1
|
Imamura T, Kelz MB. Alluring Potential to Accelerate Emergence and Ameliorate Opioid-induced Respiratory Depression without Antagonizing Analgesia: Danavorexton Enters the Anesthetic Landscape. Anesthesiology 2025; 142:589-592. [PMID: 40067034 DOI: 10.1097/aln.0000000000005389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Affiliation(s)
- Toshihiro Imamura
- Department of Medicine, Division of Sleep Medicine, Department of Anesthesiology and Critical Care, Chronobiology and Sleep Institute, and Center for Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Chronobiology and Sleep Institute, Center for Neuroscience of Unconsciousness and Reanimation Research Alliance, and Mahoney Institute of Neuroscience University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Lazzeri G, Busceti CL, Polzella A, Frati A, Puglisi-Allegra S, Fornai F. The brainstem reticular formation pivots abnormal neural transmission in the course of Anorexia Nervosa. J Neural Transm (Vienna) 2025; 132:547-565. [PMID: 39853374 DOI: 10.1007/s00702-025-02881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Anorexia nervosa (AN) represents an eating disorder, which features the highest rate of mortality among all psychiatric disorders. The disease prevalence is increasing steadily, and an effective cure is missing. The neurobiology of the disease is largely unknown, and only a few studies were designed to disclose specific brain areas, where altered neural transmission may occur. In AN behavioral alterations surpassing altered feeding are present, which often involve archaic behaviors finalized to the survival of the species. In fact, alterations of sleep and reward-driven behavior accompany the eating disorder, where a disruption of peripheral and central circadian rhythms occurs along with effortful behaviors, aberrant learning and mild cognitive impairment. Abnormal behavior often co-exists with a number of metabolic alterations in peripheral organs. The present article wishes to analyze the potential role of altered brain circuitry within the brainstem reticular formation during AN. In fact, this brain area contains neuronal nuclei and pathways, which are pivotal in connecting eating pattern with archaic behaviorsand autonomic activity within peripheral organs. A number of reticular nuclei releasing catecholamine and non-catecholamine neurotransmittersare evidenced in relationship with altered behavioral states and vegetative control to produce this psycho-metabolic disorder. The relevance of the reticular formation in sustaining the disorder is discussed in the light of developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, Pisa, 56100, PI, Italy
| | - Carla L Busceti
- Neuromed, IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, 86077, Pozzili, Italy
| | - Alessandra Polzella
- Sigmund Freud Privat UniversitätWien Freudplatz , 1-3, Wien, 1020, Austria
- Sigmund Freud Privat UniversitätWien Freudplatz , 1-3, Via Ripa di Porta Ticinese, 77, Wien, 20143, Austria
| | - Alessandro Frati
- Neuromed, IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, 86077, Pozzili, Italy
| | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, Pisa, 56100, PI, Italy.
- Neuromed, IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, 86077, Pozzili, Italy.
| |
Collapse
|
3
|
Blicharz-Futera K, Kamiński M, Grychowska K, Canale V, Zajdel P. Current development in sulfonamide derivatives to enable CNS-drug discovery. Bioorg Chem 2025; 156:108076. [PMID: 39889550 DOI: 10.1016/j.bioorg.2024.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 02/03/2025]
Abstract
The encouraging therapeutic potential of sulfonamide-based derivatives has been unraveled by breakthrough discovery of Paul Ehrlich, who pointed out the possibility of fighting microbes with chemicals. Over the decades, the utility of sulfonamides has expanded beyond antimicrobial agents, revealing their usefulness in many areas of pharmacotherapy, including the treatment of central nervous system (CNS) diseases. Through a detailed analysis of preclinical and clinical data, we identify key sulfonamide-based compounds that have demonstrated significant CNS activity. We also discuss the challenges in the development of sulfonamide derivatives as enzyme/ion channel inhibitors or receptor ligands for CNS applications, describing their mode of action and therapeutic significance. This is followed by the characteristics of pharmacological targets, structure-activity relationships, ADMET properties, efficacy in experimental animal models, and outcomes from clinical trials. Overall, the versatile nature of arylsulfonamides makes them a valuable motif in drug discovery, offering diverse opportunities for the development of novel agents for treating CNS disorders.
