1
|
Thase ME. A new direction for adjunctive therapy of difficult-to-treat depression: examining the role of orexin receptor antagonists. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-01999-w. [PMID: 40434499 DOI: 10.1007/s00406-025-01999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/23/2025] [Indexed: 05/29/2025]
Abstract
One of the several pressing unmet needs in the pharmacotherapy of MDD is development of drugs with novel mechanisms of action that can effectively treat depressed patients who do not respond to first- and second-line antidepressants. The value of identifying such a medication would be enhanced if it were also generally well-tolerated and addressed depressive symptoms that are less responsive to SSRIs or SNRIs, such as insomnia or anxiety. This narrative review summarizes the investigation of a novel class of medications originally developed to treat insomnia, the Orexin Receptor Antagonists (ORAs), as adjunctive treatments for depressed patients who have been able to tolerate but who do not obtain an adequate response to standard antidepressants. Although it is likely that the currently approved Dual Orexin Receptor Antagonists (DORAs)-suvorexant, lemborexant and daridorexant-are safe and useful options for concomitant therapy of insomnia in antidepressant-treated patients, these medications have not been approved for this indication. Moreover, DORAs have not been extensively studied as adjunctive therapies for MDD. By contrast, the investigational ORA seltorexant, which is a selective Orexin 2 receptor antagonist, has shown significant antidepressant effects in Phase 2 and Phase 3 trials. Although at least one more unequivocally positive pivotal study will be needed to garner FDA approval for clinical use in the United States, this drug shows promise as a novel and well-tolerated option for patients with difficult to treat depressive episodes.
Collapse
Affiliation(s)
- Michael E Thase
- Perelman School of Medicine, University of Pennsylvania, Michael J. Crescenz Veterans Affairs Medical Center, 3535 Market Street, Suite 689, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Du W, Qiao X, Liu W, Li C, Jia H. Trends and Emerging Research Areas in Postoperative Sleep Disturbances: A Bibliometric Analysis. Nat Sci Sleep 2025; 17:1021-1035. [PMID: 40432909 PMCID: PMC12109035 DOI: 10.2147/nss.s515862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/30/2025] [Indexed: 05/29/2025] Open
Abstract
Purpose Postoperative sleep disturbance (PSD) is highly prevalent and significantly affects patient prognosis. Studies on PSD have received increasing attention, resulting in a surge in related publications. However, comprehensive analyses that can objectively reflect changes in scientific knowledge and identify the latest research trends in this field are lacking. Methods Articles and reviews focusing on PSD were extracted from the Web of Science Core Collection database. Bibliometrix, VOSviewer, and CiteSpace were used to conduct bibliometric analysis and map the visualization network. Results A total of 1,559 publications were extracted from the database, including 1,370 articles and 189 reviews. There has been a consistent increase in the number of publications, with an average annual growth rate of 16.56%, led by the United States in terms of research output. Notably, the University of Toronto was a prominent contributor. Co-cited reference network analysis revealed 17 well-structured networks (Q = 0.8174, S = 0.9441). Six major research trends were identified: mechanisms of sleep related to anesthesia, role of melatonin in sleep disturbances, pain management strategies, effects of analgesic drugs, impact of dexmedetomidine on sleep quality, and postoperative recovery. Keywords analysis highlighted the emerging roles of dexmedetomidine, neuroinflammation, and acupuncture. Conclusion Bibliometric analysis provides a helpful summary of postoperative sleep disturbances that have changed over time, by identifying knowledge points and developing trends. Future research should focus on integrating multidisciplinary approaches, exploring neuroinflammation, evaluating non-pharmacological interventions and long-term outcomes, which will advance scientific knowledge, enhance clinical practice, and improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Wei Du
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Xi Qiao
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Wei Liu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Chao Li
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Huiqun Jia
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
| |
Collapse
|
3
|
Duske J, D'Souza N, Mayer D, Dieterich DC, Fendt M. Orexinergic modulation of chronic jet lag-induced deficits in mouse cognitive flexibility. Neuropsychopharmacology 2025; 50:762-771. [PMID: 39478089 PMCID: PMC11914050 DOI: 10.1038/s41386-024-02017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 03/19/2025]
Abstract
Cognitive flexibility and working memory are important executive functions mediated by the prefrontal cortex and can be impaired by circadian rhythm disturbances such as chronic jet lag (CJL) or shift work. In the present study, we used mice to investigate whether (1) simulated CJL impairs cognitive flexibility, (2) the orexin system is involved in such impairment, and (3) nasal administration of orexin A is able to reverse CJL-induced deficits in cognitive flexibility and working memory. Mice were exposed to either standard light-dark conditions or simulated CJL consisting of series of advance time shifts. Experiment (1) investigated the effects of a mild CJL protocol on cognitive flexibility using the attentional set shifting task. Experiment (2) used a stronger CJL protocol and examined CJL effects on the orexin system utilizing c-Fos and orexin immunohistochemistry. Experiment (3) tested whether nasal orexin application can rescue CJL-induced deficits in cognitive flexibility and working memory, the latter by measuring spontaneous alternation in the Y-maze. The present data show that CJL (1) impairs cognitive flexibility and (2) reduces the activity of orexin neurons in the lateral hypothalamus. (3) Nasal administration of orexin A rescued CJL-induced deficits in working memory and cognitive flexibility. These findings suggest that executive function impairments by circadian rhythm disturbances such as CJL are caused by dysregulation of orexinergic input to the prefrontal cortex. Compensation of decreased orexinergic input by nasal administration of orexin A could be a potential therapy for CJL- or shift work-induced human deficits in executive functions.
Collapse
Affiliation(s)
- Julius Duske
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Nicole D'Souza
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| | - Dana Mayer
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center of Behavioural Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Center of Behavioural Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
4
|
Tang M, Shen Z, Yu P, Yu M, Tong X, Jiang G. Comparison of efficacy and safety of dual orexin receptor antagonists lemborexant and daridorexant for the treatment of insomnia: a systematic review and meta-analysis. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06773-3. [PMID: 40133470 DOI: 10.1007/s00213-025-06773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
OBJECTIVE To systematically evaluate the clinical efficacy of lemborexant (LEM) and daridorexant (DAR) for the treatment of insomnia, including the difference in efficacy and safety. METHODS In this systematic review and meta-analysis, we searched the randomized controlled trials (RCTs) comparing the efficacy and safety of LEM and DAR in patients with insomnia in five databases from database inception to Mar 16, 2024. We evaluate the quality of studies. Besides, we perform the meta-analysis and detect publication bias. RESULTS A total of 8 RCTs with 5077 patients were included in this study, including 2239 in the LEM treatment group, 1397 in the DAR treatment group, and 1441 in the placebo (PBO) control group. Both LEM and DAR significantly improved sleep outcomes compared to placebo. LEM was more effective in reducing the time of wake after sleep onset (WASO) (MD, -45.15; 95% CI: -51.75 to -38.56; P < 0.001) and improving subjective sleep onset latency (sSOL) (MD, -25.01; 95% CI: -28.58 to -21.44; P < 0.001) than DAR (WASO: MD: -12.6; 95% CI: -18.71 to -6.5; P < 0.001; sSOL: MD, -2.33; 95% CI: -7.1 to 2.45; P = 0.24). In terms of dosing, DAR at 50 mg demonstrated superior efficacy compared to the 5 mg, 10 mg, and 25 mg doses, indicating a dose-dependent effect. The efficacy of LEM was consistent across the 5 mg and 10 mg doses. Safety profiles revealed that DAR (RR, 1.16; 95% CI: 1.03 to 1.29; P = 0.01) treatment was associated with higher rates of treatment-emergent adverse events (TEAEs) compared to placebo, particularly at the 25 mg dose (RR, 1.15; 95% CI: 1.02 to 1.31; P = 0.03), while LEM (RR, 1.21; 95% CI: 0.98 to 1.50; P = 0.08) showed no significant difference in TEAEs rates compared to placebo. However, LEM (RR, 5.62; 95% CI: 2.92 to 10.83; P < 0.001) was associated with a higher risk of somnolence compared to DAR (RR, 1.55; 95% CI: 0.86 to 2.81; P = 0.15). The overall quality of the included studies was moderate to high based on the risk of bias assessment. CONCLUSION Both LEM and DAR are effective and generally safe options for the treatment of insomnia, with LEM showing greater efficacy in improving WASO and sSOL. The choice between LEM and DAR should consider individual patient needs, including the risk of daytime drowsiness and other adverse events. Further direct comparative trials are needed to confirm these findings and inform clinical decision-making.
Collapse
Affiliation(s)
- Ming Tang
- Department of Neurology, Institute of Neurological Diseases, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, 1 South MaoyuanRoad, Nanchong, 637000, China
| | - Ziyi Shen
- Department of Neurology, Institute of Neurological Diseases, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, 1 South MaoyuanRoad, Nanchong, 637000, China
| | - Peilu Yu
- Department of Neurology, Institute of Neurological Diseases, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, 1 South MaoyuanRoad, Nanchong, 637000, China
| | - Meiling Yu
- Department of Neurology, Institute of Neurological Diseases, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, 1 South MaoyuanRoad, Nanchong, 637000, China
| | - Xiaoqiong Tong
- Department of Neurology, Institute of Neurological Diseases, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, 1 South MaoyuanRoad, Nanchong, 637000, China
| | - Guohui Jiang
- Department of Neurology, Institute of Neurological Diseases, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, 1 South MaoyuanRoad, Nanchong, 637000, China.
| |
Collapse
|
5
|
Nutt DJ. Drug development in psychiatry: 50 years of failure and how to resuscitate it. Lancet Psychiatry 2025; 12:228-238. [PMID: 39952266 DOI: 10.1016/s2215-0366(24)00370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 02/17/2025]
Abstract
The past 50 years have seen remarkable advances in the science of medicine. The pharmacological treatments of disorders such as hypertension, immune disorders, and cancer are fundamentally different from those used in the 1970s, and are now more often based on disorder-specific pathologies. The same cannot be said for psychiatric medicines: despite remarkable advances in neuroscience, very few innovative treatments have been developed in this field since the 1970s. For depression, schizophrenia, anxiety disorders, and ADHD, pharmacological classes of medicines discovered through serendipity in the 1950s are still used despite hundreds of billions of US dollars being spent on drug discovery attempts based on new neuroscience targets. This Personal View presents my opinion on the reasons innovation in psychiatric treatment has not progressed as well as in other disorders. As a researcher in the field, I offer suggestions as to how this situation must be rectified soon, as by most analyses mental illness is becoming a major health burden globally. Most of my evidence is referenced, but where I have unpublished knowledge gained from consulting with pharmaceutical companies, it is presented as an opinion.
