1
|
Bastianini S, Alvente S, Berteotti C, Lo Martire V, Matteoli G, Miglioranza E, Silvani A, Zoccoli G. Ageing-related modification of sleep and breathing in orexin-knockout narcoleptic mice. J Sleep Res 2025; 34:e14287. [PMID: 39032099 PMCID: PMC11911059 DOI: 10.1111/jsr.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Narcolepsy type-1 (NT1) is a lifelong sleep disease, characterised by impairment of the orexinergic system, with a typical onset during adolescence and young adulthood. Since the wake-sleep cycle physiologically changes with ageing, this study aims to compare sleep patterns between orexin-knockout (KO) and wild type (WT) control mice at different ages. Four groups of age-matched female KO and WT mice (16 weeks of age: 8 KO-YO and 9 WT-YO mice; 87 weeks of age: 13 KO-OLD and 12 WT-OLD mice) were implanted with electrodes for discriminating wakefulness, rapid-eye-movement sleep (REMS), and non-REMS (NREMS). Mice were recorded for 48 h in their home cages and for 7 more hours into a plethysmographic chamber to characterise their sleep-breathing pattern. Regardless of orexin deficiency, OLD mice spent less time awake and had fragmentation of this behavioural state showing more bouts of shorter length than YO mice. OLD mice also had more NREMS bouts and less frequent NREMS apneas than YO mice. Regardless of age, KO mice showed cataplexy-like episodes and shorter REMS latency than WT controls and had a faster breathing rate and an increased minute ventilation during REMS. KO mice also had more wakefulness, NREMS and REMS bouts, and a shorter mean length of wakefulness bouts than WT controls. Our experiment indicated that the lack of orexins as well as ageing importantly modulate the sleep and breathing phenotype in mice. The narcoleptic phenotype caused by orexin deficiency in female mice was substantially preserved with ageing.
Collapse
Affiliation(s)
- Stefano Bastianini
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Sara Alvente
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Chiara Berteotti
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Viviana Lo Martire
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Gabriele Matteoli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Elena Miglioranza
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Alessandro Silvani
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Giovanna Zoccoli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| |
Collapse
|
2
|
Kiss MG, Cohen O, McAlpine CS, Swirski FK. Influence of sleep on physiological systems in atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1284-1300. [PMID: 39528718 PMCID: PMC11567060 DOI: 10.1038/s44161-024-00560-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Sleep is a fundamental requirement of life and is integral to health. Deviation from optimal sleep associates with numerous diseases including those of the cardiovascular system. Studies, spanning animal models to humans, show that insufficient, disrupted or inconsistent sleep contribute to poor cardiovascular health by disrupting body systems. Fundamental experiments have begun to uncover the molecular and cellular links between sleep and heart health while large-scale human studies have associated sleep with cardiovascular outcomes in diverse populations. Here, we review preclinical and clinical findings that demonstrate how sleep influences the autonomic nervous, metabolic and immune systems to affect atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Máté G Kiss
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oren Cohen
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Filip K Swirski
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Miglis MG. Autonomic Dysfunction in the Central Nervous System Hypersomnias. CURRENT SLEEP MEDICINE REPORTS 2023. [DOI: 10.1007/s40675-023-00247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Jennum PJ, Plazzi G, Silvani A, Surkin LA, Dauvilliers Y. Cardiovascular disorders in narcolepsy: Review of associations and determinants. Sleep Med Rev 2021; 58:101440. [PMID: 33582582 DOI: 10.1016/j.smrv.2021.101440] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
Narcolepsy type 1 (NT1) is a lifelong disorder of sleep-wake dysregulation defined by clinical symptoms, neurophysiological findings, and low hypocretin levels. Besides a role in sleep, hypocretins are also involved in regulation of heart rate and blood pressure. This literature review examines data on the autonomic effects of hypocretin deficiency and evidence about how narcolepsy is associated with multiple cardiovascular risk factors and comorbidities, including cardiovascular disease. An important impact in NT1 is lack of nocturnal blood pressure dipping, which has been associated with mortality in the general population. Hypertension is also prevalent in NT1. Furthermore, disrupted nighttime sleep and excessive daytime sleepiness, which are characteristic of narcolepsy, may increase cardiovascular risk. Patients with narcolepsy also often present with other comorbidities (eg, obesity, diabetes, depression, other sleep disorders) that may contribute to increased cardiovascular risk. Management of multimorbidity in patients with narcolepsy should include regular assessment of cardiovascular health (including ambulatory blood pressure monitoring), mitigation of cardiovascular risk factors (eg, cessation of smoking and other lifestyle changes, sleep hygiene, and pharmacotherapy), and prescription of a regimen of narcolepsy medications that balances symptomatic benefits with cardiovascular safety.