Collapse
Affiliation(s)
- Klaudia Blicharz-Futera
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza Street, 31-530 Krakow, Poland
| | - Michał Kamiński
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza Street, 31-530 Krakow, Poland
| | - Katarzyna Grychowska
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Vittorio Canale
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Paweł Zajdel
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| |
Collapse
|
4
|
Tracey B, Culp M, Fabregas S, Mignot E, Buhl DL, Volfson D. Novel biomarkers derived from the Maintenance of Wakefulness Test as predictors of sleepiness and response to treatment. Sleep 2024; 47:zsae148. [PMID: 38954525 PMCID: PMC11632192 DOI: 10.1093/sleep/zsae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
The Maintenance of Wakefulness Test (MWT) is a widely accepted objective test used to evaluate daytime somnolence and is commonly used in clinical studies evaluating novel therapeutics for excessive daytime sleepiness. In the latter, sleep onset latency (SOL) is typically the sole MWT endpoint. Here, we explored microsleeps, sleep probability measures derived from automated sleep scoring, and quantitative electroencephalography (qEEG) features as additional MWT biomarkers of daytime sleepiness, using data from a phase 1B trial of the selective orexin receptor 2 agonist danavorexton (TAK-925) in people with narcolepsy type 1 (NT1) or type 2 (NT2). Danavorexton treatment reduced the rate and duration of microsleeps during the MWT in NT1 (days 1 and 7; p ≤ .005) and microsleep rate in NT2 (days 1 and 7; p < .0001). The use of an EEG-sleep-staging - derived measure to determine the probability of wakefulness for each minute revealed a novel metric to track changes in daytime sleepiness, which were consistent with the θ/α ratio, a known biomarker of drowsiness. The slopes of line-fits to both the log-transformed sleepiness score or log-transformed θ/α ratio correlated well to (inverse) MWT SOL for NT1 (R = 0.93 and R = 0.83, respectively) and NT2 (R = 0.97 and R = 0.84, respectively), suggesting that individuals with narcolepsy have increased sleepiness immediately after lights-off. These analyses demonstrate that novel EEG-based biomarkers can augment SOL as predictors of sleepiness and its response to treatment and provide a novel framework for the analysis of wake EEG in hypersomnia disorders.
Collapse
Affiliation(s)
- Brian Tracey
- Statistical and Quantitative Sciences, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | | | | | - Emmanuel Mignot
- Stanford Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University Medical School, Palo Alto, CA, USA
| | - Derek L Buhl
- Statistical and Quantitative Sciences, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Dmitri Volfson
- Statistical and Quantitative Sciences, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| |
Collapse
|
5
|
Vringer M, Zhou J, Gool JK, Bijlenga D, Lammers GJ, Fronczek R, Schinkelshoek MS. Recent insights into the pathophysiology of narcolepsy type 1. Sleep Med Rev 2024; 78:101993. [PMID: 39241492 DOI: 10.1016/j.smrv.2024.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Narcolepsy type 1 (NT1) is a sleep-wake disorder in which people typically experience excessive daytime sleepiness, cataplexy and other sleep-wake disturbances impairing daily life activities. NT1 symptoms are due to hypocretin deficiency. The cause for the observed hypocretin deficiency remains unclear, even though the most likely hypothesis is that this is due to an auto-immune process. The search for autoantibodies and autoreactive T-cells has not yet produced conclusive evidence for or against the auto-immune hypothesis. Other mechanisms, such as reduced corticotrophin-releasing hormone production in the paraventricular nucleus have recently been suggested. There is no reversive treatment, and the therapeutic approach is symptomatic. Early diagnosis and appropriate NT1 treatment is essential, especially in children to prevent impaired cognitive, emotional and social development. Hypocretin receptor agonists have been designed to replace the attenuated hypocretin signalling. Pre-clinical and clinical trials have shown encouraging initial results. A better understanding of NT1 pathophysiology may contribute to faster diagnosis or treatments, which may cure or prevent it.
