canis immunofluorescence assay (IFA; 17/39; 43.6%) and Ehrlichia ELISA (34/41; 82.9%). Seroreactivity by IFA for other vector‐borne pathogens included Bartonella (1/39; 2.6%), Rickettsia rickettsii (spotted‐fever group rickettsiae) (12/39; 30.8%), and Borrelia burgdorferi by ELISA (1/41; 2.4%). Conclusions and Clinical Importance Renal disease, IMHA, proteinuria, neutrophilia, abnormal lymphocytes, and increased liver enzyme activities were common in this group of E. ewingii‐infected dogs. Studies are needed to determine if E. ewingii contributes to comorbidities or is a precipitating factor in clinical syndromes in persistently infected dogs.
Collapse
Affiliation(s)
- Barbara A Qurollo
- Vector Borne Disease Diagnostic Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jesse Buch
- IDEXX Laboratories, Inc, Westbrook, Maine
| | | | | | - Edward B Breitschwerdt
- Vector Borne Disease Diagnostic Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Caroline B Yancey
- Department of Population Medicine and Diagnostic Services, Cornell University College of Veterinary Medicine, Ithaca, New York
| | - Alexander H Caudill
- Vector Borne Disease Diagnostic Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Alaire Comyn
- Vector Borne Disease Diagnostic Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
28
|
Hovius E, de Bruin A, Schouls L, Hovius J, Dekker N, Sprong H. A lifelong study of a pack Rhodesian ridgeback dogs reveals subclinical and clinical tick-borne Anaplasma phagocytophilum infections with possible reinfection or persistence. Parasit Vectors 2018; 11:238. [PMID: 29650038 PMCID: PMC5898011 DOI: 10.1186/s13071-018-2806-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Background Various tick-borne infections often occur without specific clinical signs and are therefore notoriously hard to diagnose separately in veterinary practice. Longitudinal studies over multiple tick seasons performing clinical, serological and molecular investigations in parallel, may elucidate the relationship between infection and disease. In this regard, six related Rhodesian Ridgeback dogs living as a pack became subject of lifetime studies due to ongoing tick infestations and recurring clinical problems. Blood samples for diagnostic tests were obtained throughout the years 2000 to 2009. Methods Data collected from clinical observations, hemograms, serology and detection of Anaplasma phagocytophilum, either by microscopy or by DNA amplification and typing, were placed in a time line. This dataset essentially presents as a prospective study enabling the association of the Anaplasma infections with occurring disease. Results All six dogs were infected, and two of them developed particular clinical symptoms that could be associated with Anaplasma infections over time. More specifically, episodes of general malaise with fever and purpura with thrombocytopenia and bacterial inclusions in granulocytes, were found concurrently with Anaplasma DNA and specific antibodies in peripheral blood samples. DNA from A. phagocytophilum variant 4 (of 16S rRNA) was found in multiple and sequential samples. DNA-sequences from variant 1 and the human granulocytic ehrlichiosis (HGE) agent were also detected. Conclusions In this study two lifelong cases of canine anaplasmosis (CGA) are presented. The data show that dogs can be naturally infected concurrently with A. phagocytophilum variant 1, variant 4 and the HGE agent. The ongoing presence of specific antibodies and Anaplasma DNA in one dog indicates one year of persisting infection. Treatment with doxycycline during recurring clinical episodes in the other dog resulted in transient clinical improvement and subsequent disappearance of specific antibodies and DNA suggesting that re-infection occurred. Electronic supplementary material The online version of this article (10.1186/s13071-018-2806-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emil Hovius
- Amphipoda, Biology and Veterinary Science, Veldhoven, The Netherlands.
| | - Arnout de Bruin
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Leo Schouls
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Joppe Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Niels Dekker
- Department of Infectious Diseases and Immunology, Veterinary Faculty, Utrecht University, Utrecht, The Netherlands
| | - Hein Sprong
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|