Collapse
Affiliation(s)
- David J Nutt
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
6
|
Meshkat S, Kwan ATH, Le GH, Wong S, Teopiz KM, Wang L, Rosenblat JD, Rhee TG, Cao B, McIntyre RS. Efficacy of orexin antagonists for the management of major depressive disorder: A systematic review of randomized clinical trials. J Affect Disord 2025; 372:409-419. [PMID: 39638064 DOI: 10.1016/j.jad.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/12/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Orexin receptor antagonists are a group of medications primarily developed to treat insomnia. Preliminary studies support their efficacy in the treatment of depression. In this systematic review, we aim to evaluate the efficacy of orexin receptor antagonists for the treatment of major depressive disorder (MDD). Electronic databases were searched from inception to February 2024 to find relevant studies. Original studies in English that evaluated efficacy of orexin receptor antagonists were included. A total of five randomized clinical trials involving 498 participants were included. Seltorexant (20 mg) significantly decreased depression scores when compared to placebo, as measured by the Hamilton Depression Rating Scale (HDRS). In patients with inadequate responses to antidepressants, seltorexant (20 mg) also showed improvement in Montgomery-Ǻsberg Depression Rating Scale (MADRS) total scores compared to placebo. However, filorexant did not exhibit a significant difference in MADRS total scores compared to placebo. A separate study on seltorexant (40 mg) for MDD patients resulted in a non-significant decrease in depressive symptoms compared to placebo, as measured by the Quick Inventory of Depressive Symptomatology - Self-Report (QIDS-SR). Taken together, these findings highlight the potential of orexin receptor antagonists, particularly seltorexant, as a novel avenue for managing depressive symptoms in MDD. Further research is warranted to better understand their role in depression treatment and their safety profile.
Collapse
Affiliation(s)
- Shakila Meshkat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Angela T H Kwan
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gia Han Le
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sabrina Wong
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Larry Wang
- Department of Psychiatry, Central Michigan University, Saginaw, MI, USA
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, PR China
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Valentino K, Teopiz KM, Wong S, Zhang MC, Le GH, Choi H, Ballum H, Dri C, Cheung W, McIntyre RS. Seltorexant for major depressive disorder. Expert Opin Emerg Drugs 2025:1-11. [PMID: 39791866 DOI: 10.1080/14728214.2025.2452514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Preclinical and clinical pharmacologic evidence indicates that orexin systems are relevant to sleep-wake cycle regulation and dimensions of reward and cognition, providing the basis for hypothesizing that they may be effective as therapeutics in mental disorders. Due to the limited efficacy and tolerability profiles of existing treatments for Major Depressive Disorder (MDD), investigational compounds in novel treatment classes are needed; seltorexant, an orexin receptor antagonist, is a potential new treatment currently under investigation. AREAS COVERED Mechanisms implicated in MDD, including reward and sleep, are first overviewed. Then, the safety, tolerability, and efficacy profiles of seltorexant and the wider context of orexin receptor antagonism for depression are discussed in focus. Preclinical and clinical data are also discussed. PubMed, Medline, Cochrane Library, Embase, Scopus, and Web of Science were systematically searched from inception to 10 October 2024, in accordance with PRISMA guidelines. EXPERT OPINION Early clinical evidence suggests that seltorexant is effective in treating MDD, both in individuals diagnosed with insomnia and those not, although greater antidepressant effects are observed in individuals with severe sleep disturbance. Results from large phase III clinical trials are needed to confirm efficacy and safety.
Collapse
Affiliation(s)
- Kyle Valentino
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Sabrina Wong
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Melanie C Zhang
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gia Han Le
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Hayun Choi
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Veteran Health Service Medical Center, Seoul, Republic of Korea
| | - Hana Ballum
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Christine Dri
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - William Cheung
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Barateau L, Morse AM, Gill SK, Pizza F, Ruoff C. Connecting clinicians and patients: The language of narcolepsy. Sleep Med 2024; 124:510-521. [PMID: 39437461 DOI: 10.1016/j.sleep.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Narcolepsy is a rare lifelong sleep disorder characterized by excessive daytime sleepiness with variable expression of cataplexy, sleep paralysis, sleep-related hallucinations and disrupted nocturnal sleep. Affected individuals also experience additional impairing symptoms, including (but not limited to) difficulties with attention, memory and concentration, brain fog, mood instability and fatigue, with a substantial impact on everyday life. Diagnostic delays of up to 10 years are common, primarily due to the substantial heterogeneity in clinical presentation of narcolepsy symptoms and presence of significant comorbidities. The disconnect in language used by clinicians and patients could be a factor contributing to diagnostic delays, but it has not been much studied. We followed a two-part approach to investigate the impact of this possible mismatch in language use. Firstly, a comprehensive literature search was conducted to identify publications reporting discrepancies in language relating to narcolepsy symptoms used by clinicians and patients. As a gap in the literature was anticipated, we supplemented the search results with practical strategies based on our clinical experience to facilitate dialog between clinicians and people living with narcolepsy, as well as proposing future research ideas. The findings of the narrative review, complemented by expert clinical opinion, are intended to help clinicians recognize narcolepsy symptoms and to refer patients with suspected narcolepsy, when appropriate. Although it is unknown to what extent a disconnect in language may contribute to diagnostic delays, we hope that better recognition of the varied clinical presentations of narcolepsy will lead to timelier diagnosis and help improve patient outcomes.
Collapse
Affiliation(s)
- Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac University Hospital, CHU Montpellier, Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France; Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.
| | - Anne Marie Morse
- Geisinger Commonwealth College of Health Sciences, Geisinger, Janet Weis Children's Hospital, Danville, PA, USA
| | | | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Chad Ruoff
- Center for Sleep Medicine, Pulmonary Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| |
Collapse
|
9
|
Agamme ALDA, Tufik S, Torterolo P, D'Almeida V. Effects of Paradoxical Sleep Deprivation on MCH and Hypocretin Systems. Sleep Sci 2024; 17:e392-e400. [PMID: 39698172 PMCID: PMC11651861 DOI: 10.1055/s-0044-1782171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/20/2023] [Indexed: 12/20/2024] Open
Abstract
Melanin-concentrating hormone (MCH) and hypocretins (Hcrt) 1 and 2 are neuropeptides synthesized in the lateral hypothalamic area by neurons that are critical in the regulation of sleep and wakefulness. Their receptors are located in the same cerebral regions, including the frontal cortex and hippocampus. The present study aimed to assess whether 96 hours of paradoxical sleep deprivation alters the functioning of the MCH and hypocretin systems. To do this, in control rats with normal sleep (CTL) and in rats that were deprived of paradoxical sleep (SD), we quantified the following parameters: 1) levels of MCH and hypocretin-1 in the cerebrospinal fluid (CSF); 2) expression of the prepro-MCH ( Pmch ) and prepro-hypocretin ( Hcrt ) genes in the hypothalamus; 3) expression of the Mchr1 and Hcrtr1 genes in the frontal cortex and hippocampus; and 4) expression of the Hcrtr2 gene in the hippocampus. These measures were performed at 6 Zeitgeber time (ZT) points of the day (ZTs: 0, 4, 8, 12, 16, and 20). In the SD group, we found higher levels of MCH in the CSF at the beginning of the dark phase. In the frontal cortex, sleep deprivation decreased the expression of Hcrtr1 at ZT0 . Moreover, we identified significant differences between the light and dark phases in the expression of Mchr1 and Hcrtr1 , but only in the CTL animals . We conclude that there is a day/night modulation in the expression of components of the MCH and hypocretin systems, and this profile is affected by paradoxical sleep deprivation.
Collapse
Affiliation(s)
- Ana Luiza Dias Abdo Agamme
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Pablo Torterolo
- Department of Physiology, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Vânia D'Almeida
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
10
|
de la Puente-Aldea J, Lopez-Llanos O, Horrillo D, Marcos-Sanchez H, Sanz-Ballesteros S, Franco R, Jaisser F, Senovilla L, Palacios-Ramirez R. Mineralocorticoid Receptor and Sleep Quality in Chronic Kidney Disease. Int J Mol Sci 2024; 25:12320. [PMID: 39596384 PMCID: PMC11594958 DOI: 10.3390/ijms252212320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The classical function of the mineralocorticoid receptor (MR) is to maintain electrolytic homeostasis and control extracellular volume and blood pressure. The MR is expressed in the central nervous system (CNS) and is involved in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis as well as sleep physiology, playing a role in the non-rapid eye movement (NREM) phase of sleep. Some patients with psychiatric disorders have very poor sleep quality, and a relationship between MR dysregulation and this disorder has been found in them. In addition, the MR is involved in the regulation of the renal peripheral clock. One of the most common comorbidities observed in patients with chronic kidney disease (CKD) is poor sleep quality. Patients with CKD experience sleep disturbances, including reduced sleep duration, sleep fragmentation, and insomnia. To date, no studies have specifically investigated the relationship between MR activation and CKD-associated sleep disturbances. However, in this review, we analyzed the environment that occurs in CKD and proposed two MR-related mechanisms that may be responsible for these sleep disturbances: the circadian clock disruption and the high levels of MR agonist observed in CKD.
