1
|
Gratton MKP, Charest J, Lickel J, Bender AM, Werthner P, Pedlar CR, Kipps C, Lawson D, Samuels CH, Cook J. Influence of circadian preference, sleep inertia and their interaction on marathon completion time: A retrospective, cross-sectional investigation of a large mass-participation city marathon. J Sleep Res 2025; 34:e14375. [PMID: 39425608 PMCID: PMC12069743 DOI: 10.1111/jsr.14375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
Burgeoning interest in marathons necessitates an understanding of performance determinants. Research has highlighted the importance of diet, training and sleep, yet relations of circadian preference and sleep inertia with marathon performance remain largely unexplored. Because marathons generally start early-to-mid morning, these characteristics may have relevant impact. This study investigates relationships of circadian preference, sleep inertia and their interaction with marathon completion time. Consenting participants in a 2016 large mass-participation city marathon completed self-report questionnaires capturing circadian preference and sleep inertia, along with demographics and other characteristics. Circadian preference and sleep inertia were described across subgroups. Analyses examined the associations and interactions of circadian preference and sleep inertia with marathon completion times, with adjusted analyses accounting for age, sex and sleep health. Participants were marathon finishers (n = 936; 64.5% male; 66.3% young-adults), with a majority reporting morningness tendencies (60.8%). Results supported a linear association between increasing eveningness preference with slower marathon times (p = 0.003; padjusted = 0.002), while some support was provided for a linear relationship between greater sleep inertia and slower marathon times (p = 0.04; padjusted = 0.07). A significant interaction was observed (p = 0.02; padjusted = 0.01), with the directionality suggesting that the circadian preference relationship weakened when sleep inertia severity increased, and vice-versa. Our results suggest deleterious associations of increasing eveningness preference and greater sleep inertia with marathon completion time. These features may aid identifying marathoners who could be at a disadvantage, while also serving as modifiable targets for personalized training regimens preceding competition.
Collapse
Affiliation(s)
- Matthew K. P. Gratton
- Division of Medical Informatics, Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
- Social and Behavioral Sciences, PsychologyUniversity of KansasLawrenceKansasUSA
| | - Jonathan Charest
- Université Laval, École de PsychologieQuébec CityQuébecCanada
- Idorsia PharmaceuticalsMontréalQuebecCanada
| | - James Lickel
- Department of PsychiatryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- William S. Middleton Mémorial Veterans HospitalMadisonWisconsinUSA
| | - Amy M. Bender
- Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Absolute RestAustinTexasUSA
| | - Penny Werthner
- Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Charles R. Pedlar
- Faculty of Sport, Allied Health, and Performance ScienceSt Mary's UniversityLondonUK
- Institute of Sport, Exercise and HealthLondonUK
| | | | - Doug Lawson
- Centre for Sleep and Human PerformanceCalgaryAlbertaCanada
| | - Charles H. Samuels
- Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Centre for Sleep and Human PerformanceCalgaryAlbertaCanada
- Faculty of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Jesse Cook
- Department of PsychiatryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of PsychologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
2
|
Jiang Y, Hu X, Wen P. Improving children's alertness and neuromuscular response by using a blue-enriched white light in the kindergarten playroom. Sci Rep 2025; 15:15464. [PMID: 40316541 PMCID: PMC12048621 DOI: 10.1038/s41598-025-00072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/24/2025] [Indexed: 05/04/2025] Open
Abstract
Preschool children, who spend most of their time indoors, and the effects of artificial light on children's health and performance are important. Previous studies show that blue-enriched white light (BWL) has significant effects on human bodies, but only a few studies have specifically examined its effects in young children. Moreover, due to the significant physiological differences between children and adults, findings from BWL studies in adults cannot be directly applied to children. Therefore, investigating the effects of BWL on young children living in indoor environments is crucial. We recruited 24 preschool children (age: 5 ± 0.8 years; 12 girls and 12 boys) to participate in a within-subject, randomized crossover study involving common white light (CWL) (450 lx, Melanopic EDI: 354.04 lx) and BWL (450 lx, Melanopic EDI: 746.05 lx) in a kindergarten playroom. Under different light conditions, the children underwent tests for cardiac activity and critical flicker fusion frequency (CFF), as well as psychomotor vigilance task (PVT) and ruler drop test (RDT). The results indicated that BWL had significant effects on preschool children. Compared to CWL exposure, BWL exposure significantly improved cardiac activity, alertness, and neuromuscular response but slightly increased visual fatigue. Our study reveals that BWL has significant potential to improve children's physiological and cognitive functions, particularly to improve cardiac activity, alertness, and neuromuscular response. This study broadens the understanding of the effects of indoor lighting on children and provides a theoretical basis for designing a healthy indoor environment for children.
