1
|
Sarma A, Ronde M, Smit S, Meerlo P, Havekes R. Does It Matter What Keeps You Awake? Effects of Two Different Sleep Deprivation Methods on Object-Location Memory and Hippocampal c-Fos Expression in Mice. J Sleep Res 2025:e70079. [PMID: 40267993 DOI: 10.1111/jsr.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
In sleep research, various sleep deprivation methods have been used to examine the effects of sleep loss on memory. However, studies often overlook the distinct impacts each method may have on activity in specific neuronal circuits and memory storage. It remains unclear whether these changes following sleep deprivation result from extended wakefulness alone or from an interaction with the nature of the waking experience. To address this question, we examined how two commonly used sleep deprivation methods in mice-gentle handling and novelty-induced sleep deprivation-affect object-location memory and hippocampal c-Fos expression. Using either method, mice were sleep deprived for 3 or 6 h immediately after training in the object-location memory task, and spatial memory performance was assessed 1 day after training. Object-location memory was impaired after 3 and 6 h of novelty-induced sleep deprivation, but only after 6 h of sleep deprivation by gentle handling. Assessing c-Fos expression in separate groups of mice immediately after 3 or 6 h of sleep deprivation showed that both methods increased c-Fos expression in the CA1 and CA3 regions after 3 h of sleep deprivation, while effects in the dentate gyrus depended on the method and blade examined. After 6 h of sleep deprivation, no significant changes in hippocampal c-Fos expression were observed regardless of the method used. Overall, our findings show that the type of experience mice have while being kept awake and the duration of sleep deprivation can have different effects on spatial memory and neuronal activity in hippocampal subregions.
Collapse
Affiliation(s)
- Adithya Sarma
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Mirthe Ronde
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Soraya Smit
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter Meerlo
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Heckman PRA, Havekes R, Blokland A. Memory impairments observed after a half night sleep restriction are not mediated by working memory, attention, or inhibitory control mechanisms. Neurobiol Learn Mem 2025; 219:108054. [PMID: 40222592 DOI: 10.1016/j.nlm.2025.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/10/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Sleep restriction is a growing issue in our modern society and thus it is crucial to uncover its neurocognitive consequences. Especially declarative memory is negatively affected by sleep loss due to its critical dependence on the hippocampus, a brain area known to be susceptible to sleep loss. Studies have shown that even a half night sleep restriction is sufficient to induce impairments in a range of hippocampus-dependent forms of memory. Nevertheless, memory performance is, at least to some extent, dependent on other cognitive functions. The aim of the current study was to reveal whether memory deficits observed after one night sleep deprivation, as observed in animal studies, translate to man, and whether these effects are mediated by impairments in other cognitive domains. We hypothesized that the memory paradigms would be affected but that, due to the short nature of the sleep restriction, this effect would not be mediated by other cognitive functions. To this end, fifty-five healthy participants conducted a test battery containing paradigms measuring verbal learning, spatial memory, attention, working memory, and response inhibition after a night of regular sleep or acute partial sleep restriction. The results of the study showed an impairment in both hippocampus-dependent memory tests, while no negative consequences of sleep deprivation were revealed on the other cognitive domains. In conclusion, our data indicate that the observed deficit in memory performance after a half night sleep deprivation is not mediated by impairments in attention (alerting, orienting, and executive control), working memory, or motor inhibitory control mechanisms.