Collapse
Affiliation(s)
- Marieke Vringer
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jingru Zhou
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jari K Gool
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Anatomy & Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Denise Bijlenga
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gert Jan Lammers
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Rolf Fronczek
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mink S Schinkelshoek
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
6
|
Bjorness TE, Greene RW. Orexin-mediated motivated arousal and reward seeking. Peptides 2024; 180:171280. [PMID: 39159833 DOI: 10.1016/j.peptides.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The neuromodulator orexin has been identified as a key factor for motivated arousal including recent evidence that sleep deprivation-induced enhancement of reward behavior is modulated by orexin. While orexin is not necessary for either reward or arousal behavior, orexin neurons' broad projections, ability to sense the internal state of the animal, and high plasticity of signaling in response to natural rewards and drugs of abuse may underlie heightened drug seeking, particularly in a subset of highly motivated reward seekers. As such, orexin receptor antagonists have gained deserved attention for putative use in addiction treatments. Ongoing and future clinical trials are expected to identify individuals most likely to benefit from orexin receptor antagonist treatment to promote abstinence, such as those with concurrent sleep disorders or high craving, while attention to methodological considerations will aid interpretation of the numerous preclinical studies investigating disparate aspects of the role of orexin in reward and arousal.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
7
|
Mitsukawa K, Terada M, Yamada R, Monjo T, Hiyoshi T, Nakakariya M, Kajita Y, Ando T, Koike T, Kimura H. TAK-861, a potent, orally available orexin receptor 2-selective agonist, produces wakefulness in monkeys and improves narcolepsy-like phenotypes in mouse models. Sci Rep 2024; 14:20838. [PMID: 39242684 PMCID: PMC11379823 DOI: 10.1038/s41598-024-70594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
Narcolepsy type 1 (NT1) is associated with severe loss of orexin neurons and characterized by symptoms including excessive daytime sleepiness and cataplexy. Current medications indicated for NT1 often show limited efficacy, not addressing the full spectrum of symptoms, demonstrating a need for novel drugs. We discovered a parenteral orexin receptor 2 (OX2R) agonist, danavorexton, and an orally available OX2R agonist, TAK-994; both improving NT1 phenotypes in mouse models and individuals with NT1. However, danavorexton has limited oral availability and TAK-994 has a risk of off-target liver toxicity. To avoid off-target-based adverse events, a highly potent molecule with low effective dose is preferred. Here, we show that a novel OX2R-selective agonist, TAK-861 [N-{(2S,3R)-4,4-Difluoro-1-(2-hydroxy-2-methylpropanoyl)-2-[(2,3',5'-trifluoro[1,1'-biphenyl]-3-yl)methyl]pyrrolidin-3-yl}ethanesulfonamide], activates OX2R with a half-maximal effective concentration of 2.5 nM and promotes wakefulness at 1 mg/kg in mice and monkeys, suggesting ~ tenfold higher potency and lower effective dosage than TAK-994. Similar to TAK-994, TAK-861 substantially ameliorates wakefulness fragmentation and cataplexy-like episodes in orexin/ataxin-3 and orexin-tTA;TetO DTA mice (NT1 mouse models). Compared with modafinil, TAK-861 induces highly correlated brain-wide neuronal activation in orexin-tTA;TetO DTA mice, suggesting efficient wake-promoting effects. Thus, TAK-861 has potential as an effective treatment for individuals with hypersomnia disorders including narcolepsy, potentially with a favorable safety profile.
