1
|
Pillaiyar T, Laufer S. A patent review of CXCR7 modulators (2019-present). Expert Opin Ther Pat 2025:1-27. [PMID: 40122070 DOI: 10.1080/13543776.2025.2477475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Atypical chemokine receptor 3 (ACKR3) (formerly CXCR7) regulates various biological processes through its ligands and is closely associated with numerous diseases, including inflammation, cancer, cardiovascular diseases (CVDs), pain, and neurological disorders. Therefore, ACKR3 has emerged as a potential target for disease treatment. AREAS COVERED This review summarizes the ACKR3 modulators published in patents from 2019 to 2024 using data from Google Patents, the European Patent Office, and the World Intellectual Property Organization's online databases. This includes information on their chemical structures, syntheses, activities, and developmental stages. EXPERT OPINION ACKR3 agonists gained traction as a treatment for cardiovascular and pain conditions. WW-12, which was derived from the chemical modifications of conolidine, became a novel small-molecule pain modulator by activating ACKR3, which in turn boosted endogenous opioid peptides for the classical opioid receptors.ACKR3 antagonist ACT-1004-1239 from Idorsia Pharmaceuticals Ltd. has demonstrated the ability to treat cancer, acute lung injury/ARDS, and autoimmune diseases, including multiple sclerosis. The outcomes of these clinical trials will direct the development and indications of future ACKR3 modulators.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Dicenta‐Baunach V, Laspa Z, Schaale D, Sigle M, Bayrak A, Castor T, Pillaiyar T, Laufer S, Gawaz MP, Rohlfing A. ACKR3 agonism induces heterodimerization with chemokine receptor CXCR4 and attenuates platelet function. Eur J Clin Invest 2025; 55:e14327. [PMID: 39373210 PMCID: PMC11628653 DOI: 10.1111/eci.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Platelet receptors ACKR3 and CXCR4 play a crucial role in a variety of cardiovascular diseases. Like most chemokine receptors, CXCR4 is a G protein coupled receptor that induces platelet activation. In contrast, the atypical chemokine receptor 3 (ACKR3) lacks the ability to activate heterotrimeric G proteins and its activation leads to platelet inhibition and attenuates thrombus formation. In nucleated cells, heterodimerization of ACKR3 with CXCR4 regulates CXCL12-dependent signalling. The aim of our study was to investigate the formation of ACKR3/CXCR4 heterodimers in platelets and the subsequent consequences for platelet function. METHODS AND RESULTS Using a proximity ligation assay (PLA, Duolink®) to screen for CXCR4/ACKR3 heterodimerization inducing compounds, we found that ACKR3 agonism but not conventional platelet agonists or endogen ligands lead to heterodimer formation. To further characterize the formation of ACKR3/CXCR4 heterodimers, we studied the CXCL12-dependent platelet activation via CXCR4. Both, CXCL12-dependent platelet aggregation and collagen-dependent ex vivo thrombus formation were significantly downregulated by ACKR3 agonism. Moreover, platelet intracellular calcium and Akt signalling were increased by CXCL12 and again suppressed by ACKR3-specific agonists. Previously, CXCL12 was shown to decrease platelet cAMP levels via CXCR4. Treatment with a specific ACKR3 agonist counteracted this CXCL12/CXCR4-dependent cAMP decrease. CONCLUSION Our results reveal that the formation of platelet ACKR3/CXCR4 heterodimers is dependent on ACKR3 rather than CXCR4. Furthermore, ACKR3 agonism induced heterodimerization is associated with mitigating CXCL12/CXCR4-dependent platelet activation possibly by modulating CXCR4-dependent G protein signalling. Our results indicate possible ACKR3 agonist functions and reinforce the potential therapeutic applications of ACKR3 agonists.
Collapse
Affiliation(s)
- Valerie Dicenta‐Baunach
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| | - Zoi Laspa
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| | - David Schaale
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| | - Manuel Sigle
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| | - Alp Bayrak
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal ChemistryEberhard Karls University TübingenTübingenGermany
| | - Tatsiana Castor
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal ChemistryEberhard Karls University TübingenTübingenGermany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2)Eberhard Karls University TübingenTübingenGermany
| | - Stefan Laufer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal ChemistryEberhard Karls University TübingenTübingenGermany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2)Eberhard Karls University TübingenTübingenGermany
- iFIT Cluster of Excellence EXC 2180 ‘Image‐Guided and Functionally Instructed Tumor Therapies’Eberhard Karls University TübingenTübingenGermany
| | - Meinrad Paul Gawaz
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| | - Anne‐Katrin Rohlfing
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| |
Collapse
|
3
|
Arya S, Khare R, Garg I, Srivastava S. Gene expression profiling in Venous thromboembolism: Insights from publicly available datasets. Comput Biol Chem 2024; 113:108246. [PMID: 39413445 DOI: 10.1016/j.compbiolchem.2024.108246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Venous thromboembolism (VTE) is the third most common cardiovascular disease and is a major cause of mobility and mortality worldwide. VTE is a complex multifactorial disease and genetic mechanisms underlying its pathogenesis is yet to be completely elucidated. The aim of the present study was to identify hub genes and pathways involved in development and progression of blood clot during VTE using gene expression data from public repositories. METHODOLOGY Differential gene expression (DEG) data from two datasets, GSE48000 and GSE19151 were analysed using GEO2R tool. Gene expression data of VTE patients were compared to that of healthy controls using various bioinformatics tools. RESULTS When the differentially expressed genes of the two datasets were compared, it was found that 19 genes were up-regulated while 134 genes were down-regulated. Gene ontology (GO) and pathway analysis revealed that pathways such as complement and coagulation cascade and B-cell receptor signalling along with DNA methylation, DNA alkylation and inflammatory genes were significantly up-regulated in VTE patients. On the other hand, differentially down-regulated genes included mitochondrial translation elongation, termination and biosysthesis along with heme biosynthesis, erythrocyte differentiation and homeostasis. The top 5 up-regulated hub genes obtained by protein-protein interaction (PPI) network analysis included MYC, FOS, SGK1, CR2 and CXCR4, whereas the top 5 down-regulated hub genes included MRPL13, MRPL3, MRPL11, RPS29 and RPL9. The up-regulated hub genes are functionally involved in maintain vascular integrity and complementation cascade while the down-regulated hub genes were mostly mitochondrial ribosomal proteins. CONCLUSION Present study highlights significantly enriched pathways and genes associated with VTE development and prognosis. The data hereby obtained could be used for designing newer diagnostic and therapeutic tools for VTE management.
