1
|
Quach ME, Chen W, Wang Y, Deckmyn H, Lanza F, Nieswandt B, Li R. Differential regulation of the platelet GPIb-IX complex by anti-GPIbβ antibodies. J Thromb Haemost 2021; 19:2044-2055. [PMID: 33915031 PMCID: PMC8324530 DOI: 10.1111/jth.15359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Platelets' initial recognition of endothelial damage proceeds through the interaction between collagen, plasma von Willebrand factor (VWF), and the platelet glycoprotein (GP)Ib-IX complex (CD42). The GPIb-IX complex consists of one GPIbα, one GPIX, and two GPIbβ subunits. Once platelets are immobilized to the subendothelial matrix, shear generated by blood flow unfolds a membrane-proximal mechanosensory domain (MSD) in GPIbα, exposing a conserved trigger sequence and activating the receptor. Currently, GPIbα appears to solely facilitate ligand-induced activation because it contains both the MSD and the binding sites for all known ligands to GPIb-IX. Despite being positioned directly adjacent to the MSD, the roles of GPIbβ and GPIX in signal transduction remain murky. OBJECTIVES To characterize a novel rat monoclonal antibody 3G6 that binds GPIbβ. METHODS Effects of 3G6 on activation of GPIb-IX are characterized in platelets and Chinese hamster ovary cells expressing GPIb-IX (CHO-Ib-IX) and compared with those of an inhibitory anti-GPIbβ antibody, RAM.1. RESULTS Both RAM.1 and 3G6 bind to purified GPIbβ and GPIb-IX with high affinity. 3G6 potentiates GPIb-IX-associated filopodia formation in platelets or CHO-Ib-IX when they adhere VWF or antibodies against the ligand-binding domain (LBD) of GPIbα. Pretreatment with 3G6 also increased anti-LBD antibody-induced GPIb-IX activation. Conversely, RAM.1 inhibits nearly all GPIb-IX-related signaling in platelets and CHO-Ib-IX cells. CONCLUSIONS These data represent the first report of a positive modulator of GPIb-IX activation. The divergent modulatory effects of 3G6 and RAM.1, both targeting GPIbβ, strongly suggest that changes in the conformation of GPIbβ underlie outside-in activation via GPIb-IX.
Collapse
Affiliation(s)
- M. Edward Quach
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Yingchun Wang
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Francois Lanza
- Université de Strasbourg, INSERM, BPPS UMR-S1255, Strasbourg, France
| | - Bernhard Nieswandt
- Rudolf Virchow Center, Julius Maximilian University of Wurzburg, Würzburg, Germany
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
2
|
Karakas D, Xu M, Ni H. GPIbα is the driving force of hepatic thrombopoietin generation. Res Pract Thromb Haemost 2021; 5:e12506. [PMID: 33977209 PMCID: PMC8105161 DOI: 10.1002/rth2.12506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Thrombopoietin (TPO), a glycoprotein hormone produced predominantly in the liver, plays important roles in the hematopoietic stem cell (HSC) niche, and is essential for megakaryopoiesis and platelet generation. Long-standing understanding proposes that TPO is constitutively produced by hepatocytes, and levels are fine-tuned through platelet and megakaryocyte internalization/degradation via the c-Mpl receptor. However, in immune thrombocytopenia (ITP) and several other diseases, TPO levels are inconsistent with this theory. Recent studies showed that platelets, besides their TPO clearance, can induce TPO production in the liver. Our group also accidentally discovered that platelet glycoprotein (GP) Ibα is required for platelet-mediated TPO generation, which is underscored in both GPIbα-/- mice and patients with Bernard-Soulier syndrome. This review will introduce platelet versatilities and several new findings in hemostasis and platelet consumption but focus on its roles in TPO regulation. The implications of these new discoveries in hematopoiesis and the HSC niche, particularly in ITP, will be discussed.