Collapse
Affiliation(s)
- Kayo Mitsukawa
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Michiko Terada
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Ryuji Yamada
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Taku Monjo
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tetsuaki Hiyoshi
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yuichi Kajita
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tatsuya Ando
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tatsuki Koike
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
8
|
Terada M, Mitsukawa K, Nakakariya M, Koike T, Kimura H. Effects of an OX2R agonist on migration and removal of tau from mouse brain. Sci Rep 2024; 14:15964. [PMID: 38987562 PMCID: PMC11237063 DOI: 10.1038/s41598-024-64817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Pathological proteins including tau are produced in neurons and released into interstitial fluid (ISF) in a neural activity-dependent manner during wakefulness. Pathological proteins in ISF can be removed from the brain via the glymphatic pathway during nighttime. Thus, in individuals with Alzheimer's disease (AD) that have dysregulated sleep/wake rhythm, application of orexin receptor 2 (OX2R) agonists during daytime could recover the efflux of pathological proteins to ISF and indirectly promote the glymphatic pathway by improving the quality of nighttime sleep after proper daytime arousal, resulting in increased removal of these proteins from the brain. We investigated this hypothesis using OX-201, a novel OX2R-selective agonist with a 50% effective concentration of 8.0 nM. Diurnal rhythm of tau release into hippocampal ISF correlated well with neuronal activity and wakefulness in wild-type mice. In both wild-type and human P301S tau transgenic mice, OX-201 induced wakefulness and promoted tau release into hippocampal ISF. Human P301S tau transgenic mice, tested under our conditions, showed longer wakefulness time, which differs from individuals with AD. OX-201 treatment over 2 months did not alter hippocampal tau levels. Although further studies are required, at a minimum OX2R agonists may not exacerbate tau accumulation in individuals with tauopathy, including AD.
Collapse
Affiliation(s)
- Michiko Terada
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kayo Mitsukawa
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Masanori Nakakariya
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tatsuki Koike
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Haruhide Kimura
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
9
|
Yamada R, Koike T, Nakakariya M, Kimura H. Orexin receptor 2 agonist activates diaphragm and genioglossus muscle through stimulating inspiratory neurons in the pre-Bötzinger complex, and phrenic and hypoglossal motoneurons in rodents. PLoS One 2024; 19:e0306099. [PMID: 38917189 PMCID: PMC11198781 DOI: 10.1371/journal.pone.0306099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Orexin-mediated stimulation of orexin receptors 1/2 (OX[1/2]R) may stimulate the diaphragm and genioglossus muscle via activation of inspiratory neurons in the pre-Bötzinger complex, which are critical for the generation of inspiratory rhythm, and phrenic and hypoglossal motoneurons. Herein, we assessed the effects of OX2R-selective agonists TAK-925 (danavorexton) and OX-201 on respiratory function. In in vitro electrophysiologic analyses using rat medullary slices, danavorexton and OX-201 showed tendency and significant effect, respectively, in increasing the frequency of inspiratory synaptic currents of inspiratory neurons in the pre-Bötzinger complex. In rat medullary slices, both danavorexton and OX-201 significantly increased the frequency of inspiratory synaptic currents of hypoglossal motoneurons. Danavorexton and OX-201 also showed significant effect and tendency, respectively, in increasing the frequency of burst activity recorded from the cervical (C3-C5) ventral root, which contains axons of phrenic motoneurons, in in vitro electrophysiologic analyses from rat isolated brainstem-spinal cord preparations. Electromyogram recordings revealed that intravenous administration of OX-201 increased burst frequency of the diaphragm and burst amplitude of the genioglossus muscle in isoflurane- and urethane-anesthetized rats, respectively. In whole-body plethysmography analyses, oral administration of OX-201 increased respiratory activity in free-moving mice. Overall, these results suggest that OX2R-selective agonists enhance respiratory function via activation of the diaphragm and genioglossus muscle through stimulation of inspiratory neurons in the pre-Bötzinger complex, and phrenic and hypoglossal motoneurons. OX2R-selective agonists could be promising drugs for various conditions with respiratory dysfunction.