Collapse
Affiliation(s)
- Pim R A Heckman
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expert Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Özcan ÖÖ, Çevreli B, Kaşıkçı ES, Karahan M, Konuk M. Effects of Quetiapine on Novelty-Related Object Recognition Memory and Hippocampal BDNF Level in Sleep-Deprived Rats. Brain Behav 2025; 15:e70226. [PMID: 39829139 PMCID: PMC11744024 DOI: 10.1002/brb3.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The underlying mechanism of quetiapine (QET) in treating cognitive impairment in sleep deprivation is unclear. The present study aimed to evaluate the effects of treatment with QET on novel object recognition and hippocampal (hippo) brain-derived neurotrophic factor (BDNF) levels in rats submitted to 72 h sleep deprivation (SD). MATERIALS AND METHODS A total of 42 adult male Wistar albino rats were assigned into six experimental groups: non-sleep-deprived (NSD) control, short-term control group (n = 7) received a single intraperitoneal (i.p.) injection 10 mg/kg QET of 1 mL saline (4 days) (NSD-STQET), long-term control group (n = 7) received single i.p. injection 10 mg/kg QET of 1 mL saline (30 days) (NSD-LTQET); 72 h sleep-deprived (SD) group, 72 h SD short-term group received short-term i.p. injection 10 mg/kg QET of either (n = 7) (SD-STQET), and 72 h SD long-term group received long-term i.p. injection 10 mg/kg QET of either (n = 7) QET (SD-LTQET). SD was performed using the modified multiple-platform technique in a water tank for 72 h. Additionally, we aim to reveal the consequences of 72 h SD and QET effects on memory processes with hippo BDNF levels by testing rats in the novel object recognition (NOR) test and ELISA method. RESULTS Long-term QET administration in healthy rats decreased NOR and BDNF protein expression in the hippocampus, as did 72 h SD. Long- and short-term QET administration reversed SD effects, but only short-term QET administration increased hippo BDNF. CONCLUSION These results suggest that the beneficial effects of QET on SD may be partly related to the upregulation of recognition memory and neuroprotective proteins such as BDNF. However, long-term QET treatment in the absence of a disease model may have the potential to negatively impact recognition memory and BDNF levels, which support synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Öznur Özge Özcan
- Electro‐Neurophysiology, Vocational School of Health SciencesÜsküdar UniversityİstanbulTurkey
| | - Burcu Çevreli
- Department of Physiology, Faculty of MedicineÜsküdar UniversityİstanbulTurkey
| | - Emel Serdaroğlu Kaşıkçı
- Department of Molecular Biology, Faculty of Engineering and Natural SciencesÜsküdar UniversityİstanbulTurkey
| | - Mesut Karahan
- Medical Laboratory Techniques, Vocational School of Health SciencesÜsküdar UniversityİstanbulTurkey
| | - Muhsin Konuk
- Department of Molecular Biology, Faculty of Engineering and Natural SciencesÜsküdar UniversityİstanbulTurkey
| |
Collapse
|
4
|
Hasan ZW, Nguyen VT, Ashley NT. Effect of glucocorticoid blockade on inflammatory responses to acute sleep fragmentation in male mice. PeerJ 2024; 12:e17539. [PMID: 38952964 PMCID: PMC11216221 DOI: 10.7717/peerj.17539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 07/03/2024] Open
Abstract
The association between sleep and the immune-endocrine system is well recognized, but the nature of that relationship is not well understood. Sleep fragmentation induces a pro-inflammatory response in peripheral tissues and brain, but it also activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing glucocorticoids (GCs) (cortisol in humans and corticosterone in mice). It is unclear whether this rapid release of glucocorticoids acts to potentiate or dampen the inflammatory response in the short term. The purpose of this study was to determine whether blocking or suppressing glucocorticoid activity will affect the inflammatory response from acute sleep fragmentation (ASF). Male C57BL/6J mice were injected i.p. with either 0.9% NaCl (vehicle 1), metyrapone (a glucocorticoid synthesis inhibitor, dissolved in vehicle 1), 2% ethanol in polyethylene glycol (vehicle 2), or mifepristone (a glucocorticoid receptor antagonist, dissolved in vehicle 2) 10 min before the start of ASF or no sleep fragmentation (NSF). After 24 h, samples were collected from brain (prefrontal cortex, hypothalamus, hippocampus) and periphery (liver, spleen, heart, and epididymal white adipose tissue (EWAT)). Proinflammatory gene expression (TNF-α and IL-1β) was measured, followed by gene expression analysis. Metyrapone treatment affected pro-inflammatory cytokine gene expression during ASF in some peripheral tissues, but not in the brain. More specifically, metyrapone treatment suppressed IL-1β expression in EWAT during ASF, which implies a pro-inflammatory effect of GCs. However, in cardiac tissue, metyrapone treatment increased TNF-α expression in ASF mice, suggesting an anti-inflammatory effect of GCs. Mifepristone treatment yielded more significant results than metyrapone, reducing TNF-α expression in liver (only NSF mice) and cardiac tissue during ASF, indicating a pro-inflammatory role. Conversely, in the spleen of ASF-mice, mifepristone increased pro-inflammatory cytokines (TNF-α and IL-1β), demonstrating an anti-inflammatory role. Furthermore, irrespective of sleep fragmentation, mifepristone increased pro-inflammatory cytokine gene expression in heart (IL-1β), pre-frontal cortex (IL-1β), and hypothalamus (IL-1β). The results provide mixed evidence for pro- and anti-inflammatory functions of corticosterone to regulate inflammatory responses to acute sleep loss.