Collapse
Affiliation(s)
- Sunanda Arya
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Rashi Khare
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Iti Garg
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Swati Srivastava
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India.
| |
Collapse
|
4
|
Laspa Z, Dicenta-Baunach V, Schaale D, Sigle M, Hochuli R, Castor T, Bayrak A, Harm T, Müller KAL, Pillaiyar T, Laufer S, Rohlfing AK, Gawaz MP. Hemin-induced platelet activation is regulated by the ACKR3 chemokine surface receptor and has implications for passivation of vulnerable atherosclerotic plaques. FEBS J 2024; 291:5420-5434. [PMID: 39387619 DOI: 10.1111/febs.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/11/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
In vulnerable atherosclerotic plaques, intraplaque hemorrhages (IPH) result in hemolysis of red blood cells and release of hemoglobin and free hemin. Hemin activates platelets and leads to thrombosis. Agonism of the inhibitory platelet receptor ACKR3 inhibits hemin-dependent platelet activation and thrombus formation. To characterize the effect of hemin and ACKR3 agonism on isolated human platelets, multi-color flow cytometry and classical experimental setup such as light transmission aggregometry and a flow chamber assay were used. Hemin induces platelet aggregation and ex vivo platelet-dependent thrombus formation on immobilized collagen under a low shear rate of 500 s-1, indicating that free hemin is a strong activator of platelet-dependent thrombosis. Recently, we described that ACKR3 is a prominent inhibitory receptor of platelet activation. Specific ACKR3 agonists but not conventional antiplatelet compounds such as COX-1 inhibitor (indometacin), ADP-receptor blocker (cangrelor), or PAR1 inhibitor (ML161) inhibit both hemin-dependent aggregation and thrombus formation. To further characterize the effect of hemin on platelet subpopulations, we established a multi-color flow cytometry assay. We found that hemin induces procoagulant (CD42bpos/PAC-1neg/AnnexinVpos), aggregatory (CD42bpos/PAC-1pos/AnnexinVneg), and inflammatory (CD42bpos/CXCR4pos/ACKR3pos/AnnexinVpos) platelet subpopulations. Treatment with ACKR3 agonists significantly decreased the formation of procoagulant and ACKR3pos platelets in response to hemin. We conclude that hemin is a strong activator for the formation of procoagulant platelets and thrombus formation which is dependent on the function of ACKR3. Activation of ACKR3 using specific agonists may offer a therapeutic strategy to regulate the vulnerability of atherosclerotic plaques in areas of IPH.
Collapse
Affiliation(s)
- Zoi Laspa
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Valerie Dicenta-Baunach
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - David Schaale
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Manuel Sigle
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Ravi Hochuli
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Alp Bayrak
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University Tübingen, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Karin Anne Lydia Müller
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Thanigaimalai Pillaiyar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Germany
- iFIT Cluster of Excellence EXC 2180 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| |
Collapse
|
5
|
Bayrak A, Szpakowska M, Dicenta-Baunach V, Counson M, Rasch A, Rohlfing AK, Chevigné A, Gawaz M, Laufer SA, Pillaiyar T. Novel Small-Molecule Atypical Chemokine Receptor 3 Agonists: Design, Synthesis, and Pharmacological Evaluation for Antiplatelet Therapy. J Med Chem 2024; 67:14553-14573. [PMID: 39116445 DOI: 10.1021/acs.jmedchem.4c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
ACKR3, an atypical chemokine receptor, has been associated with prothrombotic events and the development of cardiovascular events. We designed, synthesized, and evaluated a series of novel small molecule ACKR3 agonists. Extensive structure-activity relationship studies resulted in several promising agonists with potencies ranging from the low micromolar to nanomolar range, for example, 23 (EC50 = 111 nM, Emax = 95%) and 27 (EC50 = 69 nM, Emax = 82%) in the β-arrestin-recruitment assay. These compounds are selective for ACKR3 versus ACKR2, CXCR3, and CXCR4. Several agonists were subjected to investigations of their P-selectin expression reduction in the flow cytometry experiments. In particular, compounds 23 and 27 showed the highest potency for platelet aggregation inhibition, up to 80% and 97%, respectively. The most promising compounds, especially 27, exhibited good solubility, metabolic stability, and no cytotoxicity, suggesting a potential tool compound for the treatment of platelet-mediated thrombosis.
Collapse
Affiliation(s)
- Alp Bayrak
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg
| | - Valerie Dicenta-Baunach
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Manuel Counson
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg
| | - Alexander Rasch
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg
| | - Meinrad Gawaz
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg
- Tübingen Center for Academic Drug Discovery (TüCAD2), Auf der Morgenstelle 8, 72076 Tübingen, Germany
- iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery (TüCAD2), Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Nock SH, Blanco-Lopez MR, Stephenson-Deakin C, Jones S, Unsworth AJ. Pim Kinase Inhibition Disrupts CXCR4 Signalling in Megakaryocytes and Platelets by Reducing Receptor Availability at the Surface. Int J Mol Sci 2024; 25:7606. [PMID: 39062849 PMCID: PMC11276893 DOI: 10.3390/ijms25147606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
A key step in platelet production is the migration of megakaryocytes to the vascular sinusoids within the bone marrow. This homing is mediated by the chemokine CXCL12 and its receptor CXCR4. CXCR4 is also a positive regulator of platelet activation and thrombosis. Pim-1 kinase has been shown to regulate CXCR4 signalling in other cell types, and we have previously described how Pim kinase inhibitors attenuate platelet aggregation to CXCL12. However, the mechanism by which Pim-1 regulates CXCR4 signalling in platelets and megakaryocytes has yet to be elucidated. Using human platelets, murine bone marrow-derived megakaryocytes, and the megakaryocyte cell line MEG-01, we demonstrate that pharmacological Pim kinase inhibition leads to reduced megakaryocyte and platelet function responses to CXCL12, including reduced megakaryocyte migration and platelet granule secretion. Attenuation of CXCL12 signalling was found to be attributed to the reduced surface expression of CXCR4. The decrease in CXCR4 surface levels was found to be mediated by rapid receptor internalisation, in the absence of agonist stimulation. We demonstrate that pharmacological Pim kinase inhibition disrupts megakaryocyte and platelet function by reducing constitutive CXCR4 surface expression, decreasing the number of receptors available for agonist stimulation and signalling. These findings have implications for the development and use of Pim kinase inhibitors for the treatment of conditions associated with elevated circulating levels of CXCL12/SDF1α and increased thrombotic risk.
Collapse
Affiliation(s)
- Sophie H. Nock
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Maria R. Blanco-Lopez
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Chloe Stephenson-Deakin
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Sarah Jones
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Amanda J. Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 3AA, UK
| |
Collapse
|
7
|
Leberzammer J, von Hundelshausen P. Chemokines, molecular drivers of thromboinflammation and immunothrombosis. Front Immunol 2023; 14:1276353. [PMID: 37954596 PMCID: PMC10637585 DOI: 10.3389/fimmu.2023.1276353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Blood clotting is a finely regulated process that is essential for hemostasis. However, when dysregulated or spontaneous, it promotes thrombotic disorders. The fact that these are triggered, accompanied and amplified by inflammation is reflected in the term thromboinflammation that includes chemokines. The role of chemokines in thrombosis is therefore illuminated from a cellular perspective, where endothelial cells, platelets, red blood cells, and leukocytes may be both the source and target of chemokines. Chemokine-dependent prothrombotic processes may thereby occur independently of chemokine receptors or be mediated by chemokine receptors, although the binding and activation of classical G protein-coupled receptors and their signaling pathways differ from those of atypical chemokine receptors, which do not function via cell activation and recruitment. Regardless of binding to their receptors, chemokines can induce thrombosis by forming platelet-activating immune complexes with heparin or other polyanions that are pathognomonic for HIT and VITT. In addition, chemokines can bind to NETs and alter their structure. They also change the electrical charge of the cell surface of platelets and interact with coagulation factors, thereby modulating the balance of fibrinolysis and coagulation. Moreover, CXCL12 activates CXCR4 on platelets independently of classical migratory chemokine activity and causes aggregation and thrombosis via the PI3Kβ and Btk signaling pathways. In contrast, typical chemokine-chemokine receptor interactions are involved in the processes that contribute to the adhesiveness of the endothelium in the initial phase of venous thrombosis, where neutrophils and monocytes subsequently accumulate in massive numbers. Later, the reorganization and resolution of a thrombus require coordinated cell migration and invasion of the thrombus, and, as such, indeed, chemokines recruit leukocytes to existing thrombi. Therefore, chemokines contribute in many independent ways to thrombosis.