Collapse
Affiliation(s)
- Juan de la Puente-Aldea
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid—CSIC, 47003 Valladolid, Spain; (J.d.l.P.-A.); (O.L.-L.); (L.S.)
| | - Oscar Lopez-Llanos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid—CSIC, 47003 Valladolid, Spain; (J.d.l.P.-A.); (O.L.-L.); (L.S.)
| | - Daniel Horrillo
- Facultad de ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcon, Spain; (D.H.); (R.F.)
| | | | | | - Raquel Franco
- Facultad de ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcon, Spain; (D.H.); (R.F.)
| | - Frederic Jaisser
- INSERM U1166, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, 75013 Paris, France;
- INSERM UMR 1116, Centre d’Investigations Cliniques-Plurithématique 1433, Université de Lorraine, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, 54500 Nancy, France
| | - Laura Senovilla
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid—CSIC, 47003 Valladolid, Spain; (J.d.l.P.-A.); (O.L.-L.); (L.S.)
- INSERM U1138, Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Sorbonne Université, Institut Universitaire de France, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| | - Roberto Palacios-Ramirez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid—CSIC, 47003 Valladolid, Spain; (J.d.l.P.-A.); (O.L.-L.); (L.S.)
| |
Collapse
|
11
|
Bruni O. Is CSF hypocretin level useful for differentiating narcolepsy type 1 and 2? Eur J Paediatr Neurol 2024; 53:A3-A4. [PMID: 39557595 DOI: 10.1016/j.ejpn.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Affiliation(s)
- Oliviero Bruni
- Pediatric Sleep Center, Child Neuropsychiatry Unit, Sant'Andrea Hospital, Sapienza University, Rome, Italy.
| |
Collapse
|
12
|
Carpi M, Mercuri NB, Liguori C. Orexin Receptor Antagonists for the Prevention and Treatment of Alzheimer's Disease and Associated Sleep Disorders. Drugs 2024; 84:1365-1378. [PMID: 39365407 PMCID: PMC11602839 DOI: 10.1007/s40265-024-02096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Orexins/hypocretins are neuropeptides produced by the hypothalamic neurons, binding two G-protein coupled receptors (orexin 1 and orexin 2 receptors) and playing a critical role in regulating arousal, wakefulness, and various physiological functions. Given the high prevalence of sleep disturbances in Alzheimer's disease (AD) and their reported involvement in AD pathophysiology, the orexin system is hypothesized to contribute to the disease pathogenesis. Specifically, recent evidence suggests that orexin's influence may extend beyond sleep regulation, potentially affecting amyloid-β and tau pathologies. Dual orexin receptor antagonists (DORAs), namely suvorexant, lemborexant, and daridorexant, demonstrated efficacy in treating chronic insomnia disorder across diverse clinical populations. Considering their stabilizing effects on sleep parameters and emerging evidence of a possible neuroprotective role, these agents represent a promising strategy for AD management. This leading article reviews the potential use of orexin receptor antagonists in AD, particularly focusing on their effect in modulating disease-associated sleep disturbances and clinical outcomes. Overall, clinical studies support the use of DORAs to enhance sleep quality in patients with AD with comorbid sleep and circadian sleep-wake rhythm disorders. Preliminary results also suggest that these compounds might influence AD pathology, potentially affecting disease progression. Conversely, research on selective orexin receptor antagonists in AD is currently limited. Further investigation is needed to explore orexin antagonism not only as a symptomatic treatment for sleep disturbances, but also for its broader implications in modifying AD neurodegeneration, emphasizing mechanisms of action and long-term outcomes.
Collapse
Affiliation(s)
- Matteo Carpi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
| | - Nicola Biagio Mercuri
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy.
- Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy.
| |
Collapse
|
13
|
Sun N, Wei R, Jia B, Lou T, Li Z, Nie X, Yu W, Zhao M, Li Q. Bibliometric analysis of orexin: A promising neuropeptide. Medicine (Baltimore) 2024; 103:e40213. [PMID: 39470537 PMCID: PMC11521092 DOI: 10.1097/md.0000000000040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Orexin is an excitatory neuropeptide produced in the lateral hypothalamus, playing a role in various physiological functions in humans. There is a growing body of literature on orexins. This paper utilizes CiteSpace software to organize and analyze a significant number of articles on orexin, providing readers with an intuitive overview of research trends and emerging hot topics in this field. METHODS The electronic database, Web of Science Core Collection (WoSCC), was searched for publications related to orexins. Annual publications, countries/regions, institutions, authors and keywords were analyzed, and the results were visualized via CiteSpace software. RESULTS A total of 5486 publications were included, with articles making up 85.30% and reviews 14.70%. The top 3 countries publishing the most papers on orexins were the United States (2057 papers), Japan (778), and China (556). The leading institutions included Research Libraries UK (278), Harvard University (250), and Stanford University (221). The most prolific authors in the field were Yves Dauvilliers (69), Abbas Haghparast (67), and Takeshi Sakurai (66). The most frequently used keywords were "neurons" (981), followed by "sleep" (824), "food intake" (612), "receptors" (547), and "neuropathology" (535). Recent research hotspots include melanin-concentrating hormone neurons, Alzheimer disease, gamma-aminobutyric acid neurons, oxidative stress, suvorexant, the orexin system, prevalence, and stress. Based on keyword clustering analysis, the top 5 research hotspots from 2003 to 2022 were: the effects of orexins on sleep and metabolism, potential pathways of orexin signaling, the relationship between orexin and immunity, new findings on depression and hypertension related to orexin, and possible targets for neurodegenerative diseases. CONCLUSION Orexin, a neuropeptide linked to various physiological and pathological processes, plays a crucial role in sleep/wakefulness, reward mechanisms, stress responses, and neurodegenerative diseases. Its significant research value and potential medical applications are underscored by the rapid expansion of studies, particularly in the USA and Japan. However, the lack of collaboration among researchers highlights the need for enhanced academic exchange and cooperation to further advance the field of orexin research.
Collapse
Affiliation(s)
- Ning Sun
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Post-Doctoral Research Station, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Wei
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bochao Jia
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Taiwei Lou
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zirong Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaowei Nie
- Beijing University of Chinese Medicine, Third Affiliated Hospital, Beijing, China
| | - Wenxiao Yu
- Department of Andrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Zhao
- Department of Andrology, Wang Jing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyan Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Hitrec T, Del Vecchio F, Alberti L, Luppi M, Martelli D, Occhinegro A, Piscitiello E, Taddei L, Tupone D, Amici R, Cerri M. Activation of orexin-A (hypocretin-1) receptors in the Raphe Pallidus at different ambient temperatures in the rat: effects on thermoregulation, cardiovascular control, sleep, and feeding behavior. Front Neurosci 2024; 18:1458437. [PMID: 39429700 PMCID: PMC11486763 DOI: 10.3389/fnins.2024.1458437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
The Raphe Pallidus (RPa) is a brainstem nucleus containing sympathetic premotor neurons that control thermogenesis and modulate cardiovascular function. It receives inputs from various hypothalamic areas, including the Lateral Hypothalamus (LH), a heterogeneous region intricately involved in several autonomic and behavioral functions. A key subpopulation of neurons in the LH expresses orexin/hypocretin, a neuropeptide which is crucially involved in the regulation of the wake-sleep states and feeding behavior. The RPa receives orexinergic projections from the LH and orexinergic signalling in the RPa has been shown to enhance thermogenesis in the anaesthetized rat, but only in the presence of an already existing thermogenic drive, without significantly affecting cardiovascular function. The present work was aimed at exploring the effects on thermoregulation and autonomic function and the possible role in the modulation of the wake-sleep states and feeding behavior of orexin injection in the RPa in the free-behaving rat. In order to assess the influence of an already present thermogenic drive on orexinergic signalling in the RPa, animals were studied at three different ambient temperatures (Ta, 10°C, 24°C, and 32°C). We found that orexin injection into the RPa variably affected the wake-sleep states, autonomic functions, motor activity, and feeding behavior, at the different Tas. In particular, in the first post-injection hour, we observed an increase in wakefulness, which was large at Ta 24°C and Ta 10°C and rather mild at Ta 32°C. Deep brain temperature was increased by orexin injection at Ta 10°C, but not at either Ta 24°C or Ta 32°C. Moreover, an increase in mean arterial blood pressure occurred at Ta 24°C, which was probably masked by the high baseline levels at Ta 10°C and was completely absent at Ta 32°C. Finally, an enhancement in feeding behavior was observed at Ta 24°C and 10°C only. In accordance with what observed in anaesthetized rats, orexinergic signalling in the RPa seems to be ineffective in the absence of any thermogenic drive. Moreover, the effects observed on the wake-sleep states and feeding behavior introduce the RPa as a novel player in the central neural network promoting wakefulness and feeding.