Collapse
Affiliation(s)
- Poul Jørgen Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy; IRCCS, Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lee A Surkin
- Empire Sleep Medicine, New York, NY, United States
| | - Yves Dauvilliers
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, Montpellier, France; University of Montpellier, INSERM U1061, Montpellier, France
| |
Collapse
|
5
|
Berteotti C, Liguori C, Pace M. Dysregulation of the orexin/hypocretin system is not limited to narcolepsy but has far-reaching implications for neurological disorders. Eur J Neurosci 2020; 53:1136-1154. [PMID: 33290595 DOI: 10.1111/ejn.15077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
Neuropeptides orexin A and B (OX-A/B, also called hypocretin 1 and 2) are released selectively by a population of neurons which projects widely into the entire central nervous system but is localized in a restricted area of the tuberal region of the hypothalamus, caudal to the paraventricular nucleus. The OX system prominently targets brain structures involved in the regulation of wake-sleep state switching, and also orchestrates multiple physiological functions. The degeneration and dysregulation of the OX system promotes narcoleptic phenotypes both in humans and animals. Hence, this review begins with the already proven involvement of OX in narcolepsy, but it mainly discusses the new pre-clinical and clinical insights of the role of OX in three major neurological disorders characterized by sleep impairment which have been recently associated with OX dysfunction, such as Alzheimer's disease, stroke and Prader Willi syndrome, and have been emerged over the past 10 years to be strongly associated with the OX dysfunction and should be more considered in the future. In the light of the impairment of the OX system in these neurological disorders, it is conceivable to speculate that the integrity of the OX system is necessary for a healthy functioning body.
Collapse
Affiliation(s)
- Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marta Pace
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
6
|
Autonomic symptoms, cardiovascular and sudomotor evaluation in de novo type 1 narcolepsy. Clin Auton Res 2020; 30:557-562. [PMID: 32852663 DOI: 10.1007/s10286-020-00718-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/06/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE To evaluate cardiovascular and sudomotor function during wakefulness and to assess autonomic symptoms in de novo patients with type 1 narcolepsy compared to healthy controls. METHODS De novo patients with type 1 narcolepsy (NT1) and healthy controls underwent cardiovascular function tests including head-up tilt test, Valsalva maneuver, deep breathing, hand grip, and cold face, and sudomotor function was assessed through Sudoscan. Autonomic symptoms were investigated using the Scales for Outcomes in Parkinson's Disease-Autonomic Dysfunction (SCOPA-AUT) questionnaire. RESULTS Twelve de novo patients with NT1 and 14 healthy controls were included. In supine rest condition and at 3 min and 10 min head-up tilt test, the systolic blood pressure values were significantly higher in the NT1 group than in controls (p < 0.05). A lower Valsalva ratio (p < 0.01), significantly smaller inspiratory-expiratory difference in deep breathing (p < 0.05), and lower delta heart rate in the cold face test (p < 0.01) were also observed in the NT1 group. The mean hand electrochemical skin conductance values were significantly lower (p < 0.05) and the mean SCOPA-AUT total scores were significantly higher in patients with NT1 than in healthy subjects (p < 0.001), with greater involvement of cardiovascular and thermoregulatory items. CONCLUSION De novo patients with NT1 exhibit blunted parasympathetic activity during wakefulness, mild sudomotor dysfunction, and a large variety of autonomic symptoms.