Collapse
Affiliation(s)
- Julian Leberzammer
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- Department of Cardiology and Angiology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Philipp von Hundelshausen
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
8
|
Schories C, Martus P, Guan T, Henes JK, Witte A, Müller K, Geisler T, Chatterjee M, Gawaz M, Rath D. Platelet versus plasma CXCL14, coronary artery disease, and clinical outcomes. Res Pract Thromb Haemost 2023; 7:100165. [PMID: 37255851 PMCID: PMC10225916 DOI: 10.1016/j.rpth.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023] Open
Abstract
Background Platelets express CXCL14, while platelet-derived CXCL14 induces monocyte chemotaxis and exerts an angiostatic effect on endothelial cells. Objectives This study investigated both platelet surface-associated and circulating levels of CXCL14 in patients with heart disease and associations of this chemokine with myocardial function and outcomes in patients with coronary artery disease (CAD). Methods This prospective study enrolled 450 patients with symptomatic heart disease. Platelet surface-associated and plasma CXCL14 levels were analyzed. All patients were followed up for 360 days for a primary composite outcome consisting of all-cause mortality, myocardial infarction, and/or ischemic stroke. Secondary outcomes consisted of the single events of all-cause mortality or myocardial infarction. Results Baseline platelet-associated but not circulating CXCL14 levels were significantly lower in patients with chronic coronary syndrome (mean fluorescence intensity logarithmized, 1.35 ± 0.35) when compared to those with acute coronary syndrome (1.47 ± 0.38) and without CAD (1.51 ± 0.40). Platelet CXCL14 levels were significantly lower (1.37 ± 0.37 vs 1.48 ± 0.39) and circulating CXCL14 levels were significantly higher (lg, 2.88 ± 0.20 pg/mL vs 2.82 ± 0.26 pg/mL) in patients with normal baseline left ventricular ejection fraction (LVEF) when compared to those with impaired LVEF. Low baseline circulating CXCL14 (hazard ratio, 2.33; 1.00-5.46) but not platelet CXCL14 was associated with worse outcome in patients with CAD. Conclusion Platelet-associated and circulating CXCL14 levels show differential regulation in patients with and without CAD. Although platelet-associated CXCL14 increased and circulating CXCL14 decreased with impairment of LVEF, only lower circulating CXCL14 upon admission was associated with worse prognosis in patients with CAD.
Collapse
Affiliation(s)
- Christoph Schories
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biostatistics, University Hospital Tübingen, Tübingen, Germany
| | - Tianyun Guan
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
- Department of Cardiology, the Second Hospital of Jilin University, Jilin, People’s Republic of China
| | - Jessica Kristin Henes
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Alexander Witte
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Karin Müller
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Tobias Geisler
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, University Hospital Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
ACKR3 regulates platelet activation and ischemia-reperfusion tissue injury. Nat Commun 2022; 13:1823. [PMID: 35383158 PMCID: PMC8983782 DOI: 10.1038/s41467-022-29341-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Platelet activation plays a critical role in thrombosis. Inhibition of platelet activation is a cornerstone in treatment of acute organ ischemia. Platelet ACKR3 surface expression is independently associated with all-cause mortality in CAD patients. In a novel genetic mouse strain, we show that megakaryocyte/platelet-specific deletion of ACKR3 results in enhanced platelet activation and thrombosis in vitro and in vivo. Further, we performed ischemia/reperfusion experiments (transient LAD-ligation and tMCAO) in mice to assess the impact of genetic ACKR3 deficiency in platelets on tissue injury in ischemic myocardium and brain. Loss of platelet ACKR3 enhances tissue injury in ischemic myocardium and brain and aggravates tissue inflammation. Activation of platelet-ACKR3 via specific ACKR3 agonists inhibits platelet activation and thrombus formation and attenuates tissue injury in ischemic myocardium and brain. Here we demonstrate that ACKR3 is a critical regulator of platelet activation, thrombus formation and organ injury following ischemia/reperfusion. ACKR3 is a critical regulator of platelet-mediated thrombosis and organ injury following ischemia/reperfusion. Platelet ACKR3 surface expression is independently associated with all-cause mortality in patients with cardiovascular diseases.
Collapse
|
10
|
Menter DG, Afshar-Kharghan V, Shen JP, Martch SL, Maitra A, Kopetz S, Honn KV, Sood AK. Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer Metastasis Rev 2022; 41:147-172. [PMID: 35022962 PMCID: PMC8754476 DOI: 10.1007/s10555-022-10019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023]
Abstract
We have established considerable expertise in studying the role of platelets in cancer biology. From this expertise, we were keen to recognize the numerous venous-, arterial-, microvascular-, and macrovascular thrombotic events and immunologic disorders are caused by severe, acute-respiratory-syndrome coronavirus 2 (SARS-CoV-2) infections. With this offering, we explore the evolutionary connections that place platelets at the center of hemostasis, immunity, and adaptive phylogeny. Coevolutionary changes have also occurred in vertebrate viruses and their vertebrate hosts that reflect their respective evolutionary interactions. As mammals adapted from aquatic to terrestrial life and the heavy blood loss associated with placentalization-based live birth, platelets evolved phylogenetically from thrombocytes toward higher megakaryocyte-blebbing-based production rates and the lack of nuclei. With no nuclei and robust RNA synthesis, this adaptation may have influenced viral replication to become less efficient after virus particles are engulfed. Human platelets express numerous receptors that bind viral particles, which developed from archetypal origins to initiate aggregation and exocytic-release of thrombo-, immuno-, angiogenic-, growth-, and repair-stimulatory granule contents. Whether by direct, evolutionary, selective pressure, or not, these responses may help to contain virus spread, attract immune cells for eradication, and stimulate angiogenesis, growth, and wound repair after viral damage. Because mammalian and marsupial platelets became smaller and more plate-like their biophysical properties improved in function, which facilitated distribution near vessel walls in fluid-shear fields. This adaptation increased the probability that platelets could then interact with and engulf shedding virus particles. Platelets also generate circulating microvesicles that increase membrane surface-area encounters and mark viral targets. In order to match virus-production rates, billions of platelets are generated and turned over per day to continually provide active defenses and adaptation to suppress the spectrum of evolving threats like SARS-CoV-2.