Collapse
Affiliation(s)
- Timna Hitrec
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Flavia Del Vecchio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca Alberti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Luppi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Davide Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Emiliana Piscitiello
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ludovico Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, United States
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Italian Institute of Technology (IIT), Genova, Italy
- National Institute of Nuclear Physics of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Hamdan S, Wasling P, Lind A. High-resolution HLA sequencing and hypocretin receptor 2 autoantibodies in narcolepsy type 1 and type 2. Int J Immunogenet 2024; 51:310-318. [PMID: 38898624 DOI: 10.1111/iji.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Narcolepsy is a sleep disorder caused by an apparent degeneration of orexin/hypocretin neurons in the lateral hypothalamic area and a subsequent decrease in orexin/hypocretin levels in the cerebrospinal fluid. Narcolepsy is classified into type 1 (NT1) and type 2 (NT2). While genetic associations in the human leukocyte antigen (HLA) region and candidate autoantibodies have been investigated in NT1 to imply an autoimmune origin, less is known about the pathogenesis in NT2. Twenty-six NT1 and 15 NT2 patients were included, together with control groups of 24 idiopathic hypersomnia (IH) patients and 778 general population participants. High-resolution sequencing was used to determine the alleles, the extended haplotypes, and the genotypes of HLA-DRB3, -DRB4, -DRB5, -DRB1, -DQA1, -DQB1, -DPA1, and -DPB1. Radiobinding assay was used to determine autoantibodies against hypocretin receptor 2 (anti-HCRTR2 autoantibodies). NT1 was associated with HLA-DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01, -DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01 (odds ratio [OR]: 9.15; p = 8.31 × 10-4) and HLA-DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01, -DRB4*01:03:01, -DRB1*04:01:01, -DQA1*03:02//03:03:01, -DQB1*03:01:01 (OR: 23.61; p = 1.58 × 10-4) genotypes. Lower orexin/hypocretin levels were reported in the NT2 subgroup (n = 5) that was associated with the extended HLA-DQB1*06:02:01 haplotype (p = .001). Anti-HCRTR2 autoantibody levels were not different between study groups (p = .8524). We confirmed the previous association of NT1 with HLA-DQB1*06:02:01 extended genotypes. A subgroup of NT2 patients with intermediate orexin/hypocretin levels and association with HLA-DQB1*06:02:01 was identified, indicating a possible overlap between the two distinct narcolepsy subtypes, NT1 and NT2. Low anti-HCRTR2 autoantibody levels suggest that these receptors might not function as autoimmune targets in either NT1 or NT2.
Collapse
Affiliation(s)
- Samia Hamdan
- Department of Clinical Sciences, Malmö, Lund University, Malmo, Sweden
| | - Pontus Wasling
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alexander Lind
- Department of Clinical Sciences, Malmö, Lund University, Malmo, Sweden
| |
Collapse
|
16
|
Raheel K, See QR, Munday V, Fakhroo B, Ivanenko O, Salvatelli ML, Mutti C, Goadsby PJ, Delogu A, Naismith SL, Holland P, Parrino L, Chaudhuri KR, Rosenzweig I. Orexin and Sleep Disturbances in Alpha-Synucleinopathies: a Systematic Review. Curr Neurol Neurosci Rep 2024; 24:389-412. [PMID: 39031323 PMCID: PMC11349833 DOI: 10.1007/s11910-024-01359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE OF REVIEW Sleep disturbances are amongst most frequent non-motor symptoms of Parkinson's Disease (PD), and they are similarly frequently reported in other alpha-syncleinopathies, such as Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA). More recently, the orexin system has been implicated in control of arousal based on salient environmental set points, and its dysregulation in sleep issues in alpha-synucleinopathies suggested by the findings from the translational animal models. However, its role in the patients with alpha-synucleinopathies remains unclear. We thus set to systematically review, and to critically assess, contemporary evidence on the association of the orexinergic system and sleep disturbances in alpha-synucleinopathies. In this systematic review, studies investigating orexin and sleep in alpha-synucleinopathies (Rapid Eye Movement (REM) Behaviour Disorder (RBD), Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA)) were identified using electronic database searches of PubMed, Web of Science and PsychINFO using MeSH terms, keywords, and title words such as "Alpha-synucleinopathies" AND "Orexin" AND "Sleep Disturbances". RECENT FINDINGS 17 studies were included in this systemic review, of which 2 studies on RBD, 10 on PD, 4 on DLB, and 1 on MSA patients. Taken together, RBD and PD studies suggest a potential adaptive increase in orexin levels in early stages of the neurodegenerative process, with reduced levels more often reported for later, more advanced stages of illness. To date, no differences in orexin levels were demonstrated between MSA patients and healthy controls. There is a dearth of studies on the role of orexin levels in alpha-synucleinopathies. Moreover, significant methodologic limitations in the current body of work, including use of non-standardised research protocols and lack of prospective, multi-centre studies, disallow for any finite conclusion in regards to underlying pathomechanisms. Nonetheless, a picture of a complex, multifaceted relationship between the dysregulation of the orexinergic pathway and sleep disturbances in alpha-synucleinopathies is emerging. Hence, future studies disentangling orexinergic pathomechanisms of alpha-syncleinopathies are urgently needed to obtain a more comprehensive account of the role of orexinergic pathway in alpha-synucleinopathies. Pharmacological manipulations of orexins may have multiple therapeutic applications in treatment strategies, disease diagnosis, and might be effective for treating both motor and non-motor symptoms.
Collapse
Affiliation(s)
- Kausar Raheel
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Qi Rui See
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Veronica Munday
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Basma Fakhroo
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Olga Ivanenko
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Marcello Luigi Salvatelli
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125, Parma, Italy
| | - Carlotta Mutti
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125, Parma, Italy
| | - Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, WC2R 2LS, UK
| | - Alessio Delogu
- Basic and Clinical Neuroscience, IoPPN, King's College London, London, WC2R 2LS, UK
| | - Sharon L Naismith
- Healthy Brain Ageing Program, School of Psychology; Brain and Mind Centre, The University of Sydney, & Charles Perkins Centre, Camperdown, Sydney, Australia
| | - Phil Holland
- Basic and Clinical Neuroscience, IoPPN, King's College London, London, WC2R 2LS, UK
| | - Liborio Parrino
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125, Parma, Italy
- Department of Medicine and Surgery, Neurology Unit, University of Parma, 43125, Parma, Italy
| | - K Ray Chaudhuri
- Movement Disorders Unit, King's College Hospital and Department of Clinical and Basic Neurosciences, Institute of Psychiatry, Psychology & Neuroscience and Parkinson Foundation Centre of Excellence, King's College London, London, UK
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK.
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
17
|
Konofal E. From past to future: 50 years of pharmacological interventions to treat narcolepsy. Pharmacol Biochem Behav 2024; 241:173804. [PMID: 38852786 DOI: 10.1016/j.pbb.2024.173804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
The history of narcolepsy research began with the pioneering work of Jean-Baptiste-Édouard Gélineau in the late 19th century. In the 1880s, Gélineau introduced the term "narcolepsy" to describe a condition characterized by sudden and uncontrollable episodes of sleep. His clinical descriptions laid the foundation for our understanding of this complex disorder. Over the last half-century, the pharmacological landscape for narcolepsy treatment has evolved remarkably, shifting from merely managing symptoms to increasingly targeting its underlying pathophysiology. By the 1930s, treatments such as ephedrine and amphetamine were introduced to alleviate excessive daytime sleepiness, marking significant advancements in narcolepsy management. These stimulants provided temporary relief, helping patients maintain wakefulness during the day. As research progressed, the focus shifted towards understanding the disorder's underlying mechanisms. The discovery of orexin (also known as hypocretin) in the late 1990s revolutionized the field. This breakthrough underscored the importance of orexin in regulating sleep-wake cycles and provided new targets for pharmacological intervention. Looking ahead, the future of narcolepsy pharmacotherapy is poised for further innovation. The ongoing exploration of orexin receptor agonists and the potential development of neuroprotective therapeutic targets underscore a promising horizon. Emerging research into the genetic and immunological underpinnings of narcolepsy opens new avenues for personalized medicine approaches and the identification of biomarkers for more precise treatment strategies. Additionally, the refinement of existing treatments through improved delivery systems and the investigation of combination therapies offer opportunities for enhanced efficacy and improved quality of life for patients with narcolepsy.
Collapse
Affiliation(s)
- Eric Konofal
- Centre Pédiatrique des Pathologies du Sommeil, APHP Hôpital Robert Debré, 48 Boulevard Sérurier, Paris 75019, France.
| |
Collapse
|
18
|
Barateau L, Krache A, Da Costa A, Lecendreux M, Chenini S, Arlicot N, Vourc'h P, Alonso M, Salabert AS, Beziat S, Jaussent I, Mariano-Goulart D, Payoux P, Dauvilliers Y. PET Study of Microglial Activation in Kleine-Levin Syndrome. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200263. [PMID: 38885456 PMCID: PMC11186701 DOI: 10.1212/nxi.0000000000200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/10/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVES Kleine-Levin syndrome (KLS) is a rare recurrent hypersomnolence disorder associated with cognitive and behavioral disturbances, of unknown origin, but inflammatory mechanisms could be involved. We aimed to explore in vivo microglia activation using [18F]DPA-714 PET imaging in patients with KLS compared with controls, and during symptomatic vs asymptomatic periods. METHODS Patients with KLS and controls underwent a standardized clinical evaluation and PET imaging, using a radiolabeled ligand specific to the 18 kDa translocator protein. Images were processed on the PMOD (peripheral module) interface using a standard uptake value (SUV). Five regions of interest (ROIs) were analyzed: hypothalamus, thalamus, frontal area, cerebellum, and whole brain. SUV ratios (SUVr) were calculated by normalizing SUV with cerebellum uptake. RESULTS Images of 17 consecutive patients with KLS (7 during episodes, 10 out of episodes) and 14 controls were analyzed. We found no SUV/SUVr difference between KLS and controls, between patients in and out episodes in all ROIs, and no correlation between SUVr and episode duration at the time of PET scan. No association was found between SUVr and sex, disease duration, or orexin levels. DISCUSSION Our findings do not support the presence of neuroinflammation in KLS. Further research is needed to identify relevant biomarkers in KLS.