Collapse
Affiliation(s)
- Yankang Jiang
- Department of Sports Science, School of Physical Education, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou, 510641, China
| | - Xiaodong Hu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Peijun Wen
- Department of Sports Science, School of Physical Education, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou, 510641, China.
| |
Collapse
|
3
|
Sundelin T, Landry S, Axelsson J. Is snoozing losing? Why intermittent morning alarms are used and how they affect sleep, cognition, cortisol, and mood. J Sleep Res 2024; 33:e14054. [PMID: 37849039 DOI: 10.1111/jsr.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
Pressing the snooze button is a common way to start the day, but little is known about this behaviour. Through two studies we determined predictors and effects of snoozing. In Study 1 (n = 1732) respondents described their waking habits, confirming that snoozing is widespread, especially in younger individuals and later chronotypes. Morning drowsiness and shorter sleep were also more common for those who snooze. Study 2 was a within-subjects laboratory study (with polysomnography) on habitual snoozers (n = 31), showing that 30 min of snoozing improved or did not affect performance on cognitive tests directly upon rising compared to an abrupt awakening. Bayes factors indicate varying strengths of this evidence. Snoozing resulted in about 6 min of lost sleep, while preventing awakenings from slow-wave sleep (N3). There were no clear effects of snoozing on the cortisol awakening response, morning sleepiness, mood, or overnight sleep architecture. A brief snooze period may thus help alleviate sleep inertia, without substantially disturbing sleep, for late chronotypes and those with morning drowsiness.
Collapse
Affiliation(s)
- Tina Sundelin
- Department of Psychology, Stockholm University, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Shane Landry
- Department of Physiology, Biomedical Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - John Axelsson
- Department of Psychology, Stockholm University, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Sauvet F, Beauchamps V, Cabon P. Sleep Inertia in Aviation. Aerosp Med Hum Perform 2024; 95:206-213. [PMID: 38486319 DOI: 10.3357/amhp.6343.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
INTRODUCTION: Sleep inertia is the transition state during which alertness and cognitive performance are temporarily impaired after awakening. Magnitude and time course of sleep inertia are characterized by high individual variability with large differences between the cognitive functions affected. This period of impairment is of concern to pilots, who take sleep or nap periods during on-call work hours or in-flight rest, then need to perform safety-critical tasks soon after waking. This review analyzes literature related to sleep inertia and countermeasures applicable for aviation.METHODS: The large part of scientific literature that focuses on sleep inertia is based on studies in patients with chronic sleep inertia. We analyzed 8 narrative reviews and 64 papers related to acute sleep inertia in healthy subjects.DISCUSSION: Sleep inertia is a multifactorial, complex process, and many different protocols have been conducted, with a low number of subjects, in noncontrolled laboratory designs, with questionnaires or cognitive tests that have not been replicated. Evidence suggests that waking after sleep loss, or from deeper stages of sleep, can exacerbate sleep inertia through complex interactions between awakening and sleep-promoting brain structures. Nevertheless, no meta-analyses are possible and extrapolation to pilots' performances is hypothetical. Studies in real life or simulated operational situations must be conducted to improve the description of the impact of sleep inertia and kinetics on pilots' performances. Taking rest or sleep time remains the main method for pilots to fight against fatigue and related decreases in performance. We propose proactive strategies to mitigate sleep inertia and improve alertness.Sauvet F, Beauchamps V, Cabon P. Sleep inertia in aviation. Aerosp Med Hum Perform. 2024; 95(4):206-213.