Collapse
Affiliation(s)
- David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Paul Shen
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie L Martch
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth V Honn
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University, 5101 Cass Ave. 430 Chemistry, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
11
|
Atypical Roles of the Chemokine Receptor ACKR3/CXCR7 in Platelet Pathophysiology. Cells 2022; 11:cells11020213. [PMID: 35053329 PMCID: PMC8773869 DOI: 10.3390/cells11020213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
The manifold actions of the pro-inflammatory and regenerative chemokine CXCL12/SDF-1α are executed through the canonical GProteinCoupledReceptor CXCR4, and the non-canonical ACKR3/CXCR7. Platelets express CXCR4, ACKR3/CXCR7, and are a vital source of CXCL12/SDF-1α themselves. In recent years, a regulatory impact of the CXCL12-CXCR4-CXCR7 axis on platelet biogenesis, i.e., megakaryopoiesis, thrombotic and thrombo-inflammatory actions have been revealed through experimental and clinical studies. Platelet surface expression of ACKR3/CXCR7 is significantly enhanced following myocardial infarction (MI) in acute coronary syndrome (ACS) patients, and is also associated with improved functional recovery and prognosis. The therapeutic implications of ACKR3/CXCR7 in myocardial regeneration and improved recovery following an ischemic episode, are well documented. Cardiomyocytes, cardiac-fibroblasts, endothelial lining of the blood vessels perfusing the heart, besides infiltrating platelets and monocytes, all express ACKR3/CXCR7. This review recapitulates ligand induced differential trafficking of platelet CXCR4-ACKR3/CXCR7 affecting their surface availability, and in regulating thrombo-inflammatory platelet functions and survival through CXCR4 or ACKR3/CXCR7. It emphasizes the pro-thrombotic influence of CXCL12/SDF-1α exerted through CXCR4, as opposed to the anti-thrombotic impact of ACKR3/CXCR7. Offering an innovative translational perspective, this review also discusses the advantages and challenges of utilizing ACKR3/CXCR7 as a potential anti-thrombotic strategy in platelet-associated cardiovascular disorders, particularly in coronary artery disease (CAD) patients post-MI.
Collapse
|
12
|
Platelet ACKR3/CXCR7 Favors Anti-Platelet Lipids over an Atherothrombotic Lipidome and Regulates Thrombo-inflammation. Blood 2021; 139:1722-1742. [PMID: 34905596 DOI: 10.1182/blood.2021013097] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Platelet ACKR3/CXCR7 surface expression is enhanced and influences prognosis in coronary artery disease-(CAD) patients, who exhibit a distinct atherothrombotic platelet lipidome. Current investigation validates the potential of ACKR3/CXCR7 in regulating thrombo-inflammatory response, through its impact on the platelet lipidome. CAD patients-(n=230) with enhanced platelet-ACKR3/CXCR7 expression exhibited reduced aggregation. Pharmacological CXCR7-agonist-(VUF11207) significantly reduced pro-thrombotic platelet response in blood from ACS patients-(n=11) ex vivo. CXCR7-agonist administration reduced thrombotic functions and thrombo-inflammatory platelet-leukocyte interactions post myocardial infarction-(MI) and arterial injury in vivo. ACKR3/CXCR7-ligation did not affect surface availability of GPIbα, GPV, GPVI, GPIX, αv-integrin, β3-integrin, coagulation profile-(APTT, PT), bleeding time, plasma-dependent thrombin generation-(thrombinoscopy) or clot formation-(thromboelastography), but counteracted activation-induced phosphatidylserine exposure and procoagulant platelet-assisted thrombin generation. Targeted-(micro-UHPLC-ESI-QTrap-MS/MS) and untargeted-(UHPLC-ESI-QTOF-MS/MS) lipidomics analysis revealed that ACKR3/CXCR7-ligation favored generation of anti-thrombotic lipids-(dihomo-γ-linolenic acid-DGLA, 12-hydroxyeicosatrienoic acid-12-HETrE) over cyclooxygenase-COX-1-(thromboxane-TxA2), or 12-lipoxygenase-LOX-(12-HETE) metabolized pro-thrombotic, and phospholipase derived atherogenic-(lysophosphatidylcholine-LPC) lipids, in healthy subjects and CAD patients, contrary to anti-platelet therapy. Through 12-HETrE, ACKR3/CXCR7-ligation coordinated with Gαs-coupled prostacyclin receptor-(IP) to trigger cAMP-PKA mediated platelet inhibition. ACKR3/CXCR7-ligation reduced generation of lipid agonists-(arachidonic acid-AA,TxA2), lipid signaling intermediates-(lyophosphatidylinositol-LPI, diacylglycerol-DG), which affected calcium mobilization, intracellular signaling, consequently platelet interaction with physiological matrices and thrombo-inflammatory secretion-(IL1β,IFN-γ,TGF-β,IL-8), emphasizing its functional dichotomy from pro-thrombotic CXCR4. Moreover, CXCR7-agonist regulated heparin-induced thrombocytopenia-(HIT)-sera/IgG-induced platelet and neutrophil activation, heparin induced platelet aggregation-(HIPA), generation of COX-1-(TxA2), 12-LOX-(12-HETE) derived thrombo-inflammatory lipids, platelet-neutrophil aggregate formation, and thrombo-inflammatory secretion (sCD40L, IL-1β, IFN-γ, TNF-α, sP-selectin, IL-8, tissue factor-TF) ex vivo. Therefore, ACKR3/CXCR7 may offer a novel therapeutic strategy in acute/chronic thrombo-inflammation exaggerated cardiovascular pathologies, and CAD.
Collapse
|
13
|
Seyhan M, Ungethüm K, Schuhmann MK, Mackenrodt D, Rücker V, Montellano FA, Wiedmann S, Rath D, Geisler T, Nieswandt B, Kraft P, Kleinschnitz C, Heuschmann PU. Feasibility of platelet marker analysis in ischemic stroke patients and their association with one-year outcome. A pilot project within a subsample of the Stroke Induced Cardiac Failure in Mice and Men (SICFAIL) cohort study. Platelets 2021; 33:772-780. [PMID: 34875957 DOI: 10.1080/09537104.2021.2002834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Patients with ischemic stroke (IS) are at increased risk of mortality and recurrent cerebro- or cardiovascular events. Determining prognosis after IS remains challenging but blood-based biomarkers might provide additional prognostic information. As platelets are crucially involved in the pathophysiology of vascular diseases, platelet surface proteins (PSP) are promising candidates as prognostic markers in the hyperacute stage. In this pilot study, feasibility of PSP analysis by flow cytometry (HMGB1, CD84, CXCR4, CXCR7, CD62p with and without ADP-stimulation, CD41, CD61, CD40, GPVI) was investigated in 99 (median 66 years, 67.5% male) acute IS patients admitted to Stroke Unit within a substudy of the Stroke-Induced Cardiac FAILure in mice and men (SICFAIL) cohort study. Association between PSP expression and unfavorable one-year outcome (cerebro- or cardiovascular event, all-cause mortality and care dependency defined as Barthel Index <60) was explored. PSP measurements were feasible. Several process- (e.g. temperatures, processing times) and patient-related factors (e.g. prestroke ischemic events, surgery, blood pressure, antiplatelet therapy) were identified to be potentially associated with PSP expression. Elevated CD40 levels above study population's median were associated with unfavorable outcome. Standardized conditions during blood draw and processing within the hyperacute stroke unit setting are required and patient-related characteristics must be considered for valid measurements of PSP.Trial registration: German Clinical Trials Register (DRKS00011615).