Collapse
Affiliation(s)
- Zim Warda Hasan
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| | - Van Thuan Nguyen
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| | - Noah T. Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| |
Collapse
|
5
|
Martinez JD, Wilson LG, Brancaleone WP, Peterson KG, Popke DS, Garzon VC, Perez Tremble RE, Donnelly MJ, Mendez Ortega SL, Torres D, Shaver JJ, Jiang S, Yang Z, Aton SJ. Hypnotic treatment improves sleep architecture and EEG disruptions and rescues memory deficits in a mouse model of fragile X syndrome. Cell Rep 2024; 43:114266. [PMID: 38787724 PMCID: PMC11910971 DOI: 10.1016/j.celrep.2024.114266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/20/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Fragile X syndrome (FXS) is associated with disrupted cognition and sleep abnormalities. Sleep loss negatively impacts cognitive function, and one untested possibility is that disrupted cognition in FXS is exacerbated by abnormal sleep. We tested whether ML297, a hypnotic acting on G-protein-activated inward-rectifying potassium (GIRK) channels, could reverse sleep phenotypes and disrupted memory in Fmr1-/y mice. Fmr1-/y mice exhibit reduced non-rapid eye movement (NREM) sleep and fragmented NREM architecture, altered sleep electroencephalogram (EEG) oscillations, and reduced EEG coherence between cortical areas; these are partially reversed following ML297 administration. Treatment following contextual fear or spatial learning restores disrupted memory consolidation in Fmr1-/y mice. During memory recall, Fmr1-/y mice show an altered balance of activity among hippocampal principal neurons vs. parvalbumin-expressing interneurons; this is partially reversed by ML297. Because sleep disruption could impact neurophysiological phenotypes in FXS, augmenting sleep may improve disrupted cognition in this disorder.
Collapse
Affiliation(s)
- Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia G Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William P Brancaleone
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathryn G Peterson
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Donald S Popke
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Valentina Caicedo Garzon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roxanne E Perez Tremble
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcus J Donnelly
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Daniel Torres
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Shaver
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongying Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Zhang Y, Wang Y, Wei R, Li X, Luo B, Zhang J, Zhang K, Fang S, Liu X, Chen G. Mitochondrial antioxidant elamipretide improves learning and memory impairment induced by chronic sleep deprivation in mice. Brain Behav 2024; 14:e3508. [PMID: 38688894 PMCID: PMC11061203 DOI: 10.1002/brb3.3508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The inflammation and synaptic dysfunction induced by mitochondrial dysfunction play essential roles in the learning and memory impairment associated with sleep dysfunction. Elamipretide (SS-31), a novel mitochondrion-targeted antioxidant, was proven to improve mitochondrial dysfunction, the inflammatory response, synaptic dysfunction, and cognitive impairment in models of cerebral ischemia, sepsis, and type 2 diabetes. However, the potential for SS-31 to improve the cognitive impairment induced by chronic sleep deprivation (CSD) and its underlying mechanisms is unknown. METHODS Adult c57BL/6J mice were subjected to CSD for 21 days using an activity wheel accompanied by daily intraperitoneal injection of SS-31 (5 mg/kg). The novel object recognition and Morris water maze test were used to evaluate hippocampus-dependent cognitive function. Western blotting and reverse transcription-quantitative polymerase chain reaction assays were used to determine the effects of CSD and SS-31 on markers of mitochondria, inflammation response, and synaptic function. Enzyme-linked immunosorbent assays were used to examine the levels of proinflammatory cytokines. RESULTS SS-31 could improve the cognitive impairment induced by CSD. In particular, SS-31 treatment restored the CSD-induced decrease in sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator alpha levels and the increase in levels nuclear factor kappa-B and inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha. Furthermore, SS-31 significantly increased the levels of brain-derived neurotrophic factor, postsynaptic density protein-95, and synaptophysin in CSD mice. CONCLUSION Taken together, these results suggest that SS-31 could improve CSD-induced mitochondrial biogenesis dysfunction, inflammatory response, synaptic dysfunction, and cognitive impairment by increasing SIRT1 expression levels.