Collapse
Affiliation(s)
- Lucie Barateau
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| | - Anis Krache
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| | - Alexandre Da Costa
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| | - Michel Lecendreux
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| | - Sofiene Chenini
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| | - Nicolas Arlicot
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| | - Patrick Vourc'h
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| | - Mathieu Alonso
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| | - Anne-Sophie Salabert
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| | - Séverine Beziat
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| | - Isabelle Jaussent
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| | - Denis Mariano-Goulart
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| | - Pierre Payoux
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| | - Yves Dauvilliers
- From the Sleep-Wake Disorders Unit (L.B., S.C., Y.D.), Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (L.B., Y.D.), Montpellier; Institute of Neurosciences of Montpellier (L.B., S.B., I.J., Y.D.), University of Montpellier, INSERM; ToNIC (A.K., A.D.C., A.-S.S., P.P.), Toulouse NeuroImaging Center, UMR 1214, INSERM, Université Paul-Sabatier; Pediatric Sleep Centre (M.L.), Hospital Robert-Debré; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome (M.L.), Paris; CHRU de Tours - UMR 1253 iBraiN (N.A., P.V.), Université de Tours, Inserm, Inserm CIC 1415; Radiopharmacy Department (M.A., A.-S.S.), CHU Toulouse; Department of Nuclear Medicine (D.M.-G.), CHU Montpellier; PhyMedExp (D.M.-G.), University of Montpellier, INSERM, CNRS; and Nuclear Medicine Department (P.P.), CHU Toulouse, France
| |
Collapse
|
19
|
Barateau L, Chenini S, Denis C, Lorber Q, Béziat S, Jaussent I, Dauvilliers Y. Narcolepsy Severity Scale-2 and Idiopathic Hypersomnia Severity Scale to better quantify symptoms severity and consequences in Narcolepsy type 2. Sleep 2024; 47:zsad323. [PMID: 38197577 DOI: 10.1093/sleep/zsad323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
STUDY OBJECTIVES Narcolepsy type 2 (NT2) is an understudied central disorder of hypersomnolence sharing some similarities with narcolepsy type 1 and idiopathic hypersomnia (IH). We aimed: (1) to assess systematically the symptoms in patients with NT2, with self-reported questionnaires: Epworth Sleepiness Scale (ESS), Narcolepsy Severity Scale (NSS), IH Severity Scale (IHSS), and (2) to evaluate the responsiveness of these scales to treatment. METHODS One hundred and nine patients with NT2 (31.4 ± 12.2 years old, 47 untreated) diagnosed according to ICSD-3 were selected in a Reference Center for Narcolepsy. They all completed the ESS, subgroups completed the modified NSS (NSS-2, without cataplexy items) (n = 95) and IHSS (n = 76). Some patients completed the scales twice (before/during treatment): 42 ESS, 26 NSS-2, and 30 IHSS. RESULTS Based on NSS-2, all untreated patients had sleepiness, 58% disrupted nocturnal sleep, 40% hallucinations, and 28% sleep paralysis. On IHSS, 76% reported a prolonged nocturnal sleep, and 83% sleep inertia. In the independent sample, ESS and NSS-2 scores were lower in treated patients, with same trend for IHSS scores. After treatment, ESS, NSS-2, and IHSS total scores were lower, with a mean difference of 3.7 ± 4.1, 5.3 ± 6.7, and 4.1 ± 6.2, respectively. The minimum clinically important difference between untreated and treated patients were 2.1 for ESS, 3.3 for NSS-2, and 3.1 for IHSS. After treatment, 61.9% of patients decreased their ESS > 2 points, 61.5% their NSS-2 > 3 points, and 53.3% their IHSS > 3 points. CONCLUSIONS NSS-2 and IHSS correctly quantified symptoms' severity and consequences in NT2, with good performances to objectify response to medications. These tools are useful for monitoring and optimizing NT2 management, and for use in clinical trials.
Collapse
Affiliation(s)
- Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institut des Neurosciences de Montpellier, University of Montpellier, Inserm-UM 1298, Montpellier, France
| | - Sofiene Chenini
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Claire Denis
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
| | - Quentin Lorber
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
| | - Séverine Béziat
- Institut des Neurosciences de Montpellier, University of Montpellier, Inserm-UM 1298, Montpellier, France
| | - Isabelle Jaussent
- Institut des Neurosciences de Montpellier, University of Montpellier, Inserm-UM 1298, Montpellier, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institut des Neurosciences de Montpellier, University of Montpellier, Inserm-UM 1298, Montpellier, France
| |
Collapse
|
20
|
Reid MJ, Dunn KE, Abraham L, Ellis J, Hunt C, Gamaldo CE, Coon WG, Mun CJ, Strain EC, Smith MT, Finan PH, Huhn AS. Suvorexant alters dynamics of the sleep-electroencephalography-power spectrum and depressive-symptom trajectories during inpatient opioid withdrawal. Sleep 2024; 47:zsae025. [PMID: 38287879 PMCID: PMC11009034 DOI: 10.1093/sleep/zsae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Indexed: 01/31/2024] Open
Abstract
STUDY OBJECTIVES Opioid withdrawal is an aversive experience that often exacerbates depressive symptoms and poor sleep. The aims of the present study were to examine the effects of suvorexant on oscillatory sleep-electroencephalography (EEG) band power during medically managed opioid withdrawal, and to examine their association with withdrawal severity and depressive symptoms. METHODS Participants with opioid use disorder (N = 38: age-range:21-63, 87% male, 45% white) underwent an 11-day buprenorphine taper, in which they were randomly assigned to suvorexant (20 mg [n = 14] or 40 mg [n = 12]), or placebo [n = 12], while ambulatory sleep-EEG data was collected. Linear mixed-effect models were used to explore: (1) main and interactive effects of drug group, and time on sleep-EEG band power, and (2) associations between sleep-EEG band power change, depressive symptoms, and withdrawal severity. RESULTS Oscillatory spectral power tended to be greater in the suvorexant groups. Over the course of the study, decreases in delta power were observed in all study groups (β = -189.082, d = -0.522, p = <0.005), increases in beta power (20 mg: β = 2.579, d = 0.413, p = 0.009 | 40 mg β = 5.265, d = 0.847, p < 0.001) alpha power (20 mg: β = 158.304, d = 0.397, p = 0.009 | 40 mg: β = 250.212, d = 0.601, p = 0.001) and sigma power (20 mg: β = 48.97, d = 0.410, p < 0.001 | 40 mg: β = 71.54, d = 0.568, p < 0.001) were observed in the two suvorexant groups. During the four-night taper, decreases in delta power were associated with decreases in depressive symptoms (20 mg: β = 190.90, d = 0.308, p = 0.99 | 40 mg: β = 433.33, d = 0.889 p = <0.001), and withdrawal severity (20 mg: β = 215.55, d = 0.034, p = 0.006 | 40 mg: β = 192.64, d = -0.854, p = <0.001), in both suvorexant groups and increases in sigma power were associated with decreases in withdrawal severity (20 mg: β = -357.84, d = -0.659, p = 0.004 | 40 mg: β = -906.35, d = -1.053, p = <0.001). Post-taper decreases in delta (20 mg: β = 740.58, d = 0.964 p = <0.001 | 40 mg: β = 662.23, d = 0.882, p = <0.001) and sigma power (20 mg only: β = 335.54, d = 0.560, p = 0.023) were associated with reduced depressive symptoms in the placebo group. CONCLUSIONS Results highlight a complex and nuanced relationship between sleep-EEG power and symptoms of depression and withdrawal. Changes in delta power may represent a mechanism influencing depressive symptoms and withdrawal.
Collapse
Affiliation(s)
- Matthew J Reid
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly E Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liza Abraham
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Ellis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carly Hunt
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Charlene E Gamaldo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G Coon
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
- Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Chung Jung Mun
- Arizona State University, Edson College of Nursing and Health Innovation, Pheonix, AZ, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric C Strain
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick H Finan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andrew S Huhn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Boyle JT, Morales KH, Muench A, Ellis J, Vargas I, Grandner MA, Posner D, Perlis ML. The natural history of insomnia: evaluating illness severity from acute to chronic insomnia; is the first the worst? Sleep 2024; 47:zsae034. [PMID: 38310641 PMCID: PMC11009029 DOI: 10.1093/sleep/zsae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/20/2024] [Indexed: 02/06/2024] Open
Abstract
STUDY OBJECTIVES The 3P and 4P models represent illness severity over the course of insomnia disorder. The 3P model suggests that illness severity is worst during acute onset. The 4P model suggests that illness severity crescendos with chronicity. The present analysis from an archival dataset assesses illness severity with new onset illness (i.e. from good sleep [GS] to acute insomnia [AI] to chronic insomnia [CI]). Illness severity is quantified in terms of total wake time (TWT). METHODS GSs (N = 934) were followed up to 1 year with digital sleep diaries, and classified as GS, AI, or CI. Data for CIs were anchored to the first of 14 days with insomnia so that day-to-day TWT was represented prior to and following AI onset. A similar graphic (+/-acute onset) was constructed for number of days per week with insomnia. GS data were temporally matched to CI data. Segmented linear mixed regression models were applied to examine the change in slopes in the AI-to-CI period compared to GS-to-AI period. RESULTS Twenty-three individuals transitioned to AI and then CI. Average TWT rose during the first 2 weeks of AI onset (b = 1.8, SE = 0.57, p = 0.001) and was then stable for 3 months (b = -0.02, SE = 0.04, p = 0.53). Average number of affected days was stable from AI to CI (b = 0.0005, SE = 0.002, p = 0.81). That is, while there was week-to-week variability in the number of days affected, no linear trend was evident. CONCLUSIONS In our sample of CIs, primarily with middle insomnia, the average severity and number of affected days were worst with the onset of AI (worst is first) and stable thereafter.
Collapse
Affiliation(s)
- Julia T Boyle
- New England Geriatric Research Education and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Knashawn H Morales
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandria Muench
- Behavioral Sleep Medicine Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Chronobiology and Sleep Institute Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Ellis
- Northumbria Centre for Sleep Research, Northumbria University, Newcastle, UK
| | - Ivan Vargas
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - Michael A Grandner
- Sleep & Health Research Program, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Donn Posner
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
- Sleepwell Consultants, Newtonville, MA, USA
| | - Michael L Perlis
- Behavioral Sleep Medicine Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Chronobiology and Sleep Institute Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Lambert DG, Hirota K. Danavorexton (TAK-925): an orexin receptor 2 agonist as a new 'arousal' agent. Br J Anaesth 2024; 132:466-468. [PMID: 38346840 DOI: 10.1016/j.bja.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
A preclinical study in animals has further characterised a new 'arousal' agent. Danavorexton (TAK-925) is an agonist for orexin receptor 2 where it promotes recovery from inhalational and i.v. anaesthesia and opioid sedation. Although danavorexton reverses opioid sedation, it does not compromise analgesia. This could be a useful addition to the postoperative drug cupboard.