Collapse
Affiliation(s)
- Mert Seyhan
- Institute for Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany.,Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Department of Neurology, Caritas Hospital Bad Mergentheim, Bad Mergentheim, Germany
| | - Kathrin Ungethüm
- Institute for Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
| | | | - Daniel Mackenrodt
- Institute for Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany.,Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany
| | - Viktoria Rücker
- Institute for Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
| | - Felipe A Montellano
- Institute for Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany.,Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany
| | - Silke Wiedmann
- Institute for Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominik Rath
- Medizinische Klinik III, Department Cardiology and Cardiovascular Disease, German Heart Competence Centre, University Hospital Tübingen, Tübingen, Germany
| | - Tobias Geisler
- Medizinische Klinik III, Department Cardiology and Cardiovascular Disease, German Heart Competence Centre, University Hospital Tübingen, Tübingen, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.,Institute of Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Peter Kraft
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Department of Neurology, Klinikum Main Spessart, Lohr, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational and Behavioral Neurosciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Peter U Heuschmann
- Institute for Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany.,Clinical Trial Center, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Molecular Drivers of Platelet Activation: Unraveling Novel Targets for Anti-Thrombotic and Anti-Thrombo-Inflammatory Therapy. Int J Mol Sci 2020; 21:ijms21217906. [PMID: 33114406 PMCID: PMC7662962 DOI: 10.3390/ijms21217906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally-partly a consequence of increased population size and ageing-and are major contributors to reduced quality of life. Platelets play a major role in hemostasis and thrombosis. While platelet activation and aggregation are essential for hemostasis at sites of vascular injury, uncontrolled platelet activation leads to pathological thrombus formation and provokes thrombosis leading to myocardial infarction or stroke. Platelet activation and thrombus formation is a multistage process with different signaling pathways involved to trigger platelet shape change, integrin activation, stable platelet adhesion, aggregation, and degranulation. Apart from thrombotic events, thrombo-inflammation contributes to organ damage and dysfunction in CVDs and is mediated by platelets and inflammatory cells. Therefore, in the past, many efforts have been made to investigate specific signaling pathways in platelets to identify innovative and promising approaches for novel antithrombotic and anti-thrombo-inflammatory strategies that do not interfere with hemostasis. In this review, we focus on some of the most recent data reported on different platelet receptors, including GPIb-vWF interactions, GPVI activation, platelet chemokine receptors, regulation of integrin signaling, and channel homeostasis of NMDAR and PANX1.
Collapse
|
15
|
Groblewska M, Litman-Zawadzka A, Mroczko B. The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. Int J Mol Sci 2020; 21:ijms21103704. [PMID: 32456359 PMCID: PMC7279280 DOI: 10.3390/ijms21103704] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. Additionally, the diagnostic significance and usefulness of the measurement of some chemokines and their receptors in the blood and cerebrospinal fluid (CSF) of glioma patients is also presented.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
- Correspondence: ; Tel.: +48-85-831-8785
| |
Collapse
|
16
|
Wang C, Li Q, Yang H, Gao C, Du Q, Zhang C, Zhu L, Li Q. MMP9, CXCR1, TLR6, and MPO participant in the progression of coronary artery disease. J Cell Physiol 2020; 235:8283-8292. [PMID: 32052443 DOI: 10.1002/jcp.29485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/09/2020] [Indexed: 11/08/2022]
Abstract
Coronary artery disease (CAD) is the most frequent cardiovascular disease, which is induced by the decreased myocardial blood supply. The present study is conducted to understand the mechanisms of CAD. The GSE98583, GSE69587, and GSE71226 datasets from the Gene Expression Omnibus database were obtained. The differentially expressed genes (DEGs) were analyzed by the limma package, then the DEGs appeared in two or three datasets were selected as the coregulated genes using the VENNY tool, followed by enrichment analysis using DAVID tool. Protein-protein interaction (PPI) network, microRNA-transcription factor-target regulatory network, and drug-gene network were visualized. Finally, quantitative PCR and dual-luciferase reporter assay were conducted to validate the expression of key genes and the target relationship. There were 221 coregulated genes in GSE98583, GSE69587, and GSE71226. Besides, four pathways and 23 functional terms for co-upregulated genes, and 11 functional terms for co-downregulated genes were enriched. The degrees of PPI network nodes matrix metallopeptidase 9 (MMP9), C-X-C motif chemokine receptor 1 (CXCR1), toll-like receptor 6 (TLR6), and myeloperoxidase (MPO) were relatively higher. Moreover, MPO could interact with MMP9, CXCR1, and TLR6 in the PPI network. In the regulatory network, TLR6 and MMP9 separately were targeted by miR-3960 and v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA). Additionally, MMP9, CXCR1, and MPO were involved in the drug-gene network. The expression of MMP9, CXCR1, TLR6, and MPO were significantly upregulated in CAD samples than control, and miR-3960 could bind to TLR6 to inhibit its expression. CXCR1 and MPO might be involved in the progression of CAD. Besides, miR-3960 might function in the pathogenesis of CAD through targeting TLR6, and RELA might exert its role in CAD via targeting MMP9.
Collapse
Affiliation(s)
- Che Wang
- Department of Cardiology, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingmin Li
- Department of Cardiology, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Honghui Yang
- Department of Cardiology, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chuanyu Gao
- Department of Cardiology, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiubo Du
- Department of Cardiology, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Caili Zhang
- Department of Cardiology, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijie Zhu
- Department of Cardiology, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingman Li
- Department of Cardiology, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Fumagalli A, Zarca A, Neves M, Caspar B, Hill SJ, Mayor F, Smit MJ, Marin P. CXCR4/ACKR3 Phosphorylation and Recruitment of Interacting Proteins: Key Mechanisms Regulating Their Functional Status. Mol Pharmacol 2019; 96:794-808. [PMID: 30837297 DOI: 10.1124/mol.118.115360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/21/2019] [Indexed: 01/14/2023] Open
Abstract
The C-X-C motif chemokine receptor type 4 (CXCR4) and the atypical chemokine receptor 3 (ACKR3/CXCR7) are class A G protein-coupled receptors (GPCRs). Accumulating evidence indicates that GPCR subcellular localization, trafficking, transduction properties, and ultimately their pathophysiological functions are regulated by both interacting proteins and post-translational modifications. This has encouraged the development of novel techniques to characterize the GPCR interactome and to identify residues subjected to post-translational modifications, with a special focus on phosphorylation. This review first describes state-of-the-art methods for the identification of GPCR-interacting proteins and GPCR phosphorylated sites. In addition, we provide an overview of the current knowledge of CXCR4 and ACKR3 post-translational modifications and an exhaustive list of previously identified CXCR4- or ACKR3-interacting proteins. We then describe studies highlighting the importance of the reciprocal influence of CXCR4/ACKR3 interactomes and phosphorylation states. We also discuss their impact on the functional status of each receptor. These studies suggest that deeper knowledge of the CXCR4/ACKR3 interactomes along with their phosphorylation and ubiquitination status would shed new light on their regulation and pathophysiological functions.