Collapse
Affiliation(s)
- Danielle Karakas
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Toronto Platelet Immunobiology GroupTorontoONCanada
- Department of Laboratory MedicineKeenan Research Centre for Biomedical ScienceSt. Michael’s HospitalTorontoONCanada
| | - Miao Xu
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Heyu Ni
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Toronto Platelet Immunobiology GroupTorontoONCanada
- Department of Laboratory MedicineKeenan Research Centre for Biomedical ScienceSt. Michael’s HospitalTorontoONCanada
- Canadian Blood Services Centre for InnovationTorontoONCanada
- Department of MedicineUniversity of TorontoTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
3
|
Quach ME, Li R. Structure-function of platelet glycoprotein Ib-IX. J Thromb Haemost 2020; 18:3131-3141. [PMID: 32735697 PMCID: PMC7854888 DOI: 10.1111/jth.15035] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
The glycoprotein (GP)Ib-IX receptor complex plays a critical role in platelet physiology and pathology. Its interaction with von Willebrand factor (VWF) on the subendothelial matrix instigates platelet arrest at the site of vascular injury and is vital to primary hemostasis. Its reception to other ligands and counter-receptors in the bloodstream also contribute to various processes of platelet biology that are still being discovered. While its basic composition and its link to congenital bleeding disorders were well documented and firmly established more than 25 years ago, recent years have witnessed critical advances in the organization, dynamics, activation, regulation, and functions of the GPIb-IX complex. This review summarizes important findings and identifies questions that remain about this unique platelet mechanoreceptor complex.
Collapse
Affiliation(s)
- M Edward Quach
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
4
|
The Glycoprotein Ib-IX-V Complex. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Fu L, Ma J, Cheng Z, Gu H, Ma J, Wu R. Platelet-specific antibodies and differences in their expression in childhood immune thrombocytopenic purpura predicts clinical progression. Pediatr Investig 2018; 2:230-235. [PMID: 32851271 PMCID: PMC7331365 DOI: 10.1002/ped4.12097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/15/2018] [Indexed: 01/19/2023] Open
Abstract
IMPORTANCE Immune thrombocytopenic purpura (ITP) is the most common bleeding disorder in children. Despite the highly spontaneously remission, still almost 20% of cases progress into chronic or refractory ITP, which seriously affects children's quality of life. Currently there is no method to predict the initial stage of childhood ITP. OBJECTIVES To evaluate platelet-specific antibodies and compare differences in their expression in childhood ITP to predict clinical progression. METHODS This is a single-center prospective cohort study from April 2014 to October 2015. We enrolled children initially diagnosed as ITP. Anti-GPIIb/IIIa and GPIb/IX antibodies were assayed by enzyme-linked immunoadsorbent assay (ELISA) and patients were followed up for 1 year. We also analyzed the relationship between the expression of the platelet-specific antibodies GPIIb/IIIa and GPIb/IX and their respective clinical prognoses. RESULTS Overall, 134 cases were enrolled including 77 boys and 57 girls with a median age of 19 months (range: 1 to 159). Positive rates of anti-platelet antibodies were 79.8%. After a 1-year observation period, 84.3% were diagnosed as newly diagnosed ITP and 13.4% were diagnosed as chronic ITP. Patients with anti-GPIIb/IIIa antibody had a higher risk for newly diagnosed ITP compared with patients who were anti-GPIb/IX antibody positive only (93% vs 25%, P = 0.005; 87% vs 25%, P = 0.014, respectively). There were more anti-GPIb/IX antibody positive only cases, diagnosed as chronic ITP, compared with anti-GPIIb/IIIa antibody positive only cases and double GPIIb/IIIa and GPIb/IX antibody positive cases (75% vs 7%, P = 0.005; 75% vs 13%, P = 0.014, respectively). Interpretation. INTERPRETATION Patients with anti-GPIIb/IIIa antibody (either single or double) were predicted to have a good prognosis, whereas anti-GPIb/ IX antibody only predicted a poor prognosis. These results should be confirmed via a larger cohort multicenter study.