Collapse
Affiliation(s)
- David G Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Hodgkin Building, Leicester, UK.
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
23
|
Carpi M, Palagini L, Fernandes M, Calvello C, Geoffroy PA, Miniati M, Pini S, Gemignani A, Mercuri NB, Liguori C. Clinical usefulness of dual orexin receptor antagonism beyond insomnia: Neurological and psychiatric comorbidities. Neuropharmacology 2024; 245:109815. [PMID: 38114045 DOI: 10.1016/j.neuropharm.2023.109815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Orexin is a neurotransmitter produced by a small group of hypothalamic neurons. Besides its well-known role in the regulation of the sleep-wake cycle, the orexin system was shown to be relevant in several physiological functions including cognition, mood and emotion modulation, and energy homeostasis. Indeed, the implication of orexin neurotransmission in neurological and psychiatric diseases has been hypothesized via a direct effect exerted by the projections of orexin neurons to several brain areas, and via an indirect effect through orexin-mediated modulation of sleep and wake. Along with the growing evidence concerning the use of dual orexin receptor antagonists (DORAs) in the treatment of insomnia, studies assessing their efficacy in insomnia comorbid with psychiatric and neurological diseases have been set in order to investigate the potential impact of DORAs on both sleep-related symptoms and disease-specific manifestations. This narrative review aimed at summarizing the current evidence on the use of DORAs in neurological and psychiatric conditions comorbid with insomnia, also discussing the possible implication of modulating the orexin system for improving the burden of symptoms and the pathological mechanisms of these disorders. Target searches were performed on PubMed/MEDLINE and Scopus databases and ongoing studies registered on Clinicaltrials.gov were reviewed. Despite some contradictory findings, preclinical studies seemingly support the possible beneficial role of orexin antagonism in the management of the most common neurological and psychiatric diseases with sleep-related comorbidities. However, clinical research is still limited and further studies are needed for corroborating these promising preliminary results.
Collapse
Affiliation(s)
- Matteo Carpi
- Sleep and Epilepsy Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy.
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Carmen Calvello
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Pierre Alexis Geoffroy
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018, Paris, France; GHU Paris - Psychiatry & Neurosciences, Paris, France; Université de Paris, NeuroDiderot, Inserm, FHU I2-D2, F-75019, Paris, France.
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | - Angelo Gemignani
- Unit of Psychology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | | | - Claudio Liguori
- Sleep and Epilepsy Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
24
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
25
|
Dijkstra FM, Zuiker RGJA, Heuberger JAAC, Kanhai KMS, De Kam M, Duvauchelle T, Lecomte JM, Labeeuw O, Landais L, Ligneau X, Robert P, Capet M, Schwartz JC, van Gerven JMA. Administration of oxathridine, a first-in-class histamine-3 receptor partial agonist in healthy male volunteers: Central nervous system depression and pseudo-hallucinations. Br J Clin Pharmacol 2024; 90:321-335. [PMID: 37724688 DOI: 10.1111/bcp.15910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
AIMS To characterise the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of single ascending doses of oxathridine, a first-in-class histamine-3 receptor partialagonist, in healthy male volunteers. METHODS A randomised, double-blind, placebo-controlled study including the NeuroCart, consisting of a battery of drug sensitive neurophysiological tests, was performed. Oxathridine was administered orally as an aqueous solution. After dosing, safety and NeuroCart tests (adaptive tracking [AT], body sway [BS], saccadic peak velocity [SPV], smooth pursuit [SP] eye movements, VAS according to Bond and Lader, VAS according to Bowdle [VAS B&L, Bowdle], pharmaco-electroencephalogram [pEEG], Sustained Attention to Response Task [SART]) were performed at set times. RESULTS Forty volunteers completed the study. Given doses were: 0.5, 2.5, 5, 0.25 and 1.5 mg. At 5 mg, unacceptable and unanticipated adverse events (AEs) of (orthostatic) hypotension and pseudo-hallucinations were reported. Statistically significant effects ([CI]; p-value) of 2.5 mg and 5 mg oxathridine were observed on AT ([-8.28, -1.60]; p = 0.0048), ([-8.10, -1.51]; p = 0.00530), BS ([0.6, 80.2]; p = 0.0455), ([5.9, 93.1]; p = 0.0205) and SPV ([-59.0, -15.9]; p = 0.0011), ([-43.9, -1.09]; p = 0.0399), respectively. Oxathridine 5 mg significantly increased all three VAS Bowdle subscale scores; VAS external ([0.183, 0.476]; p = <.0001), VAS internal ([0.127, 0.370]; p = 0.0001) and VAS feeling high ([0.263, 0.887]; p = 0.0006). CONCLUSION NeuroCart tests indicated central nervous system (CNS) depressant effects. Oxathridine also unexpectedly caused pseudohallucinations. Although this led to the decision to stop further development of oxathridine, these observations suggest that the H3R system could be an interesting new target for the development of novel antipsychotics.
Collapse
Affiliation(s)
- Francis M Dijkstra
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Center, Leiden, ZA, the Netherlands
| | - Rob G J A Zuiker
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Center, Leiden, ZA, the Netherlands
| | | | - Kawita M S Kanhai
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Center, Leiden, ZA, the Netherlands
| | | | | | | | | | | | | | | | - Marc Capet
- Bioprojet Biotech, Saint Gregoire, France
| | | | - Joop M A van Gerven
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Center, Leiden, ZA, the Netherlands
| |
Collapse
|
26
|
Hohenester M, Langguth B, Wetter TC, Geisler P, Schecklmann M, Reissmann A. Single sessions of transcranial direct current stimulation and transcranial random noise stimulation exert no effect on sleepiness in patients with narcolepsy and idiopathic hypersomnia. Front Psychiatry 2023; 14:1288976. [PMID: 38146280 PMCID: PMC10749348 DOI: 10.3389/fpsyt.2023.1288976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Background Hypersomnia poses major challenges to treatment providers given the limitations of available treatment options. In this context, the application of non-invasive brain stimulation techniques such as transcranial electrical stimulation (tES) may open up new avenues to effective treatment. Preliminary evidence suggests both acute and longer-lasting positive effects of transcranial direct current stimulation (tDCS) on vigilance and sleepiness in hypersomniac patients. Based on these findings, the present study sought to investigate short-term effects of single sessions of tDCS and transcranial random noise stimulation (tRNS) on sleepiness in persons suffering from hypersomnia. Methods A sample of 29 patients suffering from narcolepsy or idiopathic hypersomnia (IH) was recruited from the Regensburg Sleep Disorder Center and underwent single sessions of tES (anodal tDCS, tRNS, sham) over the left and right dorsolateral prefrontal cortex on three consecutive days in a double-blind, sham-controlled, pseudorandomized crossover trial. The primary study endpoint was the mean reaction time measured by the Psychomotor Vigilance Task (PVT) before and directly after the daily tES sessions. Secondary endpoints were additional PVT outcome metrics as well as subjective outcome parameters (e.g., Karolinska Sleepiness Scale; KSS). Results There were no significant treatment effects neither on objective (i.e., PVT) nor on subjective indicators of sleepiness. Conclusion We could not demonstrate any clinically relevant effects of single sessions of tDCS or tRNS on objective or subjective measures of sleepiness in patients with hypersomnia. However, we cannot exclude that repeated sessions of tES may affect vigilance or sleepiness in hypersomniac patients.
Collapse
Affiliation(s)
- Michaela Hohenester
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Department of Hematology and Oncology, Krankenhaus der Barmherzigen Brüder Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | | | - Peter Geisler
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Andreas Reissmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
27
|
Miano S, Barateau L, De Pieri M, Riccardi S, Thevenin C, Manconi M, Dauvilliers Y. A series of 7 cases of patients with narcolepsy with hypocretin deficiency without the HLA DQB1*06:02 allele. J Clin Sleep Med 2023; 19:2053-2057. [PMID: 37539640 PMCID: PMC10692923 DOI: 10.5664/jcsm.10748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
STUDY OBJECTIVES We report data collected from 2 reference European sleep centers on a series of patients with narcolepsy with hypocretin-1 deficiency and absence of the human leukocyte antigens (HLA) DQB1*06:02 allele. METHODS Clinical data, HLA DQ markers, and cerebrospinal fluid assessments were collected retrospectively from Caucasian patients with a diagnosis of narcolepsy type 1 with cerebrospinal fluid hypocretin-1 deficiency (< 110 pg/ml) and absence of the HLA DQB1*06:02 allele, with follow-up with at least 1 visit within the last 4 years, consecutively admitted to 2 European sleep centers (Lugano, Switzerland and Montpellier, France). RESULTS Seven patients (3 of 29 patients in Lugano and 4 of 328 in Montpellier) were diagnosed with narcolepsy with hypocretin-1 deficiency and absence of HLA DQB1*06:02 (ie, 2% of patients with narcolepsy type 1). Regarding the HLA-DQB1 genotyping, 4 cases were positive for HLA DQB1*03:01, 1 for DQB1*03:02, and 3 for DQB1*02:01. Three patients had atypical cataplexy and 1 had no cataplexy. Only 2 patients had both a mean sleep latency of less than 8 minutes and more than 2 sleep onset rapid eye movement periods on the Multiple Sleep Latency Test, indicative of a less severe condition. CONCLUSIONS Although rare, this series of 7 cases confirms that hypocretin-deficient narcolepsy should not be excluded in the absence of HLA DQB1*06:02, especially if patients are carriers of other high-risk HLA-DQB1 alleles (DQB1*03:01, *03:02, *02:01). These data support the hypothesis that narcolepsy type 1 is a wider disease spectrum linked to the loss of hypocretin peptide. CITATION Miano S, Barateau L, De Pieri M, et al. A series of 7 cases of patients with narcolepsy with hypocretin deficiency without the HLA DQB1*06:02 allele. J Clin Sleep Med. 2023;19(12):2053-2057.