Collapse
Affiliation(s)
- Amos Fumagalli
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Aurélien Zarca
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Maria Neves
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Birgit Caspar
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Stephen J Hill
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Federico Mayor
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Martine J Smit
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| |
Collapse
|
18
|
Fei M, Xiang L, Chai X, Jin J, You T, Zhao Y, Ruan C, Hao Y, Zhu L. Plasma soluble C-type lectin-like receptor-2 is associated with the risk of coronary artery disease. Front Med 2019; 14:81-90. [PMID: 31280468 DOI: 10.1007/s11684-019-0692-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/03/2019] [Indexed: 01/10/2023]
Abstract
Accumulating evidence suggests that C-type lectin-like receptor-2 (CLEC-2) plays an important role in atherothrombosis. In this case-control study, we investigated the association between CLEC-2 and incidence of coronary artery disease (CAD). A total of 216 patients, including 14 cases of stable angina pectoris (SAP, non-ACS) and 202 cases of acute coronary syndrome (ACS), and 89 non-CAD control subjects were enrolled. Plasma levels of soluble CLEC-2 (sCLEC-2) were measured using the enzyme-linked immunosorbent assay (ELISA). Compared with the control group (65.69 (55.36-143.22) pg/mL), the plasma levels of sCLEC-2 were significantly increased in patients with CAD (133.67 (88.76-220.09) pg/mL) and ACS (134.16 (88.88-225.81) pg/mL). The multivariate adjusted odds ratios (95% confidence interval) of CAD reached 2.01 (1.52-2.66) (Ptrend < 0.001) for each 1-quartile increase in sCLEC-2. Restricted cubic splines showed a positive dose-response association between sCLEC2 and CAD incidence (Plinearity < 0.001). The addition of sCLEC-2 to conventional risk factors improved the C statistic (0.821 vs. 0.761, P = 0.004) and reclassification ability (net reclassification improvement: 57.45%, P < 0.001; integrated discrimination improvement: 8.27%, P < 0.001) for CAD. In conclusion, high plasma sCLEC-2 is independently associated with CAD risk, and the prognostic value of sCLEC-2 may be evaluated in future prospective studies.
Collapse
Affiliation(s)
- Min Fei
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.,Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, 215006, China
| | - Li Xiang
- Department of Cardiology, The Second Affiliated Hospital, Soochow University, Suzhou, 215004, China
| | - Xichen Chai
- Department of Cardiology, The First Affiliated Hospital, Soochow University, Suzhou, 215006, China
| | - Jingchun Jin
- Department of Blood Transfusion, The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Tao You
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.,Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, 215006, China
| | - Yiming Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, 215006, China
| | - Changgeng Ruan
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.,Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, 215006, China
| | - Yiwen Hao
- Department of Blood Transfusion, The First Affiliated Hospital, China Medical University, Shenyang, 110001, China.
| | - Li Zhu
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China. .,Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
19
|
Gawaz M, Borst O. The Role of Platelets in Atherothrombosis. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Rath D, Chatterjee M, Meyer L, Tekath N, Olma C, Krumm P, Adams C, Borst O, Müller K, Droppa M, Nikolaou K, Riethmüller J, Gawaz M, Geisler T. Relative survival potential of platelets is associated with platelet CXCR4/CXCR7 surface exposure and functional recovery following STEMI. Atherosclerosis 2018; 278:269-277. [PMID: 30342381 DOI: 10.1016/j.atherosclerosis.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/16/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND AIMS Platelets are critically involved in tissue repair and regeneration, which depend on their inflammatory properties and survival. SDF-1 ligates to CXCR4 and CXCR7 and contributes to the regulation of platelet survival. Platelet CXCR4/CXCR7 are involved in myocardial regeneration after infarction and are associated with outcomes in patients with symptomatic coronary artery disease. This study investigates the CXCR4/CXCR7 platelet survival axis ex vivo. METHODS 87 patients with ST-segment elevation myocardial infarction (STEMI) were included and analyzed for platelet surface exposure of CXCR4, CXCR7, Annexin V binding and tetramethylrhodamine ethyl ester (TMRE) response. Serum of 38 patients was analyzed for FasL, TNFα, TNF RI, TNF RII and TRAIL with Bioplex®. The majority of patients received sequential cardiac MRI (intrahospital, 6-month follow-up). RESULTS We found a strong and positive correlation between surface exposure of CXCR4 and CXCR7 (ρ = 0.856, p<0.001). Relative survival potential correlated significantly with both platelet surface exposure of CXCR4 and CXCR7 (ρ = 0.365, p = 0.019; ρ = 0.417, p = 0.006) and furthermore with improvement of myocardial left ventricular ejection fraction (LVEF) (ρ = 0.490, p = 0.013). High relative survival potential showed significantly higher levels for both CXCR4 and CXCR7 surface exposure (MFI 87.3 vs. 69.0, p = 0.037; MFI 71.4 vs. 59.3, p = 0.045). We found a significant change in absolute LVEF% over the course of 6 months in patients with high CXCR7 platelet surface exposure (LVEF% 44.3 vs. 60.0, p≤0.001). CONCLUSIONS Platelet survival is associated with platelet surface exposure of CXCR4 and CXCR7 in STEMI patients and contributes to functional recovery after STEMI.
Collapse
Affiliation(s)
- Dominik Rath
- Department of Internal Medicine III, Cardiology and Cardiovascular Medicine, University of Tuebingen, Germany
| | - Madhumita Chatterjee
- Department of Internal Medicine III, Cardiology and Cardiovascular Medicine, University of Tuebingen, Germany
| | - Lennart Meyer
- Department of Internal Medicine III, Cardiology and Cardiovascular Medicine, University of Tuebingen, Germany
| | - Nina Tekath
- Department of Internal Medicine III, Cardiology and Cardiovascular Medicine, University of Tuebingen, Germany
| | - Carolin Olma
- Department of Internal Medicine III, Cardiology and Cardiovascular Medicine, University of Tuebingen, Germany
| | - Patrick Krumm
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tuebingen, Germany
| | - Constantin Adams
- Center for Pediatric Clinical Studies, University of Tuebingen, Germany
| | - Oliver Borst
- Department of Internal Medicine III, Cardiology and Cardiovascular Medicine, University of Tuebingen, Germany
| | - Karin Müller
- Department of Internal Medicine III, Cardiology and Cardiovascular Medicine, University of Tuebingen, Germany
| | - Michal Droppa
- Department of Internal Medicine III, Cardiology and Cardiovascular Medicine, University of Tuebingen, Germany
| | - Konstantin Nikolaou
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tuebingen, Germany
| | | | - Meinrad Gawaz
- Department of Internal Medicine III, Cardiology and Cardiovascular Medicine, University of Tuebingen, Germany
| | - Tobias Geisler
- Department of Internal Medicine III, Cardiology and Cardiovascular Medicine, University of Tuebingen, Germany.
| |
Collapse
|
21
|
Stromal cell-derived factor 1α facilitates aneurysm remodeling in elastase-induced rabbit saccular aneurysm. Cytokine 2018; 102:123-130. [DOI: 10.1016/j.cyto.2017.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 07/01/2017] [Accepted: 07/26/2017] [Indexed: 11/24/2022]
|
22
|
Larsen SB, Grove EL, Würtz M, Neergaard-Petersen S, Hvas AM, Kristensen SD. The influence of low-grade inflammation on platelets in patients with stable coronary artery disease. Thromb Haemost 2017; 114:519-29. [DOI: 10.1160/th14-12-1007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/07/2015] [Indexed: 12/19/2022]
Abstract
SummaryInflammation is likely to be involved in all stages of atherosclerosis. Numerous inflammatory biomarkers are currently being studied, and even subtle increases in inflammatory biomarkers have been associated with increased risk of cardiovascular events in patients with coronary artery disease (CAD). Low-grade inflammation may influence both platelet production and platelet activation potentially leading to enhanced platelet aggregation. Thrombopoietin is considered the primary regulator of platelet production, but it likely acts in conjunction with numerous cytokines, of which many have altered levels in CAD. Previous studies have shown that high-sensitive C-reactive protein (CRP) independently predicts increased platelet aggregation in stable CAD patients. Increased levels of CRP, fibrinogen, interleukin-6, stromal cell-derived factor-1, CXC motif ligand 16, macrophage migration inhibitory factor, RANTES, calprotectin, and copeptin have been associated with increased risk of cardiovascular events in CAD patients. Additionally, some of these inflammatory markers have been associated with enhanced platelet activation and aggregation. However, CRP and other inflammatory markers provide only limited additional predictive value to classical risk factors such as smoking, blood pressure, and cholesterol levels. Existing data do not clarify whether inflammation simply accompanies CAD and increased production and aggregation of platelets, or whether a causal relationship exists. In this review, we provide a comprehensive overview of inflammatory markers in stable CAD with particular emphasis on platelet production, activation, and aggregation in CAD patients.