Collapse
|
7
|
Lo Martire V, Berteotti C, Bastianini S, Alvente S, Valli A, Cerri M, Amici R, Silvani A, Swoap SJ, Zoccoli G. The physiological signature of daily torpor is not orexin dependent. J Comp Physiol B 2020; 190:493-507. [DOI: 10.1007/s00360-020-01281-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022]
|
8
|
Vandi S, Rodolfi S, Pizza F, Moresco M, Antelmi E, Ferri R, Mignot E, Plazzi G, Silvani A. Cardiovascular autonomic dysfunction, altered sleep architecture, and muscle overactivity during nocturnal sleep in pediatric patients with narcolepsy type 1. Sleep 2019; 42:5540159. [DOI: 10.1093/sleep/zsz169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/17/2019] [Indexed: 01/11/2023] Open
Abstract
AbstractStudy ObjectivesArterial blood pressure (ABP) decreases during sleep compared with wakefulness and this change is blunted in mouse models of and adult patients with narcolepsy type 1 (NT1). We tested whether: (1) pediatric patients with NT1 have similar cardiovascular autonomic abnormalities during nocturnal sleep; and (2) these abnormalities can be linked to hypocretin-1 cerebrospinal fluid concentration (CSF HCRT-1), sleep architecture, or muscle activity.MethodsLaboratory polysomnographic studies were performed in 27 consecutive drug-naïve NT1 children or adolescents and in 19 matched controls. Nocturnal sleep architecture and submentalis (SM), tibialis anterior (TA), and hand extensor (HE) electromyographic (EMG) activity were analyzed. Cardiovascular autonomic function was assessed through the analysis of pulse transit time (PTT) and heart period (HP).ResultsPTT showed reduced lengthening during total sleep and REM sleep compared with nocturnal wakefulness in NT1 patients than in controls, whereas HP did not. NT1 patients had altered sleep architecture, higher SM EMG during REM sleep, and higher TA and HE EMG during N1–N3 and REM sleep when compared with controls. PTT alterations found in NT1 patients were more severe in subjects with lower CSF HRCT-1, but did not cluster or correlate with sleep architecture alterations or muscle overactivity during sleep.ConclusionOur results suggest that pediatric NT1 patients close to disease onset have impaired capability to modulate ABP as a function of nocturnal wake–sleep transitions, possibly as a direct consequence of hypocretin neuron loss. The relevance of this finding for cardiovascular risk later in life remains to be determined.
Collapse
Affiliation(s)
- Stefano Vandi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Rodolfi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fabio Pizza
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Monica Moresco
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elena Antelmi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology I.C., Oasi Research Institute-IRCCS, Troina, Italy
| | - Emmanuel Mignot
- Centre for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Barateau L, Lopez R, Chenini S, Evangelista E, Benkiran M, Mariano-Goulart D, Jaussent I, Dauvilliers Y. Exploration of cardiac sympathetic adrenergic nerve activity in narcolepsy. Clin Neurophysiol 2019; 130:412-418. [DOI: 10.1016/j.clinph.2018.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
|
10
|
Lo Martire V, Alvente S, Bastianini S, Berteotti C, Bombardi C, Calandra-Buonaura G, Capellari S, Cohen G, Cortelli P, Gasparini L, Padiath Q, Valli A, Zoccoli G, Silvani A. Mice overexpressing lamin B1 in oligodendrocytes recapitulate the age-dependent motor signs, but not the early autonomic cardiovascular dysfunction of autosomal-dominant leukodystrophy (ADLD). Exp Neurol 2018; 301:1-12. [PMID: 29262292 PMCID: PMC5809293 DOI: 10.1016/j.expneurol.