Collapse
|
5
|
Campanella C, Byun K, Senerat A, Li L, Zhang R, Aristizabal S, Porter P, Bauer B. The Efficacy of a Multimodal Bedroom-Based 'Smart' Alarm System on Mitigating the Effects of Sleep Inertia. Clocks Sleep 2024; 6:183-199. [PMID: 38534801 DOI: 10.3390/clockssleep6010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Previous work has demonstrated the modest impact of environmental interventions that manipulate lighting, sound, or temperature on sleep inertia symptoms. The current study sought to expand on previous work and measure the impact of a multimodal intervention that collectively manipulated light, sound, and ambient temperature on sleep inertia. Participants slept in the lab for four nights and were awoken each morning by either a traditional alarm clock or the multimodal intervention. Feelings of sleep inertia were measured each morning through Psychomotor Vigilance Test (PVT) assessments and ratings of sleepiness and mood at five time-points. While there was little overall impact of the intervention, the participant's chronotype and the length of the lighting exposure on intervention mornings both influenced sleep inertia symptoms. Moderate evening types who received a shorter lighting exposure (≤15 min) demonstrated more lapses relative to the control condition, whereas intermediate types exhibited a better response speed and fewer lapses. Conversely, moderate evening types who experienced a longer light exposure (>15 min) during the intervention exhibited fewer false alarms over time. The results suggest that the length of the environmental intervention may play a role in mitigating feelings of sleep inertia, particularly for groups who might exhibit stronger feelings of sleep inertia, including evening types.
Collapse
Affiliation(s)
- Carolina Campanella
- Delos Living LLC, New York, NY 10014, USA
- Well Living Lab, Inc., Rochester, MN 55902, USA
| | - Kunjoon Byun
- Delos Living LLC, New York, NY 10014, USA
- Well Living Lab, Inc., Rochester, MN 55902, USA
| | - Araliya Senerat
- Well Living Lab, Inc., Rochester, MN 55902, USA
- International Society for Urban Health, New York, NY 10003, USA
| | - Linhao Li
- Delos Living LLC, New York, NY 10014, USA
- Well Living Lab, Inc., Rochester, MN 55902, USA
| | | | - Sara Aristizabal
- Delos Living LLC, New York, NY 10014, USA
- Well Living Lab, Inc., Rochester, MN 55902, USA
| | - Paige Porter
- Well Living Lab, Inc., Rochester, MN 55902, USA
- School of Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brent Bauer
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Kovac K, Vincent GE, Paterson JL, Hilditch CJ, Ferguson SA. A preliminary framework for managing sleep inertia in occupational settings. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad050. [PMID: 38046222 PMCID: PMC10693319 DOI: 10.1093/sleepadvances/zpad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Sleep inertia, the temporary period of impairment experienced upon waking, is a safety hazard that has been implicated in serious work-related incidents resulting in injuries as well as the loss of life and assets. As such, sleep inertia warrants formal management in industries where personnel are required to undertake their role soon after waking (e.g. emergency services, engineers, and health care). At present, there is a lack of practical, evidence-based guidance on how sleep inertia could be formally managed at an organizational level. We propose a preliminary framework for managing sleep inertia based on the translation of research findings into specific work procedure modifications/control mechanisms. Within the framework, work procedure modifications/control mechanisms to manage sleep inertia are organized into three levels: (1) modifications/controls that eliminate the chance of sleep inertia, (2) modifications/controls that reduce sleep inertia severity, and (3) modifications/controls that manage the risk of errors during sleep inertia. Practical considerations, limitations, and areas of further research are highlighted for each modification/control to help determine how readily each control measure could be implemented by industries at present. A guide for organizations to use this preliminary framework of sleep inertia management is put forward, as well as the next research priorities to strengthen the utility and evidence base of the framework. This paper is part of the Sleep and Circadian Rhythms: Management of Fatigue in Occupational Settings Collection.