Collapse
|
23
|
Menter DG, Kopetz S, Hawk E, Sood AK, Loree JM, Gresele P, Honn KV. Platelet "first responders" in wound response, cancer, and metastasis. Cancer Metastasis Rev 2017; 36:199-213. [PMID: 28730545 PMCID: PMC5709140 DOI: 10.1007/s10555-017-9682-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platelets serve as "first responders" during normal wounding and homeostasis. Arising from bone marrow stem cell lineage megakaryocytes, anucleate platelets can influence inflammation and immune regulation. Biophysically, platelets are optimized due to size and discoid morphology to distribute near vessel walls, monitor vascular integrity, and initiate quick responses to vascular lesions. Adhesion receptors linked to a highly reactive filopodia-generating cytoskeleton maximizes their vascular surface contact allowing rapid response capabilities. Functionally, platelets normally initiate rapid clotting, vasoconstriction, inflammation, and wound biology that leads to sterilization, tissue repair, and resolution. Platelets also are among the first to sense, phagocytize, decorate, or react to pathogens in the circulation. These platelet first responder properties are commandeered during chronic inflammation, cancer progression, and metastasis. Leaky or inflammatory reaction blood vessel genesis during carcinogenesis provides opportunities for platelet invasion into tumors. Cancer is thought of as a non-healing or chronic wound that can be actively aided by platelet mitogenic properties to stimulate tumor growth. This growth ultimately outstrips circulatory support leads to angiogenesis and intravasation of tumor cells into the blood stream. Circulating tumor cells reengage additional platelets, which facilitates tumor cell adhesion, arrest and extravasation, and metastasis. This process, along with the hypercoagulable states associated with malignancy, is amplified by IL6 production in tumors that stimulate liver thrombopoietin production and elevates circulating platelet numbers by thrombopoiesis in the bone marrow. These complex interactions and the "first responder" role of platelets during diverse physiologic stresses provide a useful therapeutic target that deserves further exploration.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA.
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Ernest Hawk
- Office of the Vice President Cancer Prevention & Population Science, M. D. Anderson Cancer Center, Unit 1370, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
| | - Anil K Sood
- Gynocologic Oncology & Reproductive Medicine, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Department of Cancer Biology, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Center for RNA Interference and Non-Coding RNA The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Via E. Dal Pozzo, 06126, Perugia, Italy
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
24
|
Menter DG, Davis JS, Tucker SC, Hawk E, Crissman JD, Sood AK, Kopetz S, Honn KV. Platelets: “First Responders” in Cancer Progression and Metastasis. PLATELETS IN THROMBOTIC AND NON-THROMBOTIC DISORDERS 2017:1111-1132. [DOI: 10.1007/978-3-319-47462-5_74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
25
|
Yuan Q, Bu XY, Yan ZY, Liu XZ, Wei ZY, Ma CX, Qu MQ. Combination of endogenous neural stem cell mobilization and lithium chloride treatment for hydrocephalus following intraventricular hemorrhage. Exp Ther Med 2016; 12:3275-3281. [PMID: 27882149 PMCID: PMC5103777 DOI: 10.3892/etm.2016.3778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/16/2016] [Indexed: 01/04/2023] Open
Abstract
As there are multiple factors causing hydrocephalus subsequent to intraventricular hemorrhage (IVH), it is difficult to achieve the best treatment effect using a single drug alone. In the present study, the protective effect of combination treatment with granulocyte-colony stimulating factor (G-CSF) and lithium chloride against hydrocephalus after IVH was investigated. A total of 130 adult male Sprague-Dawley rats were divided into five groups, including the IVH control, G-CSF treatment, lithium chloride treatment, combination treatment and sham surgery groups. An IVH rat model was established in order to examine the effect of combination treatment on hydrocephalus incidence. A TUNEL assay was performed to detect neuronal apoptosis in the five groups. In addition, the protein expression levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were detected by western blot analysis. The differentiation of nerve cells in the brain tissue obtained from the five rat groups was also determined with double immunofluorescence staining. The results demonstrated that administration of G-CSF or lithium chloride alone was able to only partly relieve the incidence of hydrocephalus after IVH. By contrast, combination treatment with G-CSF and lithium chloride significantly attenuated the development of hydrocephalus following IVH. TUNEL assay showed that neuronal apoptosis was significantly reduced by the combination treatment with G-CSF and lithium chloride. Furthermore, the expression of Bcl-2 was upregulated, whereas Bax expression was downregulated in the combination treatment group. The results also detected the highest expression of BrdU/GFAP, BrdU/NeuN and BrdU/PSA-NCAM in the combination treatment group. In conclusion, the combination of endogenous neural stem cell mobilization (using G-CSF) and lithium chloride treatment resulted in highly reduced incidence of hydrocephalus after IVH by inhibiting neuronal apoptosis.
Collapse
Affiliation(s)
- Qiang Yuan
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Xing-Yao Bu
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Zhao-Yue Yan
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Xian-Zhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Zhen-Yu Wei
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Chun-Xiao Ma
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Ming-Qi Qu
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
26
|
Rath D, Schaeffeler E, Winter S, Hewer J, Müller K, Droppa M, Stimpfle F, Gawaz M, Schwab M, Geisler T. SDF1 Polymorphisms Influence Outcome in Patients with Symptomatic Cardiovascular Disease. PLoS One 2016; 11:e0161933. [PMID: 27607427 PMCID: PMC5015912 DOI: 10.1371/journal.pone.0161933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 08/14/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND SDF1 and its cognate receptors CXCR4 and CXCR7 are involved in myocardial repair and are associated with outcome in cardiovascular patients. Hence, we aimed to investigate clinically significant SDF1 SNPs for their prognostic impact in patients with cardiovascular disease. METHODS AND RESULTS Genotyping for selected SDF1 variants (rs1065297, rs2839693, rs1801157, rs266087, rs266085 and rs266089 was performed in patients (n = 872) who underwent percutaneous coronary intervention. Carriers of variant rs2839693 and rs266089 showed significantly higher cumulative event-free survival compared with non-carriers. All other polymorphisms had no relevant influence on outcome. Multivariate Cox regression analysis showed a significant correlation of these SNPs with cardiovascular outcome after inclusion of clinical and prognostic relevant variables (hazard ratio (HR) 0.51 (95% CI 0.30-0.88), p = 0.015 and [HR 0.51 (95% CI 0.30-0.88), p = 0.016, respectively). In addition, multivariate Cox regression with SDF1 haplotypes revealed a significantly reduced risk for the haplotype carrying the minor alleles of rs2839693 and rs266089 (HR 0.47 (95% CI 0.27-0.84), p = 0.011). CONCLUSION Distinct SDF1 polymorphisms are associated with improved cardiovascular prognosis in CAD patients. Further studies are warranted to validate these results and to better describe the endogenous regeneration potential in carriers of these SNPs. Targeted, genotype guided therapeutic approaches to foster myocardial regeneration and thus cardiovascular prognosis should be evaluated in future.