Collapse
Affiliation(s)
- Yue‐Ming Zhang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ya‐Tao Wang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ru‐Meng Wei
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xue‐Yan Li
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Bao‐Ling Luo
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Jing‐Ya Zhang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Kai‐Xuan Zhang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Shi‐Kun Fang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xue‐Chun Liu
- Department of NeurologyThe Second People's Hospital of Hefei and Affiliated Hefei Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Gui‐Hai Chen
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| |
Collapse
|
7
|
Schiffino FL, McNally JM, Maness EB, McKenna JT, Brown RE, Strecker RE. Basal forebrain parvalbumin neurons modulate vigilant attention and rescue deficits produced by sleep deprivation. J Sleep Res 2024; 33:e13919. [PMID: 37211393 PMCID: PMC10659990 DOI: 10.1111/jsr.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/23/2023]
Abstract
Attention is impaired in many neuropsychiatric disorders, as well as by sleep disruption, leading to decreased workplace productivity and increased risk of accidents. Thus, understanding the neural substrates is important. Here we test the hypothesis that basal forebrain neurons that contain the calcium-binding protein parvalbumin modulate vigilant attention in mice. Furthermore, we test whether increasing the activity of basal forebrain parvalbumin neurons can rescue the deleterious effects of sleep deprivation on vigilance. A lever release version of the rodent psychomotor vigilance test was used to assess vigilant attention. Brief and continuous low-power optogenetic excitation (1 s, 473 nm @ 5 mW) or inhibition (1 s, 530 nm @ 10 mW) of basal forebrain parvalbumin neurons was used to test the effect on attention, as measured by reaction time, under control conditions and following 8 hr of sleep deprivation by gentle handling. Optogenetic excitation of basal forebrain parvalbumin neurons that preceded the cue light signal by 0.5 s improved vigilant attention as indicated by quicker reaction times. By contrast, both sleep deprivation and optogenetic inhibition slowed reaction times. Importantly, basal forebrain parvalbumin excitation rescued the reaction time deficits in sleep-deprived mice. Control experiments using a progressive ratio operant task confirmed that optogenetic manipulation of basal forebrain parvalbumin neurons did not alter motivation. These findings reveal for the first time a role for basal forebrain parvalbumin neurons in attention, and show that increasing their activity can compensate for disruptive effects of sleep deprivation.
Collapse
Affiliation(s)
- Felipe L. Schiffino
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA. Work performed at the VA
| | - James M. McNally
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Eden B. Maness
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| | - James T. McKenna
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Ritchie E. Brown
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Robert E. Strecker
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| |
Collapse
|
8
|
Wang L, Park L, Wu W, King D, Vega-Medina A, Raven F, Martinez J, Ensing A, McDonald K, Yang Z, Jiang S, Aton SJ. Sleep-dependent engram reactivation during hippocampal memory consolidation associated with subregion-specific biosynthetic changes. iScience 2024; 27:109408. [PMID: 38523798 PMCID: PMC10957462 DOI: 10.1016/j.isci.2024.109408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Post-learning sleep is essential for hippocampal memory processing, including contextual fear memory consolidation. We labeled context-encoding engram neurons in the hippocampal dentate gyrus (DG) and assessed reactivation of these neurons after fear learning. Post-learning sleep deprivation (SD) selectively disrupted reactivation of inferior blade DG engram neurons, linked to SD-induced suppression of neuronal activity in the inferior, but not superior DG blade. Subregion-specific spatial profiling of transcripts revealed that transcriptomic responses to SD differed greatly between hippocampal CA1, CA3, and DG inferior blade, superior blade, and hilus. Activity-driven transcripts, and those associated with cytoskeletal remodeling, were selectively suppressed in the inferior blade. Critically, learning-driven transcriptomic changes differed dramatically between the DG blades and were absent from all other regions. Together, these data suggest that the DG is critical for sleep-dependent memory consolidation, and that the effects of sleep loss on the hippocampus are highly subregion-specific.