Collapse
Affiliation(s)
- Katya Kovac
- School of Health, Medical and Applied Sciences, Appleton Institute, Central Queensland University, Wayville, SA, Australia
| | - Grace E Vincent
- School of Health, Medical and Applied Sciences, Appleton Institute, Central Queensland University, Wayville, SA, Australia
| | - Jessica L Paterson
- Flinders University Institute of Mental Health and Wellbeing, College of Education, Psychology and Social Work, Flinders University, Bedford Park, SA, Australia
| | - Cassie J Hilditch
- Fatigue Countermeasures Laboratory, San José State University, San José, CA, USA
| | - Sally A Ferguson
- School of Health, Medical and Applied Sciences, Appleton Institute, Central Queensland University, Wayville, SA, Australia
| |
Collapse
|
7
|
Schöllhorn I, Stefani O, Blume C, Cajochen C. Seasonal Variation in the Responsiveness of the Melanopsin System to Evening Light: Why We Should Report Season When Collecting Data in Human Sleep and Circadian Studies. Clocks Sleep 2023; 5:651-666. [PMID: 37987395 PMCID: PMC10660855 DOI: 10.3390/clockssleep5040044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023] Open
Abstract
It is well known that variations in light exposure during the day affect light sensitivity in the evening. More daylight reduces sensitivity, and less daylight increases it. On average days, we spend less time outdoors in winter and receive far less light than in summer. Therefore, it could be relevant when collecting research data on the non-image forming (NIF) effects of light on circadian rhythms and sleep. In fact, studies conducted only in winter may result in more pronounced NIF effects than in summer. Here, we systematically collected information on the extent to which studies on the NIF effects of evening light include information on season and/or light history. We found that more studies were conducted in winter than in summer and that reporting when a study was conducted or measuring individual light history is not currently a standard in sleep and circadian research. In addition, we sought to evaluate seasonal variations in a previously published dataset of 72 participants investigating circadian and sleep effects of evening light exposure in a laboratory protocol where daytime light history was not controlled. In this study, we selectively modulated melanopic irradiance at four different light levels (<90 lx). Here, we aimed to retrospectively evaluate seasonal variations in the responsiveness of the melanopsin system by combining all data sets in an exploratory manner. Our analyses suggest that light sensitivity is indeed reduced in summer compared to winter. Thus, to increase the reproducibility of NIF effects on sleep and circadian measures, we recommend an assessment of the light history and encourage standardization of reporting guidelines on the seasonal distribution of measurements.
Collapse
Affiliation(s)
- Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
- Lucerne University of Applied Sciences and Arts, Engineering and Architecture, Technikumstrasse 21, 6048 Horw, Switzerland
| | - Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
8
|
Didikoglu A, Mohammadian N, Johnson S, van Tongeren M, Wright P, Casson AJ, Brown TM, Lucas RJ. Associations between light exposure and sleep timing and sleepiness while awake in a sample of UK adults in everyday life. Proc Natl Acad Sci U S A 2023; 120:e2301608120. [PMID: 37812713 PMCID: PMC10589638 DOI: 10.1073/pnas.2301608120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/11/2023] [Indexed: 10/11/2023] Open
Abstract
Experimental and interventional studies show that light can regulate sleep timing and sleepiness while awake by setting the phase of circadian rhythms and supporting alertness. The extent to which differences in light exposure explain variations in sleep and sleepiness within and between individuals in everyday life remains less clear. Here, we establish a method to address this deficit, incorporating an open-source wearable wrist-worn light logger (SpectraWear) and smartphone-based online data collection. We use it to simultaneously record longitudinal light exposure (in melanopic equivalent daylight illuminance), sleep timing, and subjective alertness over seven days in a convenience sample of 59 UK adults without externally imposed circadian challenge (e.g., shift work or jetlag). Participants reliably had strong daily rhythms in light exposure but frequently were exposed to less light during the daytime and more light in pre-bedtime and sleep episodes than recommended [T. M. Brown et al., PLoS Biol. 20, e3001571 (2022)]. Prior light exposure over several hours was associated with lower subjective sleepiness with, in particular, brighter light in the late sleep episode and after wake linked to reduced early morning sleepiness (sleep inertia). Higher pre-bedtime light exposure was associated with longer sleep onset latency. Early sleep timing was correlated with more reproducible and robust daily patterns of light exposure and higher daytime/lower night-time light exposure. Our study establishes a method for collecting longitudinal sleep and health/performance data in everyday life and provides evidence of associations between light exposure and important determinants of sleep health and performance.