Collapse
Affiliation(s)
- Lingling Fu
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical UniversityBeijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics, Ministry of Education; MOE Key Laboratory of Major Diseases in ChildrenBeijingChina
| | - Jie Ma
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical UniversityBeijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics, Ministry of Education; MOE Key Laboratory of Major Diseases in ChildrenBeijingChina
| | - Zhengping Cheng
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical UniversityBeijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics, Ministry of Education; MOE Key Laboratory of Major Diseases in ChildrenBeijingChina
| | - Hao Gu
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical UniversityBeijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics, Ministry of Education; MOE Key Laboratory of Major Diseases in ChildrenBeijingChina
| | - Jingyao Ma
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical UniversityBeijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics, Ministry of Education; MOE Key Laboratory of Major Diseases in ChildrenBeijingChina
| | - Runhui Wu
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical UniversityBeijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics, Ministry of Education; MOE Key Laboratory of Major Diseases in ChildrenBeijingChina
| |
Collapse
|
6
|
Zilberman-Rudenko J, Zhao FZ, Reitsma SE, Mitrugno A, Pang J, Shatzel JJ, Rick B, Tyrrell C, Hasan W, McCarty OJT, Schreiber MA. Effect of Pneumatic Tubing System Transport on Platelet Apheresis Units. Cardiovasc Eng Technol 2018; 9:515-527. [PMID: 29785664 PMCID: PMC6168073 DOI: 10.1007/s13239-018-0361-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/08/2018] [Indexed: 01/23/2023]
Abstract
Platelet apheresis units are transfused into patients to mitigate or prevent bleeding. In a hospital, platelet apheresis units are transported from the transfusion service to the healthcare teams via two methods: a pneumatic tubing system (PTS) or ambulatory transport. Whether PTS transport affects the activity and utility of platelet apheresis units is unclear. We quantified the gravitational forces and transport time associated with PTS and ambulatory transport within our hospital. Washed platelets and supernatants were prepared from platelet apheresis units prior to transport as well as following ambulatory or PTS transport. For each group, we compared resting and agonist-induced platelet activity and platelet aggregate formation on collagen or von Willebrand factor (VWF) under shear, platelet VWF-receptor expression and VWF multimer levels. Subjection of platelet apheresis units to rapid acceleration/deceleration forces during PTS transport did not pre-activate platelets or their ability to activate in response to platelet agonists as compared to ambulatory transport. Platelets within platelet apheresis units transported via PTS retained their ability to adhere to surfaces of VWF and collagen under shear, although platelet aggregation on collagen and VWF was diminished as compared to ambulatory transport. VWF multimer levels and platelet GPIb receptor expression was unaffected by PTS transport as compared to ambulatory transport. Subjection of platelet apheresis units to PTS transport did not significantly affect the baseline or agonist-induced levels of platelet activation as compared to ambulatory transport. Our case study suggests that PTS transport may not significantly affect the hemostatic potential of platelets within platelet apheresis units.
Collapse
Affiliation(s)
- Jevgenia Zilberman-Rudenko
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA.
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR, USA.
| | - Frank Z Zhao
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Stephanie E Reitsma
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR, USA
| | - Annachiara Mitrugno
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR, USA
| | - Jiaqing Pang
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR, USA
| | - Joseph J Shatzel
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Beth Rick
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Christina Tyrrell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Wohaib Hasan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR, USA
| | - Martin A Schreiber
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
Mechanisms of platelet clearance and translation to improve platelet storage. Blood 2018; 131:1512-1521. [PMID: 29475962 DOI: 10.1182/blood-2017-08-743229] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/28/2018] [Indexed: 02/01/2023] Open
Abstract
Hundreds of billions of platelets are cleared daily from circulation via efficient and highly regulated mechanisms. These mechanisms may be stimulated by exogenous reagents or environmental changes to accelerate platelet clearance, leading to thrombocytopenia. The interplay between antiapoptotic Bcl-xL and proapoptotic molecules Bax and Bak sets an internal clock for the platelet lifespan, and BH3-only proteins, mitochondrial permeabilization, and phosphatidylserine (PS) exposure may also contribute to apoptosis-induced platelet clearance. Binding of plasma von Willebrand factor or antibodies to the ligand-binding domain of glycoprotein Ibα (GPIbα) on platelets can activate GPIb-IX in a shear-dependent manner by inducing unfolding of the mechanosensory domain therein, and trigger downstream signaling in the platelet including desialylation and PS exposure. Deglycosylated platelets are recognized by the Ashwell-Morell receptor and potentially other scavenger receptors, and are rapidly cleared by hepatocytes and/or macrophages. Inhibitors of platelet clearance pathways, including inhibitors of GPIbα shedding, neuraminidases, and platelet signaling, are efficacious at preserving the viability of platelets during storage and improving their recovery and survival in vivo. Overall, common mechanisms of platelet clearance have begun to emerge, suggesting potential strategies to extend the shelf-life of platelets stored at room temperature or to enable refrigerated storage.