Collapse
Affiliation(s)
- Ryuji Yamada
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Tatsuki Koike
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Laboratory, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
10
|
Lambert DG, Hirota K. Danavorexton (TAK-925): an orexin receptor 2 agonist as a new 'arousal' agent. Br J Anaesth 2024; 132:466-468. [PMID: 38346840 DOI: 10.1016/j.bja.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
A preclinical study in animals has further characterised a new 'arousal' agent. Danavorexton (TAK-925) is an agonist for orexin receptor 2 where it promotes recovery from inhalational and i.v. anaesthesia and opioid sedation. Although danavorexton reverses opioid sedation, it does not compromise analgesia. This could be a useful addition to the postoperative drug cupboard.
Collapse
Affiliation(s)
- David G Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Hodgkin Building, Leicester, UK.
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
11
|
Suzuki M, Shiraishi E, Cronican J, Kimura H. Effects of the orexin receptor 2 agonist danavorexton on emergence from general anaesthesia and opioid-induced sedation, respiratory depression, and analgesia in rats and monkeys. Br J Anaesth 2024; 132:541-552. [PMID: 38296753 DOI: 10.1016/j.bja.2023.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Delayed emergence from general anaesthesia, opioid-induced sedation, and opioid-induced respiratory depression is associated with perioperative complications. We characterised the preclinical effects of the orexin receptor 2 (OX2R)-selective agonist danavorexton (TAK-925) on emergence from anaesthesia and reversal of fentanyl-induced sedation, respiratory depression, and analgesia. METHODS Emergence from isoflurane- or propofol-induced anaesthesia and fentanyl-induced sedation were investigated by righting reflex, rotarod, and electroencephalography in rats or monkeys. Fentanyl-induced respiratory depression was assessed by arterial blood gas analysis and whole-body plethysmography in rats and monkeys. Analgesia was evaluated using formalin- and skin incision-induced pain models in rats. RESULTS Danavorexton shortened emergence from isoflurane- or propofol-induced anaesthesia and from fentanyl-induced sedation at 1 (P=0.005), 3 (P=0.006), and 3 mg kg-1 s.c. (P=0.022), respectively, by righting reflex in rats. Danavorexton (10 mg kg-1 s.c.) accelerated recovery from isoflurane-, propofol- and fentanyl-induced motor impairment in separate rotarod tests in rats (P=0.008, P=0.007, P=0.017, respectively), and reversed anaesthesia and fentanyl-induced delta-power increases. Danavorexton shortened emergence (return of righting reflex) from isoflurane- or propofol-induced anaesthesia at 1 (P=0.002) and 3 mg kg-1 (P=0.004), respectively, in cynomolgus monkeys. Danavorexton (10 mg kg-1 s.c.) reversed fentanyl-induced increase in Pco2 (P=0.006), and decrease in Po2 (P=0.015) and pH (P<0.001) in rats, and at 3 mg kg-1 s.c. reversed fentanyl-induced increase in Pco2 (P=0.007), and decrease in Po2 (P=0.013) and SO2 (P=0.036) in monkeys. Danavorexton increased minute volume and tidal volume in fentanyl-treated animals. Danavorexton at ≤10 mg kg-1 s.c. did not compromise fentanyl analgesia in rat formalin- and skin incision-induced pain models. CONCLUSIONS Danavorexton promoted recovery from anaesthesia and fentanyl-induced sedation, and antagonised fentanyl-induced respiratory depression without compromising fentanyl analgesia.