Collapse
Affiliation(s)
- Lijing Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lauren Park
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weisheng Wu
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana King
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexis Vega-Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frank Raven
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jessy Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Ensing
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine McDonald
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongying Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara J. Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Martinez JD, Wilson LG, Brancaleone WP, Peterson KG, Popke DS, Garzon VC, Perez Tremble RE, Donnelly MJ, Mendez Ortega SL, Torres D, Shaver JJ, Clawson BC, Jiang S, Yang Z, Aton SJ. Hypnotic treatment reverses NREM sleep disruption and EEG desynchronization in a mouse model of Fragile X syndrome to rescue memory consolidation deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549070. [PMID: 37502832 PMCID: PMC10370139 DOI: 10.1101/2023.07.14.549070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Fragile X syndrome (FXS) is a highly-prevalent genetic cause of intellectual disability, associated with disrupted cognition and sleep abnormalities. Sleep loss itself negatively impacts cognitive function, yet the contribution of sleep loss to impaired cognition in FXS is vastly understudied. One untested possibility is that disrupted cognition in FXS is exacerbated by abnormal sleep. We hypothesized that restoration of sleep-dependent mechanisms could improve functions such as memory consolidation in FXS. We examined whether administration of ML297, a hypnotic drug acting on G-protein-activated inward-rectifying potassium channels, could restore sleep phenotypes and improve disrupted memory consolidation in Fmr1 -/y mice. Using 24-h polysomnographic recordings, we found that Fmr1 -/y mice exhibit reduced non-rapid eye movement (NREM) sleep and fragmented NREM sleep architecture, alterations in NREM EEG spectral power (including reductions in sleep spindles), and reduced EEG coherence between cortical areas. These alterations were reversed in the hours following ML297 administration. Hypnotic treatment following contextual fear or spatial learning also ameliorated disrupted memory consolidation in Fmr1 -/y mice. Hippocampal activation patterns during memory recall was altered in Fmr1 -/y mice, reflecting an altered balance of activity among principal neurons vs. parvalbumin-expressing (PV+) interneurons. This phenotype was partially reversed by post-learning ML297 administration. These studies suggest that sleep disruption could have a major impact on neurophysiological and behavioral phenotypes in FXS, and that hypnotic therapy may significantly improve disrupted cognition in this disorder.
Collapse
|
10
|
Martinez JD, Donnelly MJ, Popke DS, Torres D, Wilson LG, Brancaleone WP, Sheskey S, Lin CM, Clawson BC, Jiang S, Aton SJ. Enriched binocular experience followed by sleep optimally restores binocular visual cortical responses in a mouse model of amblyopia. Commun Biol 2023; 6:408. [PMID: 37055505 PMCID: PMC10102075 DOI: 10.1038/s42003-023-04798-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Studies of primary visual cortex have furthered our understanding of amblyopia, long-lasting visual impairment caused by imbalanced input from the two eyes during childhood, which is commonly treated by patching the dominant eye. However, the relative impacts of monocular vs. binocular visual experiences on recovery from amblyopia are unclear. Moreover, while sleep promotes visual cortex plasticity following loss of input from one eye, its role in recovering binocular visual function is unknown. Using monocular deprivation in juvenile male mice to model amblyopia, we compared recovery of cortical neurons' visual responses after identical-duration, identical-quality binocular or monocular visual experiences. We demonstrate that binocular experience is quantitatively superior in restoring binocular responses in visual cortex neurons. However, this recovery was seen only in freely-sleeping mice; post-experience sleep deprivation prevented functional recovery. Thus, both binocular visual experience and subsequent sleep help to optimally renormalize bV1 responses in a mouse model of amblyopia.