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/02/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Autosomal dominant leukodystrophy (ADLD) is a rare adult-onset demyelinating disease caused by overexpression of lamin B1, a nuclear lamina filament. Early autonomic dysfunction involving the cardiovascular system before progressive somatic motor dysfunction is a striking feature of most cases of ADLD. In the Plp-FLAG-LMNB1 transgenic mouse model, lamin B1 overexpression in oligodendrocytes elicits somatic motor dysfunction and neuropathology akin to ADLD. Here, we investigate whether Plp-FLAG-LMNB1 mice also develop autonomic cardiovascular dysfunction before or after somatic motor dysfunction. We find that Plp-FLAG-LMNB1 mice have preserved cardiovascular responses to changes in wake-sleep state and ambient temperature and normal indexes of autonomic modulation at 37-42weeks of age despite a progressive somatic motor dysfunction, which includes impairments of walking ability (the ability to walk on a narrow path was impaired in 80% of mice at 34-38weeks of age) and subtle breathing derangements. Only late in the development of the disease phenotype did Plp-FLAG-LMNB1 mice develop a structural deficit of sympathetic noradrenergic fibers, with a 38% decrease in fiber profiles in the kidneys at 44-47weeks of age. We demonstrate that while the Plp-FLAG-LMNB1 mouse model recapitulates the age-dependent motor dysfunction of ADLD, it does not show signs of early autonomic cardiovascular dysfunction, raising the possibility that oligodendrocyte dysfunction may not be sufficient to cause the full spectrum of clinical features present in ADLD.
Collapse
Affiliation(s)
- Viviana Lo Martire
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Sara Alvente
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Stefano Bastianini
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Chiara Berteotti
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Giovanna Calandra-Buonaura
- Autonomic Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS, Institute of Neurological Sciences of Bologna, Bellaria University Hospital, Bologna, Italy
| | - Sabina Capellari
- Autonomic Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS, Institute of Neurological Sciences of Bologna, Bellaria University Hospital, Bologna, Italy
| | - Gary Cohen
- Sleep Investigation Laboratory, Centre for Sleep Health and Research, Royal North Shore Hospital, Sydney, Australia
| | - Pietro Cortelli
- Autonomic Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS, Institute of Neurological Sciences of Bologna, Bellaria University Hospital, Bologna, Italy
| | - Laura Gasparini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Quasar Padiath
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alice Valli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giovanna Zoccoli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Alessandro Silvani
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
11
|
Sieminski M, Chwojnicki K, Sarkanen T, Partinen M. The relationship between orexin levels and blood pressure changes in patients with narcolepsy. PLoS One 2017; 12:e0185975. [PMID: 29023559 PMCID: PMC5638315 DOI: 10.1371/journal.pone.0185975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 09/24/2017] [Indexed: 11/18/2022] Open
Abstract
STUDY OBJECTIVE Narcolepsy type 1 (NT1) is caused by a deficiency or absence of the neurotransmitter orexin. NT1 is also associated with a reduced nocturnal "dipping" of blood pressure (BP). The study objective was to analyze whether nocturnal BP values differed in patients depleted of orexin, versus those in whom production was preserved. METHODS We performed a retrospective analysis of the polysomnographic recordings, orexin levels, and BP values of patients with NT1. Data was collected from a total of 21 patients, divided into two groups as follows: those with a complete depletion of orexin (n = 11) (Group1), and those with a remaining, limited presence of orexin (n = 10) (Group 2). RESULTS The groups did not differ in terms of the clinical features of NT1 or sleep characteristics, with an exception of increased number of cataplexy episodes and increased percentage of sleep stage 2 in the Group 1. Daytime and nocturnal BP did not differ between the groups. Most patients, regardless of group, had a non-dipping blood pressure pattern, and no difference in dipping prevalence was observed between groups. The amplitude of the daytime to nighttime change in BP did not differ between the groups. CONCLUSIONS Non-dipping BP patterns are frequent among patients with narcolepsy type 1, but we saw no evidence that they depended on whether orexin levels were above or below the assay detection threshold. Therefore, our results do not support the hypothesis that in patients with narcolepsy type 1 residual orexin levels play a role in the control of nocturnal BP dipping.