Collapse
Affiliation(s)
- Motohisa Suzuki
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Eri Shiraishi
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - James Cronican
- Neuroscience Therapeutic Area Unit, Takeda Development Centre Americas, Inc., Cambridge, MA, USA
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| |
Collapse
|
12
|
Yamada R, Narita N, Ishikawa T, Kakehi M, Kimura H. The orexin receptor 2 (OX2R)-selective agonist TAK-994 increases wakefulness without affecting cerebrospinal fluid orexin levels in cynomolgus monkeys. Pharmacol Biochem Behav 2024; 234:173690. [PMID: 38061670 DOI: 10.1016/j.pbb.2023.173690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/01/2024]
Abstract
Orexin A (OX-A) and orexin B are neuropeptides produced in orexin neurons located in the lateral hypothalamus that exert multiple biological functions through the activation of orexin receptor 1 (OX1R) and orexin receptor 2 (OX2R) throughout the central nervous system. OX1R and OX2R have distinct functions: OX1R is involved in reward seeking, whereas OX2R has a pivotal role in sleep/wake regulation. OX2R-selective agonists are in development as novel therapeutic agents for the treatment of hypersomnia. However, their potential to induce orexin release, which may indirectly stimulate both OX1R and OX2R in vivo, is unclear. Herein, we assessed the effects of the OX2R-selective agonist TAK-994 on wakefulness and orexin release in monkeys. Oral administration of TAK-994 at 10 mg/kg in the beginning of the sleep phase (zeitgeber time [ZT] 12) significantly increased wakefulness time in monkeys but did not increase OX-A levels in monkey cisternal cerebrospinal fluid (CSF). Moreover, oral administration of TAK-994 (10 mg/kg) during the active phase (ZT1) did not increase OX-A levels in monkey CSF. These findings indicate that the OX2R agonist TAK-994 selectively activates OX2R in vivo and would not robustly induce spontaneous orexin release during the daytime or nighttime in monkeys.
Collapse
Affiliation(s)
- Ryuji Yamada
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naohiro Narita
- Drug Metabolism and Pharmacokinetics Laboratory, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takashi Ishikawa
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaaki Kakehi
- Drug Metabolism and Pharmacokinetics Laboratory, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
13
|
Muehlan C, Roch C, Vaillant C, Dingemanse J. The orexin story and orexin receptor antagonists for the treatment of insomnia. J Sleep Res 2023; 32:e13902. [PMID: 37086045 DOI: 10.1111/jsr.13902] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/23/2023]
Abstract
Insomnia is present in up to one third of the adult population worldwide, and it can present independently or with other medical conditions such as mental, metabolic, or cardiovascular diseases, which highlights the importance of treating this multifaceted disorder. Insomnia is associated with an abnormal state of hyperarousal (increased somatic, cognitive, and cortical activation) and orexin has been identified as a key promotor of arousal and vigilance. The current standards of care for the treatment of insomnia recommend non-pharmacological interventions (cognitive behavioural therapy) as first-line treatment and, if behavioural interventions are not effective or available, pharmacotherapy. In contrast to most sleep medications used for decades (benzodiazepines and 'Z-drugs'), the new orexin receptor antagonists do not modulate the activity of γ-aminobutyric acid receptors, the main inhibitory mechanism of the central nervous system. Instead, they temporarily block the orexin pathway, causing a different pattern of effects, e.g., less morning or next-day effects, motor dyscoordination, and cognitive impairment. The pharmacokinetic/pharmacodynamic properties of these drugs are the basis of the different characteristics explained in the package inserts, including the recommended starting dose. Orexin receptor antagonists seem to be devoid of any dependence and tolerance-inducing effects, rendering them a viable option for longer-term treatment. Safety studies did not show exacerbation of existing respiratory problems, but more real-world safety and pharmacovigilance experience is needed. This review provides an overview of the orexin history, the mechanism of action, the relation to insomnia, and key features of available drugs mediating orexin signalling.