Collapse
Affiliation(s)
- Silvia Miano
- Sleep Unit, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Lucie Barateau
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
- National Reference Network for Narcolepsy, Montpellier, Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier, France
| | - Marco De Pieri
- Sleep Unit, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
- General Psychiatry Service, Hopitaux Universitaires de Genève, Geneva, Switzerland
| | - Silvia Riccardi
- Sleep Unit, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Celine Thevenin
- Département d’Immunologie, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Mauro Manconi
- Sleep Unit, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Yves Dauvilliers
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
28
|
Yin J, Tuo CM, Yu KY, Hu XH, Fan YY, Wu MN. Diurnal Characteristics of the Orexin System Genes and Its Effects on Pathology at Early Stage in 3xTg-AD Mice. Neuromolecular Med 2023; 25:632-643. [PMID: 37843792 DOI: 10.1007/s12017-023-08767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Orexin and its receptors are closely related to the pathogenesis of Alzheimer's disease (AD). Although the expression of orexin system genes under physiological condition has circadian rhythm, the diurnal characteristics of orexin system genes, and its potential role in the pathogenesis in AD are unknown. In the present study, we hope to elucidate the diurnal characteristics of orexin system genes at the early stage of AD, and to investigate its potential role in the development of AD neuropathology. We firstly detected the mRNA levels of orexin system genes, AD risk genes and core clock genes (CCGs) in hypothalamus and hippocampus in 6-month-old male 3xTg-AD mice and C57BL/6J (wild type, WT) control mice, then analyzed diurnal expression profiles of all genes using JTK_CYCLE algorithm, and did the correlation analysis between expression of orexin system genes and AD risk genes or CCGs. In addition, the expression of β-amyloid protein (Aβ) and phosphorylated tau (p-tau) protein were measured. The results showed that the diurnal mRNA expression profiles of PPO, OX1R, OX2R, Bace2, Bmal1, Per1, Per2 and Cry1 in the hypothalamus, and gene expression of OX1R, OX2R, Bace1, Bmal1, Per1 and Cry2 in the hippocampus in 3xTg-AD mice were different from that in WT mice. Furthermore, there is positive correlation between orexin system genes and AD risk genes or CCGs in the brain in 3xTg-AD mice. In addition, the expression of Aβ and p-tau in hippocampus in 3xTg-AD mice were significantly increased, and the expression of p-tau is higher in night than in day. These results indicate that the abnormal expression profiles of orexin system genes and its interaction with AD risk genes or CCGs might exert important role in the pathogenesis of AD, which will increase the expression of Aβ and p-tau, and accelerate the development of AD.
Collapse
Affiliation(s)
- Jing Yin
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chun-Mei Tuo
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kai-Yue Yu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao-Hong Hu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan-Ying Fan
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Mei-Na Wu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China.
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
29
|
Illenberger JM, Flores-Ramirez FJ, Pascasio G, Matzeu A, Martin-Fardon R. Daily treatment with the dual orexin receptor antagonist DORA-12 during oxycodone abstinence decreases oxycodone conditioned reinstatement. Neuropharmacology 2023; 239:109685. [PMID: 37579870 PMCID: PMC10529002 DOI: 10.1016/j.neuropharm.2023.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Chronic opioid use disturbs circadian rhythm and sleep, encouraging opioid use and relapse. The orexin (OX) system is recruited by opioids and regulates physiological processes including sleep. Dual OX receptor antagonists (DORAs), developed for insomnia treatment, may relieve withdrawal-associated sleep disturbances. This study investigated whether DORA-12, a recently developed DORA, reduces physiological activity disturbances during oxycodone abstinence and consequently prevents oxycodone-seeking behavior. Male and female Wistar rats were trained to intravenously self-administer oxycodone (0.15 mg/kg, 21 sessions; 8 h/session) in the presence of a contextual/discriminative stimulus (SD). The rats were subsequently housed individually (22 h/day) to monitor activity, food and water intake. They received DORA-12 (0-30 mg/kg, p.o.) after undergoing daily 1-h extinction training (14 days). After extinction, the rats were tested for oxycodone-seeking behavior elicited by the SD. Hypothalamus sections were processed to assess oxycodone- or DORA-12-associated changes to the OX cell number. In males, oxycodone-associated increases in activity during the light-phase, reinstatement, and decreases in the number of OX cells observed in the vehicle-treated group were not observed with DORA-12-treatment. Oxycodone-associated increases in light-phase food and water intake were not observed by day 14 of 3 mg/kg DORA-12-treatment and dark-phase water intake was increased across treatment days. In females, OX cell number was unaffected by oxycodone or DORA-12. Three and 30 mg/kg DORA-12 increased females' day 7 dark-phase activity and decreased reinstatement. Thirty mg/kg DORA-12 reduced oxycodone-associated increases in light-phase food and water intake. The results suggest that DORA-12 improves oxycodone-induced disruptions to physiological activities and reduces relapse.
Collapse
Affiliation(s)
- Jessica M Illenberger
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA.
| | | | - Glenn Pascasio
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Alessandra Matzeu
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Rémi Martin-Fardon
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| |
Collapse
|
30
|
Urushihata T, Goto M, Kabetani K, Kiyozuka M, Maruyama S, Tsuji S, Tada H, Satoh A. Evaluation of cellular activity in response to sleep deprivation by a comprehensive analysis of the whole mouse brain. Front Neurosci 2023; 17:1252689. [PMID: 37928729 PMCID: PMC10620513 DOI: 10.3389/fnins.2023.1252689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
Sleep deprivation (SD) causes several adverse functional outcomes, and understanding the associated processes can improve quality of life. Although the effects of SD on neuronal activity in several brain regions have been identified, a comprehensive evaluation of the whole brain is still lacking. Hence, we performed SD using two different methods, gentle handling and a dedicated chamber, in targeted recombination in active populations 2 (TRAP2) mice crossed with Rosa-ZsGreen reporter mice and visualized cellular activity in the whole brain. Using the semi-automated post-imaging analysis tool Slice Histology Alignment, Registration, and Cell Quantification (SHARCQ), the number of activated cells was quantified. From the analysis of 14 brain regions, cellular activity was significantly increased in the olfactory areas and decreased in the medulla by the two SD methods. From the analysis of the further subdivided 348 regions, cellular activity was significantly increased in the vascular organ of the lamina terminalis, lateral hypothalamic area, parabigeminal nucleus, ventral tegmental area, and magnocellular reticular nucleus, and decreased in the anterior part of the basolateral amygdalar nucleus, nucleus accumbens, septohippocampal nucleus, reticular nucleus of the thalamus, preoptic part of the periventricular hypothalamic nucleus, ventromedial preoptic nucleus, rostral linear nucleus raphe, facial motor nucleus, vestibular nuclei, and some fiber tracts (oculomotor nerve, genu of corpus callosum, and rubrospinal tract) by the two SD methods. Two subdivided regions of the striatum (caudoputamen and other striatum), epithalamus, vascular organ of the lamina terminalis, anteroventral preoptic nucleus, superior colliculus optic layer, medial terminal nucleus of the accessory optic tract, pontine gray, and fiber tracts (medial lemniscus, columns of the fornix, brachium of the inferior colliculus, and mammillary peduncle) were differentially affected by the two SD methods. Most brain regions detected from these analyses have been reported to be involved in regulating sleep/wake regulatory circuits. Moreover, the results from the connectivity analysis indicated that the connectivity of cellular activity among brain regions was altered by SD. Together, such a comprehensive analysis of the whole brain is useful for understanding the mechanisms by which SD and/or sleep disruption affects brain function.
Collapse
Affiliation(s)
- Takuya Urushihata
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Mio Goto
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Keiko Kabetani
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Mai Kiyozuka
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
| | - Shiho Maruyama
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
| | - Shogo Tsuji
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hirobumi Tada
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
31
|
Marshall NS, Grunstein RR. Orexin Agonists - Two Steps Forward, One Step Back. N Engl J Med 2023; 389:373-375. [PMID: 37494490 DOI: 10.1056/nejme2305779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Affiliation(s)
- Nathaniel S Marshall
- From the Centre for Integrated Research and Understanding of Sleep, Woolcock Institute for Medical Research (N.S.M., R.R.G.), the Department of Health Sciences, Macquarie University (N.S.M.), and Royal Prince Alfred Hospital, Sydney Health Partners (R.R.G.) - all in Sydney
| | - Ronald R Grunstein
- From the Centre for Integrated Research and Understanding of Sleep, Woolcock Institute for Medical Research (N.S.M., R.R.G.), the Department of Health Sciences, Macquarie University (N.S.M.), and Royal Prince Alfred Hospital, Sydney Health Partners (R.R.G.) - all in Sydney
| |
Collapse
|
32
|
Palagini L, Geoffroy PA, Balestrieri M, Miniati M, Biggio G, Liguori C, Menicucci D, Ferini-Strambi L, Nobili L, Riemann D, Gemignani A. Current models of insomnia disorder: a theoretical review on the potential role of the orexinergic pathway with implications for insomnia treatment. J Sleep Res 2023:e13825. [PMID: 36786121 DOI: 10.1111/jsr.13825] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 02/15/2023]
Abstract
Insomnia disorder is considered as a stress-related disorder associated with hyperarousal, stress and emotion dysregulation and the instability of the 'flip-flop' switch system. The orexinergic system is well known for its key role in sleep and arousal processes but also in the allostatic system regulating stress and emotions and may thus be of major interest for insomnia and its treatment. Accordingly, we discuss the potential role of orexins on sleep processes, brain systems modulating stress and emotions with potential implications for insomnia pathophysiology. We reviewed available data on the effect of dual orexin receptor antagonists (DORAs) on sleep and brain systems modulating stress/emotions with implications for insomnia treatment. We present our findings as a narrative review. Few data in animals and humans have reported that disrupted sleep and insomnia may be related to the overactivation of orexinergic system, while some more consistent data in humans and animals reported the overactivation of orexins in response to acute stress and in stress-related disorders. Taken together these findings may let us hypothesise that an orexins overactivation may be associated with stress-related hyperarousal and the hyperactivation of arousal-promoting systems in insomnia. On the other hand, it is possible that by rebalancing orexins with DORAs we may regulate both sleep and allostatic systems, in turn, contributing to a 'switch off' of hyperarousal in insomnia. Nevertheless, more studies are needed to clarify the role of the orexin system in insomnia and to evaluate the effects of DORAs on sleep, stress and emotions regulating systems.