Collapse
Affiliation(s)
- Mariusz Sieminski
- Department of Adults’ Neurology, Medical University of Gdansk, Gdansk, Poland
- * E-mail:
| | - Kamil Chwojnicki
- Department of Adults’ Neurology, Medical University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
12
|
The link between narcolepsy and autonomic cardiovascular dysfunction: a translational perspective. Clin Auton Res 2017; 28:545-555. [DOI: 10.1007/s10286-017-0473-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
|
13
|
Silvani A, Ferri R, Lo Martire V, Bastianini S, Berteotti C, Salvadè A, Plazzi G, Zucconi M, Ferini-Strambi L, Bassetti CL, Manconi M, Zoccoli G. Muscle Activity During Sleep in Human Subjects, Rats, and Mice: Towards Translational Models of REM Sleep Without Atonia. Sleep 2017; 40:3044361. [DOI: 10.1093/sleep/zsx029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Silvani A. Orexins and the cardiovascular events of awakening. Temperature (Austin) 2017; 4:128-140. [PMID: 28680929 DOI: 10.1080/23328940.2017.1295128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022] Open
Abstract
This brief review aims to provide an updated account of the cardiovascular events of awakening, proposing a testable conceptual framework that links these events with the neural control of sleep and the autonomic nervous system, with focus on the hypothalamic orexin (hypocretin) neurons. Awakening from non-rapid-eye-movement sleep entails coordinated changes in brain and cardiovascular activity: the neural "flip-flop" switch that governs state transitions becomes biased toward the ascending arousal systems, arterial blood pressure and heart rate rise toward waking values, and distal skin temperature falls. Arterial blood pressure and skin temperature are sensed by baroreceptors and thermoreceptors and may positively feedback on the brain wake-sleep switch, thus contributing to sharpen, coordinate, and stabilize awakening. These effects may be enhanced by the hypothalamic orexin neurons, which may modulate the changes in blood pressure, heart rate, and skin temperature upon awakening, while biasing the wake-sleep switch toward wakefulness through direct neural projections. A deeper understanding of the cardiovascular events of awakening and of their links with skin temperature and the wake-sleep neural switch may lead to better treatments options for patients with narcolepsy type 1, who lack the orexin neurons.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Härtner L, Keil TWM, Kreuzer M, Fritz EM, Wenning GK, Stefanova N, Fenzl T. Distinct Parameters in the EEG of the PLP α-SYN Mouse Model for Multiple System Atrophy Reinforce Face Validity. Front Behav Neurosci 2017; 10:252. [PMID: 28119583 PMCID: PMC5222844 DOI: 10.3389/fnbeh.2016.00252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/27/2016] [Indexed: 01/10/2023] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative movement disorder characterized by parkinsonian symptoms and cerebellar symptoms. Sleep disturbances also play a crucial role in MSA. One of the most convincing animal models in MSA research is the PLP α-SYN model, but to date no studies on sleep disturbances in this mouse model, frequently found in MSA patients are available. We identified spectral shifts within the EEG of the model, strikingly resembling results of clinical studies. We also characterized muscle activity during REM sleep, which is one of the key symptoms in REM sleep behavioral disorder. Spectral shifts and REM sleep-linked muscle activity were age dependent, supporting Face Validity of the PLP α-SYN model. We also strongly suggest our findings to be critically evaluated for Predictive Validity in future studies. Currently, research on MSA lacks potential compounds attenuating or curing MSA. Future drugs must prove its potential in animal models, for this our study provides potential biomarkers.