Collapse
Affiliation(s)
- Dominik Rath
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, Stuttgart, Germany
| | - Stefan Winter
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, Stuttgart, Germany
| | - Jens Hewer
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Karin Müller
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Michal Droppa
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Fabian Stimpfle
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital Tuebingen, Auf der Morgenstelle 8, Tuebingen, Germany
| | - Tobias Geisler
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| |
Collapse
|
27
|
Rath D, Chatterjee M, Bongartz A, Müller K, Droppa M, Stimpfle F, Borst O, Zuern C, Vogel S, Gawaz M, Geisler T. Platelet surface expression of SDF-1 is associated with clinical outcomes in the patients with cardiovascular disease. Platelets 2016; 28:34-39. [PMID: 27463607 DOI: 10.1080/09537104.2016.1203399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Platelet surface expression levels of stromal cell derived factor 1 (SDF-1) are elevated in acute coronary syndrome and associated with LVEF% improvement after myocardial infarction (MI). Platelet SDF-1 might facilitate thrombus formation and endomyocardial expression of SDF-1 is enhanced in inflammatory cardiomyopathy and positively correlates with myocardial fibrosis. The influence of platelet SDF-1 on outcome in the patients with symptomatic coronary artery disease (CAD) is to the best of our knowledge unknown. Blood samples of 608 consecutive CAD patients were collected during the percutaneous coronary intervention and analyzed for surface expression of SDF-1 by flow cytometry. The primary combined endpoint was defined as the composite of either MI, or ischemic stroke, or all-cause death. Secondary endpoints were defined as the aforementioned single events. The patients with baseline platelet SDF-1 levels above the third quartile showed a significantly worse cumulative event-free survival when compared to the patients with lower baseline SDF-1 levels (first to third quartile) (log rank 0.009 for primary combined endpoint and log rank 0.016 for secondary endpoint all-cause death). Multivariate Cox regression analysis showed that SDF-1 levels above the third quartile were independently associated with the primary combined endpoint and the secondary endpoint all-cause death. We provide first clinical evidence that high platelet expression levels of SDF-1 influence clinical outcomes in CAD patients in a negative way.
Collapse
Affiliation(s)
- Dominik Rath
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Madhumita Chatterjee
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Angela Bongartz
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Karin Müller
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Michal Droppa
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Fabian Stimpfle
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Oliver Borst
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Christine Zuern
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Sebastian Vogel
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Meinrad Gawaz
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Tobias Geisler
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| |
Collapse
|
28
|
Rath D, Chatterjee M, Holtkamp A, Tekath N, Borst O, Vogel S, Müller K, Gawaz M, Geisler T. Evidence of an interaction between TGF-β1 and the SDF-1/CXCR4/CXCR7 axis in human platelets. Thromb Res 2016; 144:79-84. [PMID: 27314628 DOI: 10.1016/j.thromres.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/12/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND TGF-β1, SDF-1 and its cognate receptors CXCR4 and CXCR7 are expressed on the surface of human platelets and their expression levels are differently regulated in symptomatic coronary artery disease (CAD). All these proteins and receptors influence outcome in patients with symptomatic CAD. There might be a crosstalk between TGF-β1 and the SDF-1/CXCR4/CXCR7 axis. Interrelations in CAD, especially in the context of platelets, are poorly understood. Therefore, we aimed to provide clinical and experimental evidence of interactions between TGF-β1 and the SDF-1/CXCR4/CXCR7 axis in human platelets. METHODS AND RESULTS Blood samples of the complete cohort (n=284) were analysed for platelet surface expression levels of TGF-β1, SDF-1, CXCR4 and CXCR7 by flow cytometry. For stimulation assays platelet rich plasma was treated with TGF-β1 or SDF-1 and then analysed by flow cytometry. Multiple regression analyses were run to show independent associations of TGF-β1 with SDF-1, CXCR4, CXCR7 and clinical cofactors. Both, CXCR4 and CXCR7 significantly predicted TGF-β1 (p<0.001 and p<0.001, respectively). After stimulation with SDF-1, surface expression of TGF-β1 increased significantly when compared to resting platelets [mean TGF-β1 MFI 19.01 vs. mean TGF-β1 MFI 14.01, p<0.001]. Upon receptor blocking with either anti-CXCR4 or anti-CXCR7 monoclonal antibodies the enhancing effect of SDF-1 on TGF-β1 surface expression was significantly blunted. Stimulation with TGF-β1 did not alter SDF-1, CXCR4 or CXCR7 expression significantly. CONCLUSIONS We provide first clinical and experimental data suggesting a cross-talk between TGF-β and the SDF-1/CXCR4/CXCR7 axis in platelets which does not involve transcriptional modulation as shown previously for other cellular systems.
Collapse
Affiliation(s)
- Dominik Rath
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Madhumita Chatterjee
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Annabell Holtkamp
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Nina Tekath
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Oliver Borst
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Sebastian Vogel
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Karin Müller
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Tobias Geisler
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany.
| |
Collapse
|
29
|
Vacchini A, Locati M, Borroni EM. Overview and potential unifying themes of the atypical chemokine receptor family. J Leukoc Biol 2016; 99:883-92. [PMID: 26740381 DOI: 10.1189/jlb.2mr1015-477r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/12/2015] [Indexed: 12/17/2022] Open
Abstract
Chemokines modulate immune responses through their ability to orchestrate the migration of target cells. Chemokines directly induce cell migration through a distinct set of 7 transmembrane domain G protein-coupled receptors but are also recognized by a small subfamily of atypical chemokine receptors, characterized by their inability to support chemotactic activity. Atypical chemokine receptors are now emerging as crucial regulatory components of chemokine networks in a wide range of physiologic and pathologic contexts. Although a new nomenclature has been approved recently to reflect their functional distinction from their conventional counterparts, a systematic view of this subfamily is still missing. This review discusses their biochemical and immunologic properties to identify potential unifying themes in this emerging family.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, and Humanitas Clinical and Research Center, Milan, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, and Humanitas Clinical and Research Center, Milan, Italy
| | - Elena Monica Borroni
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, and Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
30
|
Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochem Soc Trans 2015; 43:720-6. [PMID: 26551719 DOI: 10.1042/bst20150113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 02/07/2023]
Abstract
Platelet-derived SDF-1α (stromal cell derived factor-α) mediates inflammation, immune defence and repair mechanisms at site of tissue injury. This review summarizes the relative expression of CXC chemokine receptor 4 (CXCR4) and CXCR7 in platelets, their dynamic trafficking in presence of ligands like chemokine C-X-C-motif ligand 11 (CXCL11), CXCL12 and MIF (macrophage migration inhibitory factor); how these receptors differentially mediate the functional and survival response to the chemokines CXCL11, CXCL12 and MIF. We further elaborate and emphasize the prognostic significance of platelet surface expression of CXCR4-CXCR7 in the context of coronary artery disease (CAD). SDF-1α/CXCL12, CXCL11, MIF effects mediated through CXCR4 and CXCR7 may play a regulatory role at the site of vascular and tissue inflammation, immune defence and repair where activated platelets reach as forerunners and function as critical players.
Collapse
|