Collapse
Affiliation(s)
- Laura Palagini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Pierre A Geoffroy
- Département de Psychiatrie et D'Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, Paris, France.,GHU Paris - Psychiatry and Neurosciences, Paris, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Giovanni Biggio
- Department of Life and Environmental Sciences, Institute of Neuroscience, University of Cagliari, National Research Council (C.N.R.), Cagliari, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology Sleep Disorders Centre, RCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lino Nobili
- Sleep Medicine Center, Department of Neuroscience, Niguarda Hospital, Milan, Italy.,Department of Neuroscience (DINOGMI), University of Genoa, Child Neuropsychiatry Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
33
|
Riemann D. Focus on sleep-related breathing disorders and COVID-19. J Sleep Res 2023; 32:e13800. [PMID: 36653300 DOI: 10.1111/jsr.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 01/20/2023]
Affiliation(s)
- Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Bruni O. Approach to a sleepy child: Diagnosis and treatment of excessive daytime sleepiness in children and adolescents. Eur J Paediatr Neurol 2023; 42:97-109. [PMID: 36608412 DOI: 10.1016/j.ejpn.2022.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
The aim of this review is to give updated information to pediatric neurologists on the correct diagnostic approach and treatment of excessive daytime sleepiness (EDS) in children and adolescents. Due to the change in the society habits, EDS is becoming an emerging problem for the health system. At the present there are few articles specifically devoted to the evaluation of EDS. EDS is often reported in several manuscripts as a side effect of other sleep disorders (obstructive sleep apnea, circadian disorders, etc.) or of the use of drugs or of the substance abuse or as a consequence of bad sleep habits and poor sleep hygiene. EDS, especially in children, may manifest with paradoxical symptoms like hyperactivity, inattention, and impulsiveness. However, common sign of EDS in children are the propensity to sleep longer than usual, the difficulty waking up in the morning, and falling asleep frequently during the day in monotonous situation. The diagnosis should include subjective (sleep diaries, questionnaires) and objective (polysomnography, multiple sleep latency test, etc.) instruments to avoid misdiagnosis. Narcolepsy is the most studied central disorder of hypersomnolence, and it is a predominantly pediatric disease with a peak age of onset in prepuberty but the diagnosis is often delayed especially in mild forms. The early and correct treatment of narcolepsy and of other form of EDS is extremely important since late and inappropriate treatments can affect the psychosocial development of the children and adolescents.
Collapse
Affiliation(s)
- Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, Via dei Marsi, 78-00185, Rome, Italy.
| |
Collapse
|
35
|
Zhao YN, Jiang JB, Tao SY, Zhang Y, Chen ZK, Qu WM, Huang ZL, Yang SR. GABAergic neurons in the rostromedial tegmental nucleus are essential for rapid eye movement sleep suppression. Nat Commun 2022; 13:7552. [PMID: 36477665 PMCID: PMC9729601 DOI: 10.1038/s41467-022-35299-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Rapid eye movement (REM) sleep disturbances are prevalent in various psychiatric disorders. However, the neural circuits that regulate REM sleep remain poorly understood. Here, we found that in male mice, optogenetic activation of rostromedial tegmental nucleus (RMTg) GABAergic neurons immediately converted REM sleep to arousal and then initiated non-REM (NREM) sleep. Conversely, laser-mediated inactivation completely converted NREM to REM sleep and prolonged REM sleep duration. The activity of RMTg GABAergic neurons increased to a high discharge level at the termination of REM sleep. RMTg GABAergic neurons directly converted REM sleep to wakefulness and NREM sleep via inhibitory projections to the laterodorsal tegmentum (LDT) and lateral hypothalamus (LH), respectively. Furthermore, LDT glutamatergic neurons were responsible for the REM sleep-wake transitions following photostimulation of the RMTgGABA-LDT circuit. Thus, RMTg GABAergic neurons are essential for suppressing the induction and maintenance of REM sleep.
Collapse
Affiliation(s)
- Ya-Nan Zhao
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Jian-Bo Jiang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Shi-Yuan Tao
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Yang Zhang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Ze-Ka Chen
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Wei-Min Qu
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Zhi-Li Huang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Su-Rong Yang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
36
|
Protective Effects of Orexin A in a Murine Model of Cisplatin-Induced Acute Kidney Injury. J Clin Med 2022; 11:jcm11237196. [PMID: 36498769 PMCID: PMC9740499 DOI: 10.3390/jcm11237196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is a chemotherapeutic agent widely used in the treatment of various cancers, but its application is often limited due to complications such as acute kidney injury (AKI). Orexins are hypothalamic neuropeptides that modulate the sleep-wake cycle, neuroendocrine function, and the autonomic nervous system. Emerging evidence suggests that orexin A (OXA) has anti-inflammatory and neuroprotective effects in animal models of neuroinflammatory diseases of the central nervous system. However, the effect of OXA on kidney diseases has not been examined. Here, we investigated whether OXA has a protective effect in a murine model of cisplatin-induced AKI. Intraperitoneal administration of OXA ameliorated renal dysfunction, and histological abnormalities in mice injected with cisplatin. OXA inhibited cisplatin-induced oxidative stress through the modulation of prooxidant and antioxidant enzymes. This peptide reduced apoptotic cell death by inhibiting the p53-mediated pathway in mice injected with cisplatin. OXA also alleviated cisplatin-induced cytokine production and macrophage infiltration into injured kidneys. Taken together, these results showed that OXA ameliorates cisplatin-induced AKI via antioxidant, anti-apoptotic, and anti-inflammatory actions. This peptide could be a potential therapeutic agent for cisplatin-induced AKI.
Collapse
|
37
|
Chavda V, Chaurasia B, Umana GE, Tomasi SO, Lu B, Montemurro N. Narcolepsy-A Neuropathological Obscure Sleep Disorder: A Narrative Review of Current Literature. Brain Sci 2022; 12:1473. [PMID: 36358399 PMCID: PMC9688775 DOI: 10.3390/brainsci12111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 08/29/2023] Open
Abstract
Narcolepsy is a chronic, long-term neurological disorder characterized by a decreased ability to regulate sleep-wake cycles. Some clinical symptoms enter into differential diagnosis with other neurological diseases. Excessive daytime sleepiness and brief involuntary sleep episodes are the main clinical symptoms. The majority of people with narcolepsy experience cataplexy, which is a loss of muscle tone. Many people experience neurological complications such as sleep cycle disruption, hallucinations or sleep paralysis. Because of the associated neurological conditions, the exact pathophysiology of narcolepsy is unknown. The differential diagnosis is essential because relatively clinical symptoms of narcolepsy are easy to diagnose when all symptoms are present, but it becomes much more complicated when sleep attacks are isolated and cataplexy is episodic or absent. Treatment is tailored to the patient's symptoms and clinical diagnosis. To facilitate the diagnosis and treatment of sleep disorders and to better understand the neuropathological mechanisms of this sleep disorder, this review summarizes current knowledge on narcolepsy, in particular, genetic and non-genetic associations of narcolepsy, the pathophysiology up to the inflammatory response, the neuromorphological hallmarks of narcolepsy, and possible links with other diseases, such as diabetes, ischemic stroke and Alzheimer's disease. This review also reports all of the most recent updated research and therapeutic advances in narcolepsy. There have been significant advances in highlighting the pathogenesis of narcolepsy, with substantial evidence for an autoimmune response against hypocretin neurons; however, there are some gaps that need to be filled. To treat narcolepsy, more research should be focused on identifying molecular targets and novel autoantigens. In addition to therapeutic advances, standardized criteria for narcolepsy and diagnostic measures are widely accepted, but they may be reviewed and updated in the future with comprehension. Tailored treatment to the patient's symptoms and clinical diagnosis and future treatment modalities with hypocretin agonists, GABA agonists, histamine receptor antagonists and immunomodulatory drugs should be aimed at addressing the underlying cause of narcolepsy.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, Stanford of School of Medicine, Stanford University Medical Centre, Palo Alto, CA 94305, USA
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal
| | - Giuseppe E. Umana
- Department of Neurosurgery, Associate Fellow of American College of Surgeons, Trauma and Gamma-Knife Centre, Cannizzaro Hospital Catania, 95100 Catania, Italy
| | | | - Bingwei Lu
- Department of Pathology, Stanford of School of Medicine, Stanford University Medical Centre, Palo Alto, CA 94305, USA
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
38
|
Sabnis R. Novel 3-Aminopyrrolidine and Piperidine Macrocyclic Orexin Receptor Agonists for Treating Sleep Disorders. ACS Med Chem Lett 2022; 13:1390-1391. [PMID: 36105324 PMCID: PMC9465892 DOI: 10.1021/acsmedchemlett.2c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ram
W. Sabnis
- Smith, Gambrell & Russell LLP,
1105 W. Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309,
United States
| |
Collapse
|