Collapse
Affiliation(s)
- Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Marcus J Donnelly
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI, USA
| | - Donald S Popke
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Torres
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lydia G Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Sarah Sheskey
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brittany C Clawson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Martinez JD, Brancaleone WP, Peterson KG, Wilson LG, Aton SJ. Atypical hypnotic compound ML297 restores sleep architecture immediately following emotionally valenced learning, to promote memory consolidation and hippocampal network activation during recall. Sleep 2023; 46:zsac301. [PMID: 36510822 PMCID: PMC9995787 DOI: 10.1093/sleep/zsac301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
Sleep plays a critical role in consolidating many forms of hippocampus-dependent memory. While various classes of hypnotic drugs have been developed in recent years, it remains unknown whether, or how, some of them affect sleep-dependent memory consolidation mechanisms. We find that ML297, a recently developed candidate hypnotic agent targeting a new mechanism (activating GIRK1/2-subunit containing G-protein coupled inwardly rectifying potassium [GIRK] channels), alters sleep architecture in mice over the first 6 hr following a single-trial learning event. Following contextual fear conditioning (CFC), ML297 reversed post-CFC reductions in NREM sleep spindle power and REM sleep amounts and architecture, renormalizing sleep features to what was observed at baseline, prior to CFC. Renormalization of post-CFC REM sleep latency, REM sleep amounts, and NREM spindle power were all associated with improved contextual fear memory (CFM) consolidation. We find that improvements in CFM consolidation due to ML297 are sleep-dependent, and are associated with increased numbers of highly activated dentate gyrus (DG), CA1, and CA3 neurons during CFM recall. Together our findings suggest that GIRK1/2 channel activation restores normal sleep architecture- including REM sleep, which is normally suppressed following CFC-and increases the number of hippocampal neurons incorporated into the CFM engram during memory consolidation.
Collapse
Affiliation(s)
- Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William P Brancaleone
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathryn G Peterson
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia G Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Bolsius YG, Heckman PRA, Paraciani C, Wilhelm S, Raven F, Meijer EL, Kas MJH, Ramirez S, Meerlo P, Havekes R. Recovering object-location memories after sleep deprivation-induced amnesia. Curr Biol 2023; 33:298-308.e5. [PMID: 36577400 DOI: 10.1016/j.cub.2022.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/19/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
It is well established that sleep deprivation after learning impairs hippocampal memory processes and can cause amnesia. It is unknown, however, whether sleep deprivation leads to the loss of information or merely the suboptimal storage of information that is difficult to retrieve. Here, we show that hippocampal object-location memories formed under sleep deprivation conditions can be successfully retrieved multiple days following training, using optogenetic dentate gyrus (DG) memory engram activation or treatment with the clinically approved phosphodiesterase 4 (PDE4) inhibitor roflumilast. Moreover, the combination of optogenetic DG memory engram activation and roflumilast treatment, 2 days following training and sleep deprivation, made the memory more persistently accessible for retrieval even several days later (i.e., without further optogenetic or pharmacological manipulation). Altogether, our studies in mice demonstrate that sleep deprivation does not necessarily cause memory loss but instead leads to the suboptimal storage of information that cannot be retrieved without drug treatment or optogenetic stimulation. Furthermore, our findings suggest that object-location memories, consolidated under sleep deprivation conditions and thought to be lost, can be made accessible again several days after the learning and sleep deprivation episode, using the clinically approved PDE4 inhibitor roflumilast.
Collapse
Affiliation(s)
- Youri G Bolsius
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Camilla Paraciani
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Sophia Wilhelm
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Frank Raven
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Elroy L Meijer
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Martien J H Kas
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Peter Meerlo
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
13
|
Gaviraghi Mussoi J, Stanley MC, Cain KE. Importance of sleep for avian vocal communication. Biol Lett 2022; 18:20220223. [PMID: 35975628 PMCID: PMC9382451 DOI: 10.1098/rsbl.2022.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sleep is one of the few truly ubiquitous animal behaviours, and though many animals spend enormous periods of time asleep, we have only begun to understand the consequences of sleep disturbances. In humans, sleep is crucial for effective communication. Birds are classic models for understanding the evolution and mechanisms of human language and speech. Bird vocalizations are remarkably diverse, critical, fitness-related behaviours, and the way sleep affects vocalizations is likely similarly varied. However, research on the effects of sleep disturbances on avian vocalizations is shockingly scarce. Consequently, there is a critical gap in our understanding of the extent to which sleep disturbances disrupt communication. Here, we argue that sleep disturbances are likely to affect all birds' vocal performance by interfering with motivation, memory consolidation and vocal maintenance. Further, we suggest that quality sleep is likely essential when learning new vocalizations and that sleep disturbances will have especially strong effects on learned vocalizations. Finally, we advocate for future research to address gaps in our understanding of how sleep influences vocal learning and performance in birds.