Collapse
Affiliation(s)
- Altug Didikoglu
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Department of Neuroscience, Izmir Institute of Technology, Gulbahce, Izmir35430, Turkey
| | - Navid Mohammadian
- Department of Electrical & Electronic Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Sheena Johnson
- Thomas Ashton Institute, People, Management and Organisation Division, Alliance Manchester Business School, Faculty of Humanities, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Martie van Tongeren
- Thomas Ashton Institute, Centre for Occupational and Environmental Health, Division of Population Health, Health Services Research & Primary Care, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Paul Wright
- Department of Electrical & Electronic Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Alexander J. Casson
- Department of Electrical & Electronic Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Timothy M. Brown
- Centre for Biological Timing, Division of Diabetes Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Robert J. Lucas
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
| |
Collapse
|
9
|
LaGoy AD, Kubala AG, Deering S, Germain A, Markwald RR. Dawn of a New Dawn: Advances in Sleep Health to Optimize Performance. Sleep Med Clin 2023; 18:361-371. [PMID: 37532375 DOI: 10.1016/j.jsmc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Optimal sleep health is a critical component to high-level performance. In populations such as the military, public service (eg, firefighters), and health care, achieving optimal sleep health is difficult and subsequently deficiencies in sleep health may lead to performance decrements. However, advances in sleep monitoring technologies and mitigation strategies for poor sleep health show promise for further ecological scientific investigation within these populations. The current review briefly outlines the relationship between sleep health and performance as well as current advances in behavioral and technological approaches to improving sleep health for performance.
Collapse
Affiliation(s)
- Alice D LaGoy
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., San Diego, CA, USA
| | - Andrew G Kubala
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., San Diego, CA, USA
| | - Sean Deering
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., San Diego, CA, USA
| | | | - Rachel R Markwald
- Sleep, Tactical Efficiency, and Endurance Laboratory, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA.
| |
Collapse
|
10
|
Hilditch CJ, Bansal K, Chachad R, Wong LR, Bathurst NG, Feick NH, Santamaria A, Shattuck NL, Garcia JO, Flynn-Evans EE. Reconfigurations in brain networks upon awakening from slow wave sleep: Interventions and implications in neural communication. Netw Neurosci 2023; 7:102-121. [PMID: 37334002 PMCID: PMC10270716 DOI: 10.1162/netn_a_00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/05/2022] [Indexed: 04/04/2024] Open
Abstract
Sleep inertia is the brief period of impaired alertness and performance experienced immediately after waking. Little is known about the neural mechanisms underlying this phenomenon. A better understanding of the neural processes during sleep inertia may offer insight into the awakening process. We observed brain activity every 15 min for 1 hr following abrupt awakening from slow wave sleep during the biological night. Using 32-channel electroencephalography, a network science approach, and a within-subject design, we evaluated power, clustering coefficient, and path length across frequency bands under both a control and a polychromatic short-wavelength-enriched light intervention condition. We found that under control conditions, the awakening brain is typified by an immediate reduction in global theta, alpha, and beta power. Simultaneously, we observed a decrease in the clustering coefficient and an increase in path length within the delta band. Exposure to light immediately after awakening ameliorated changes in clustering. Our results suggest that long-range network communication within the brain is crucial to the awakening process and that the brain may prioritize these long-range connections during this transitional state. Our study highlights a novel neurophysiological signature of the awakening brain and provides a potential mechanism by which light improves performance after waking.
Collapse
Affiliation(s)
- Cassie J. Hilditch
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Kanika Bansal
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- US DEVCOM Army Research Laboratory, Humans in Complex Systems Division, Aberdeen Proving Ground, MD, USA
| | - Ravi Chachad
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Lily R. Wong
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Nicholas G. Bathurst
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Nathan H. Feick
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Amanda Santamaria
- Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, SA, Australia
| | - Nita L. Shattuck
- Operations Research Department, Naval Postgraduate School, Monterey, CA, USA
| | - Javier O. Garcia
- US DEVCOM Army Research Laboratory, Humans in Complex Systems Division, Aberdeen Proving Ground, MD, USA
| | - Erin E. Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
11
|
Riemann D. Focus on sleep medicine. J Sleep Res 2022; 31:e13722. [PMID: 36120728 DOI: 10.1111/jsr.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Oh KT, Ko J, Shin J, Ko M. Using Wake-Up Tasks for Morning Behavior Change: Development and Usability Study. JMIR Form Res 2022; 6:e39497. [PMID: 36129742 PMCID: PMC9529170 DOI: 10.2196/39497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background
Early morning behaviors between waking up and beginning daily work can develop into productive habits. However, sleep inertia limits the level of human ability immediately after waking, lowering a person’s motivation and available time for productive morning behavior.