Collapse
Affiliation(s)
- Lorenz Härtner
- Department of Pharmacology and Toxicology, Institute for Pharmacy, Leopold-Franzens University of InnsbruckInnsbruck, Austria
| | - Tobias W. M. Keil
- Department of Pharmacology and Toxicology, Institute for Pharmacy, Leopold-Franzens University of InnsbruckInnsbruck, Austria
| | - Matthias Kreuzer
- Neuroanesthesia Laboratory, Atlanta Veterans Affairs Medical Center/Emory University and Department of Anesthesiology, Emory UniversityAtlanta, Georgia
| | - Eva Maria Fritz
- Department of Pharmacology and Toxicology, Institute for Pharmacy, Leopold-Franzens University of InnsbruckInnsbruck, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University InnsbruckInnsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University InnsbruckInnsbruck, Austria
| | - Thomas Fenzl
- Department of Pharmacology and Toxicology, Institute for Pharmacy, Leopold-Franzens University of InnsbruckInnsbruck, Austria
| |
Collapse
|
16
|
Dergacheva O, Yamanaka A, Schwartz AR, Polotsky VY, Mendelowitz D. Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons. Neuroscience 2016; 339:47-53. [PMID: 27693474 DOI: 10.1016/j.neuroscience.2016.09.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
Abstract
Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA.
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Alan R Schwartz
- Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA
| |
Collapse
|
17
|
Miyata K, Kuwaki T, Ootsuka Y. The integrated ultradian organization of behavior and physiology in mice and the contribution of orexin to the ultradian patterning. Neuroscience 2016; 334:119-133. [PMID: 27491480 DOI: 10.1016/j.neuroscience.2016.07.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 11/15/2022]
Abstract
Our series of rat experiments have shown that locomotor activity, arousal level, body and brown adipose tissue temperatures, heart rate and arterial pressure increase episodically in an integrated manner approximately every 100min (ultradian manner). Although it has been proposed that the integrated ultradian pattern is a fundamental biological rhythm across species, there are no reports of the integrated ultradian pattern in species other than rats. The aim of the present study was to establish a mouse model using simultaneous recording of locomotor activity, eating behavior, body temperature, heart rate and arousal in order to determine whether their behavior and physiology are organized in an ultradian manner in normal (wild-type) mice. We also incorporated the same recording in prepro-orexin knockout (ORX-KO) mice to reveal the role of orexin in the brain mechanisms underlying ultradian patterning. The orexin system is one of the key conductors required for coordinating autonomic functions and behaviors, and thus may contribute to ultradian patterning. In wild-type mice, locomotor activity, arousal level, body temperature and heart rate increased episodically every 93±18min (n=8) during 24h. Eating was integrated into the ultradian pattern, commencing 23±4min (n=8) after the onset of an electroencephalogram (EEG) ultradian episode. The integrated ultradian pattern in wild-type mice is very similar to that observed in rats. In ORX-KO mice, the ultradian episodic changes in locomotor activity, EEG arousal indices and body temperature were significantly attenuated, but the ultradian patterning was preserved. Our findings support the view that the ultradian pattern is common across species. The present results also suggest that orexin contributes to driving ultradian episodic changes, however, this neuropeptide is not essential for the generation of the ultradian pattern.
Collapse
Affiliation(s)
- Kohei Miyata
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Youichirou Ootsuka
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; Centre for Neuroscience, Department of Human Physiology, School of Medicine, Flinders University, South Australia, Australia.