Collapse
|
14
|
Riemann D. Poor sleep and insomnia, sleep disordered breathing, methodology, sleep and neurology, and much more! J Sleep Res 2023; 32:e14022. [PMID: 37596846 DOI: 10.1111/jsr.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Affiliation(s)
- Dieter Riemann
- Department of Psychiatry and Psychotherapy Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
15
|
Saitoh T, Sakurai T. The Present and Future of Synthetic Orexin Receptor Agonists. Peptides 2023:171051. [PMID: 37422012 DOI: 10.1016/j.peptides.2023.171051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
The neuropeptide orexin/hypocretin plays a crucial role in various physiological processes, including the regulation of sleep/wakefulness, appetite, emotion and the reward system. Dysregulation of orexin signaling has been implicated in hypersomnia, especially in narcolepsy, which is a chronic neurological disorder characterized by excessive daytime sleepiness (EDS), sudden loss of muscle tone while awake (cataplexy), sleep paralysis, and hallucinations. Small-molecule orexin receptor agonists have emerged as promising therapeutics for these disorders, and significant progress has been made in this field in the past decade. This review summarizes recent advances in the design and synthesis of orexin receptor agonists, with a focus on peptidic and small-molecule OX2R-selective, dual, and OX1R-selective agonists. The review discusses the key structural features and pharmacological properties of these agonists, as well as their potential therapeutic applications. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Tsuyoshi Saitoh
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeshi Sakurai
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
16
|
Bogan RK, Maynard JP, Neuwirth R, Faessel H, Swick T, Olsson T. Safety and pharmacodynamics of a single infusion of danavorexton in adults with obstructive sleep apnea experiencing excessive daytime sleepiness despite adequate use of CPAP. Sleep Med 2023; 107:229-235. [PMID: 37244138 DOI: 10.1016/j.sleep.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Sleep disruptions experienced by patients with obstructive sleep apnea (OSA) can lead to excessive daytime sleepiness (EDS) and significantly impact patients' quality of life. EDS may persist despite use of continuous positive airway pressure (CPAP) therapy. Small molecules that target the orexin system, which has a known role in sleep-wake regulation, show therapeutic potential for the treatment of EDS in patients with hypersomnia. This randomized, placebo-controlled, phase 1b study aimed to investigate the safety of danavorexton, a small-molecule orexin-2 receptor agonist, and its effects on residual EDS in patients with OSA. METHODS Adults with OSA aged 18-67 years with adequate CPAP use were randomized to one of six treatment sequences of single IV infusions of danavorexton 44 mg, danavorexton 112 mg, and placebo. Adverse events were monitored throughout the study. Pharmacodynamic assessments included maintenance of wakefulness test (MWT), Karolinska Sleepiness Scale (KSS), and the psychomotor vigilance test (PVT). RESULTS AND CONCLUSION Among 25 randomized patients, 16 (64.0%) had treatment-emergent adverse events (TEAEs) and 12 (48.0%) had TEAEs considered related to treatment, all mild or moderate. Seven patients (28.0%) had urinary TEAEs: three, seven, and none while taking danavorexton 44 mg, danavorexton 112 mg, and placebo, respectively. There were no deaths or TEAEs leading to discontinuation. Improvements in mean MWT, KSS, and PVT scores were observed with danavorexton 44 mg and 112 mg vs placebo. These findings show that danavorexton can improve subjective and objective measures of EDS in patients with OSA and residual EDS despite adequate CPAP use.
Collapse
Affiliation(s)
- Richard K Bogan
- University of South Carolina School of Medicine, Columbia, SC, USA.
| | | | - Rachel Neuwirth
- Takeda Development Center Americas, Inc., Lexington, MA, USA.
| | - Hélène Faessel
- Takeda Development Center Americas, Inc., Lexington, MA, USA.
| | - Todd Swick
- Takeda Development Center Americas, Inc., Lexington, MA, USA.
| | - Tina Olsson
- Takeda Development Center Americas, Inc., Lexington, MA, USA.
| |
Collapse
|