Objective
This study explores a design for morning behavior change using a wake-up task, a simple assignment the user needs to finish before alarm dismissal. Specifically, we set two research objectives: (1) exploring key factors that relate to morning behavior performance, including the use of wake-up tasks in an alarm app and (2) understanding the general practice of affecting morning behavior change by implementing wake-up tasks.
Methods
We designed and implemented an apparatus that provides wake-up task alarms and facilities for squat exercises. We recruited 36 participants to perform squat exercises in the early morning using the wake-up tasks for 2 weeks. First, we conducted a generalized estimating equation (GEE) analysis for the first research objective. Next, we conducted a thematic analysis of the postsurvey answers to identify key themes about morning behavior change with the wake-up tasks for the second objective.
Results
The use of wake-up tasks was significantly associated with both the completion of the target behavior (math task: P=.005; picture task: P<.001) and the elapsed time (picture task: P=.08); the time to alarm dismissal was significantly related to the elapsed time to completion (P<.001). Moreover, the theory of planned behavior (TPB) variables, common factors for behavior change, were significant, but their magnitudes and directions differed slightly from the other domains. Furthermore, the survey results reveal how the participants used the wake-up tasks and why they were effective for morning behavior performance.
Conclusions
The results reveal the effectiveness of wake-up tasks in accomplishing the target morning behavior and address key factors for morning behavior change, such as (1) waking up on time, (2) escaping from sleep inertia, and (3) quickly starting the desired target behavior.
Collapse
Affiliation(s)
- Kyue Taek Oh
- Department of Human-Computer Interaction, Hanyang University, Ansan, Republic of Korea
| | - Jisu Ko
- Department of Applied Artificial Intelligence, Hanyang University, Ansan, Republic of Korea
| | | | - Minsam Ko
- Department of Human-Computer Interaction, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
13
|
Kovac K, Vincent GE, Paterson JL, Ferguson SA. "I Want to Be Safe and Not Still Half Asleep": Exploring Practical Countermeasures to Manage the Risk of Sleep Inertia for Emergency Service Personnel Using a Mixed Methods Approach. Nat Sci Sleep 2022; 14:1493-1510. [PMID: 36052102 PMCID: PMC9427208 DOI: 10.2147/nss.s370488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The aim of this exploratory cross-sectional mixed methods study was to determine 1) whether sleep inertia, the temporary state of impaired vigilance performance upon waking, is perceived to be a concern by emergency service personnel, 2) what strategies are currently used by emergency service workplaces to manage sleep inertia, 3) the barriers to implementing reactive sleep inertia countermeasures, and 4) what strategies personnel suggest to manage sleep inertia. PARTICIPANTS AND METHODS A sample (n = 92) of employed and volunteer Australian emergency service personnel (fire and rescue, ambulance, police, state-based rescue and recovery personnel) completed an online survey. Data collected included demographic variables and work context, experiences of sleep inertia in the emergency role, barriers to sleep inertia countermeasures, and existing workplace sleep inertia countermeasures and recommendations. Quantitative data were analysed using descriptive statistics, and qualitative data were thematically analysed. RESULTS Approximately 67% of participants expressed concern about sleep inertia when responding in their emergency role. Despite this, there were few strategies to manage sleep inertia in the workplace. One major barrier identified was a lack of time in being able to implement sleep inertia countermeasures. Fatigue management strategies, such as reducing on-call periods, and operational changes, such as screening calls to reduce false alarms, were suggested by participants as potential strategies to manage sleep inertia. CONCLUSION Sleep inertia is a concern for emergency service personnel and thus more research is required to determine effective sleep inertia management strategies to reduce the risks associated with sleep inertia and improve personnel safety and those in their care. In addition, future studies could investigate strategies to integrate reactive sleep inertia countermeasures into the emergency response procedure.
Collapse
Affiliation(s)
- Katya Kovac
- School of Health, Medical and Applied Sciences, Appleton Institute, Central Queensland University, Wayville, SA, Australia
| | - Grace E Vincent
- School of Health, Medical and Applied Sciences, Appleton Institute, Central Queensland University, Wayville, SA, Australia
| | - Jessica L Paterson
- Flinders Institute of Mental Health and Wellbeing, College of Education, Psychology and Social Work, Flinders University, Bedford Park, SA, Australia
| | - Sally A Ferguson
- School of Health, Medical and Applied Sciences, Appleton Institute, Central Queensland University, Wayville, SA, Australia
| |
Collapse
|