| |
Collapse
|
18
|
Bastianini S, Lo Martire V, Berteotti C, Silvani A, Ohtsu H, Lin JS, Zoccoli G. High-amplitude theta wave bursts characterizing narcoleptic mice and patients are also produced by histamine deficiency in mice. J Sleep Res 2016; 25:591-595. [DOI: 10.1111/jsr.12404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/13/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Bastianini
- Laboratory of Physiological Regulations in Sleeping Mice (PRISM); Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Viviana Lo Martire
- Laboratory of Physiological Regulations in Sleeping Mice (PRISM); Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Chiara Berteotti
- Laboratory of Physiological Regulations in Sleeping Mice (PRISM); Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Alessandro Silvani
- Laboratory of Physiological Regulations in Sleeping Mice (PRISM); Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Hiroshi Ohtsu
- Applied Quantum Medical Engineering; Graduate School of Engineering; Tohoku University; Sendai Japan
| | - Jian-Sheng Lin
- Physiologie intégrée du système d'éveil; Centre de recherche en neurosciences de Lyon; INSERM U1028-CNRS UMR 5292 Faculté de Médecine; Université Claude Bernard; Lyon France
| | - Giovanna Zoccoli
- Laboratory of Physiological Regulations in Sleeping Mice (PRISM); Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| |
Collapse
|
19
|
Calandra-Buonaura G, Provini F, Guaraldi P, Plazzi G, Cortelli P. Cardiovascular autonomic dysfunctions and sleep disorders. Sleep Med Rev 2016; 26:43-56. [DOI: 10.1016/j.smrv.2015.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/08/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
20
|
Bastianini S, Silvani A, Berteotti C, Lo Martire V, Cohen G, Ohtsu H, Lin JS, Zoccoli G. Histamine Transmission Modulates the Phenotype of Murine Narcolepsy Caused by Orexin Neuron Deficiency. PLoS One 2015; 10:e0140520. [PMID: 26474479 PMCID: PMC4608736 DOI: 10.1371/journal.pone.0140520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/27/2015] [Indexed: 01/10/2023] Open
Abstract
Narcolepsy type 1 is associated with loss of orexin neurons, sleep-wake derangements, cataplexy, and a wide spectrum of alterations in other physiological functions, including energy balance, cardiovascular, and respiratory control. It is unclear which narcolepsy signs are directly related to the lack of orexin neurons or are instead modulated by dysfunction of other neurotransmitter systems physiologically controlled by orexin neurons, such as the histamine system. To address this question, we tested whether some of narcolepsy signs would be detected in mice lacking histamine signaling (HDC-KO). Moreover, we studied double-mutant mice lacking both histamine signaling and orexin neurons (DM) to evaluate whether the absence of histamine signaling would modulate narcolepsy symptoms produced by orexin deficiency. Mice were instrumented with electrodes for recording the electroencephalogram and electromyogram and a telemetric arterial pressure transducer. Sleep attacks fragmenting wakefulness, cataplexy, excess rapid-eye-movement sleep (R) during the activity period, and enhanced increase of arterial pressure during R, which are hallmarks of narcolepsy in mice, did not occur in HDC-KO, whereas they were observed in DM mice. Thus, these narcolepsy signs are neither caused nor abrogated by the absence of histamine. Conversely, the lack of histamine produced obesity in HDC-KO and to a greater extent also in DM. Moreover, the regularity of breath duration during R was significantly increased in either HDC-KO or DM relative to that in congenic wild-type mice. Defects of histamine transmission may thus modulate the metabolic and respiratory phenotype of murine narcolepsy.
Collapse
Affiliation(s)
- Stefano Bastianini
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Viviana Lo Martire
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gary Cohen
- Department of Women & Child Health, Karolinska Institutet, Stockholm, Sweden
| | - Hiroshi Ohtsu
- Applied Quantum Medical Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Jian-Sheng Lin
- Physiologie intégrée du système d'éveil, Centre de recherche en neurosciences de Lyon, INSERM U1028-CNRS UMR 5292 Faculté de Médecine, Université Claude Bernard, Lyon, France
| | - Giovanna Zoccoli
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