Collapse
Affiliation(s)
| | - Margaret C Stanley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Kristal E Cain
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Huang H, Jiang N, Zhang YW, Lv JW, Wang HX, Lu C, Liu XM, Lu GH. Gastrodia elata blume ameliorates circadian rhythm disorder-induced mice memory impairment. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:51-58. [PMID: 34689950 DOI: 10.1016/j.lssr.2021.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Circadian rhythm disorder (CRD) in space flight can lead to memory impairment, performance decrements and adverse health outcomes, the main manifestations of which are circadian desynchronization, sleep loss and insomnia. Sleep deprivation (SD) provide the means to evaluate these effects and the risks associated with CRD on ground. Gastrodia elata Blume (GEB) has beneficial effects on the treatment of sleep disturbances and memory loss. Fresh GEB (FG), an unprocessed raw tuber of GEB, has been used as functional health food in Asian countries for a long time. However, the research report of FG to ameliorate memory impairment caused by insomnia or lack of sleep is meager. In this study, ICR male mice were sleep-deprived continuously and water extract of FG (WFG) was orally administrated (3 and 9 g/kg/d, i.g) during the SD process lasted for 25 days, except control and model groups gavage administration with water, positive control group with modafinil (MOD, 0.1 g/kg/d, i.g). We studied the effect of WFG on CRD-induced learning and memory impairment using a set of behavioral analyses including the object location recognition test (OLRT), novel object recognition test (NORT), and the passive avoidance test (PAT). In addition, oxidative stress parameters were assessed by measuring the malondialdehyde (MDA) and superoxide dismutase (SOD) reactivity in serum and hippocampus. Our results revealed that SD decreased discrimination index (DI) in OLRT and NORT, with shorter latency into the dark chamber in PAT. Both WFG and MOD treatment can reverse these changes (P < 0.05). We concluded that WFG treatment improve CRD-induced learning and memory impairment and oxidative stress damage which makes FG a promising candidate as herbal health product of memory decline in CRD.
Collapse
Affiliation(s)
- Hong Huang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yi Wen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jing Wei Lv
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hai Xia Wang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xin Min Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Guang Hua Lu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
15
|
Raven F, Heckman PRA, Havekes R, Meerlo P. Sleep deprivation-induced impairment of memory consolidation is not mediated by glucocorticoid stress hormones. J Sleep Res 2019; 29:e12972. [PMID: 31845433 PMCID: PMC7539978 DOI: 10.1111/jsr.12972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/29/2022]
Abstract
The general consensus is that sleep promotes neuronal recovery and plasticity, whereas sleep deprivation (SD) impairs brain function, including cognitive processes. Indeed, a wealth of data has shown a negative impact of SD on learning and memory processes, particularly those that involve the hippocampus. The mechanisms underlying these negative effects of sleep loss are only partly understood, but a reoccurring question is whether they are in part caused by stress hormones that may be released during SD. The purpose of the present study is therefore to examine the role of glucocorticoid stress hormones in SD‐induced memory impairment. Male C57BL/6J mice were trained in an object‐location memory paradigm, followed by 6 hr of SD by mild stimulation. At the beginning of the SD mice were injected with the corticosterone synthesis inhibitor metyrapone. Memory was tested 24 hr after training. Blood samples taken in a separate group of mice showed that SD resulted in a mild but significant increase in plasma corticosterone levels, which was prevented by metyrapone. However, the SD‐induced impairment in object‐location memory was not prevented by metyrapone treatment. This indicates that glucocorticoids play no role in causing the memory impairments seen after a short period of SD.
Collapse
Affiliation(s)
- Frank Raven
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Pim R A Heckman
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|