YUAN LIFEN, SHENG JING, LU PING, WANG YUQIANG, JIN TUO, DU QIN. Nanoparticle-mediated RNA interference of angiotensinogen decreases blood pressure and improves myocardial remodeling in spontaneously hypertensive rats. Mol Med Rep 2015; 12:4657-4663. [DOI: 10.3892/mmr.2015.3909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/23/2015] [Indexed: 11/06/2022] Open
|
22
|
Holm A, Bang-Berthelsen CH, Knudsen S, Kornum BR, Modvig S, Jennum P, Gammeltoft S. miRNA profiles in plasma from patients with sleep disorders reveal dysregulation of miRNAs in narcolepsy and other central hypersomnias. Sleep 2014; 37:1525-33. [PMID: 25142559 DOI: 10.5665/sleep.4004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES MicroRNAs (miRNAs) have been implicated in the pathogenesis of human diseases including neurological disorders. The aim is to address the involvement of miRNAs in the pathophysiology of central hypersomnias including autoimmune narcolepsy with cataplexy and hypocretin deficiency (type 1 narcolepsy), narcolepsy without cataplexy (type 2 narcolepsy), and idiopathic hypersomnia. DESIGN We conducted high-throughput analysis of miRNA in plasma from three groups of patients-with type 1 narcolepsy, type 2 narcolepsy, and idiopathic hypersomnia, respectively-in comparison with healthy controls using quantitative real-time polymerase chain reaction (qPCR) panels. SETTING University hospital based sleep clinic and research laboratories. PATIENTS Twelve patients with type 1 narcolepsy, 12 patients with type 2 narcolepsy, 12 patients with idiopathic hypersomnia, and 12 healthy controls. MEASUREMENTS AND RESULTS By analyzing miRNA in plasma with qPCR we identified 50, 24, and 6 miRNAs that were different in patients with type 1 narcolepsy, type 2 narcolepsy, and idiopathic hypersomnia, respectively, compared with healthy controls. Twenty miRNA candidates who fulfilled the criteria of at least two-fold difference and p-value < 0.05 were selected to validate the miRNA changes in an independent cohort of patients. Four miRNAs differed significantly between type 1 narcolepsy patients and healthy controls. Levels of miR-30c, let-7f, and miR-26a were higher, whereas the level of miR-130a was lower in type 1 narcolepsy than healthy controls. The miRNA differences were not specific for type 1 narcolepsy, since the levels of the four miRNAs were also altered in patients with type 2 narcolepsy and idiopathic hypersomnia compared with healthy controls. CONCLUSION The levels of four miRNAs differed in plasma from patients with type 1 narcolepsy, type 2 narcolepsy and idiopathic hypersomnia suggesting that alterations of miRNAs may be involved in the pathophysiology of central hypersomnias.
Collapse
|
23
|
Carrive P. Orexin, orexin receptor antagonists and central cardiovascular control. Front Neurosci 2013; 7:257. [PMID: 24415993 PMCID: PMC3874580 DOI: 10.3389/fnins.2013.00257] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/09/2013] [Indexed: 01/08/2023] Open
Abstract
Orexin makes an important contribution to the regulation of cardiovascular function. When injected centrally under anesthesia, orexin increases blood pressure, heart rate and sympathetic nerve activity. This is consistent with the location of orexin neurons in the hypothalamus and the distribution of orexin terminals in the central autonomic network. Thus, the two orexin receptors, Ox1R and Ox2R, which have partly overlapping distributions in the brain, are expressed in the sympathetic preganglionic neurons (SPN) of the thoracic cord as well as in regions such as the pressor area of the rostral ventrolateral medulla (RVLM). Both Ox1R and Ox2R appear to contribute to the cardiovascular effects of orexin, although Ox1R is probably more important. Blockade of orexin receptors reduces the cardiovascular response to certain stressors, especially psychogenic stressors such as novelty, aggressive conspecifics and induced panic. Blockade of orexin receptors also reduces basal blood pressure and heart rate in spontaneous hypertensive rats, a model of essential hypertension. Thus, there is a link between psychogenic stress, orexin and elevated blood pressure. The use of dual orexin receptor antagonists (DORAs) and selective orexin receptor antagonists (SORAs) may be beneficial in the treatment of certain forms of hypertension.
Collapse
Affiliation(s)
- Pascal Carrive
- Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
24
|
Silvani A, Bastianini S, Berteotti C, Lo Martire V, Zoccoli G. Treating hypertension by targeting orexin receptors: potential effects on the sleep-related blood pressure dipping profile. J Physiol 2013; 591:6115-6. [PMID: 24293532 DOI: 10.1113/jphysiol.2013.265504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|