Collapse
|
8
|
Only the strong: when antibodies hold on. Blood 2018; 131:713-714. [PMID: 29449302 DOI: 10.1182/blood-2017-12-821561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Fc-independent immune thrombocytopenia via mechanomolecular signaling in platelets. Blood 2017; 131:787-796. [PMID: 29203584 DOI: 10.1182/blood-2017-05-784975] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/27/2017] [Indexed: 01/13/2023] Open
Abstract
Immune thrombocytopenia (ITP) is a prevalent autoimmune disease characterized by autoantibody-induced platelet clearance. Some ITP patients are refractory to standard immunosuppressive treatments such as intravenous immunoglobulin (IVIg). These patients often have autoantibodies that target the ligand-binding domain (LBD) of glycoprotein Ibα (GPIbα), a major subunit of the platelet mechanoreceptor complex GPIb-IX. However, the molecular mechanism of this Fc-independent platelet clearance is not clear. Here, we report that many anti-LBD monoclonal antibodies such as 6B4, but not AK2, activated GPIb-IX in a shear-dependent manner and induced IVIg-resistant platelet clearance in mice. Single-molecule optical tweezer measurements of antibodies pulling on full-length GPIb-IX demonstrated that the unbinding force needed to dissociate 6B4 from the LBD far exceeds the force required to unfold the juxtamembrane mechanosensory domain (MSD) in GPIbα, unlike the AK2-LBD unbinding force. Binding of 6B4, not AK2, induced shear-dependent unfolding of the MSD on the platelet, as evidenced by increased exposure of a linear sequence therein. Imaging flow cytometry and aggregometry measurements of platelets and LBD-coated platelet-mimetic beads revealed that 6B4 can sustain crosslinking of platelets under shear, whereas 6B4 Fab and AK2 cannot. These results suggest a novel mechanism by which anti-LBD antibodies can exert a pulling force on GPIb-IX via platelet crosslinking, activating GPIb-IX by unfolding its MSD and inducing Fc-independent platelet clearance.
Collapse
|
10
|
Abstract
Whilst significant effort has been focused on development of tools and approaches to clinically modulate activation processes that consume platelets, the platelet receptors that initiate activation processes remain untargeted. The modulation of receptor levels is also linked to underlying platelet aging processes which influence normal platelet lifespan and also the functionality and survival of stored platelets that are used in transfusion. In this review, we will focus on platelet adhesion receptors initiating thrombus formation, and discuss how regulation of levels of these receptors impact platelet function and platelet survival.
Collapse
Affiliation(s)
- Robert K Andrews
- a Australian Centre for Blood Diseases , Monash University , Melbourne , Australia
| | - Elizabeth E Gardiner
- b Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research , Australian National University , Canberra , Australia
| |
Collapse
|
11
|
Chen W, Liang X, Syed AK, Jessup P, Church WR, Ware J, Josephson CD, Li R. Inhibiting GPIbα Shedding Preserves Post-Transfusion Recovery and Hemostatic Function of Platelets After Prolonged Storage. Arterioscler Thromb Vasc Biol 2016; 36:1821-8. [PMID: 27417583 DOI: 10.1161/atvbaha.116.307639] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The platelet storage lesion accelerates platelet clearance after transfusion, but the underlying molecular mechanism remains elusive. Although inhibiting sheddase activity hampers clearance of platelets with storage lesion, the target platelet protein responsible for ectodomain shedding-induced clearance is not definitively identified. Monoclonal antibody 5G6 was developed recently to bind specifically human platelet receptor glycoprotein (GP)Ibα and inhibit its shedding but not shedding of other receptors. Here, the role of GPIbα shedding in platelet clearance after transfusion was addressed. APPROACH AND RESULTS Both human leukoreduced apheresis-derived platelets and transgenic mouse platelets expressing human GPIbα were stored at room temperature in the presence and absence of 5G6 Fab fragment. At various time points, aliquots of stored platelets were analyzed and compared. 5G6 Fab inhibited GPIbα shedding in both platelets during storage and preserved higher level of GPIbα on the platelet surface. Compared with age-matched control platelets, 5G6 Fab-stored platelets exhibited similar levels of platelet activation, degranulation, and agonist-induced aggregation. 5G6 Fab-stored human GPIbα platelets exhibited significantly higher post-transfusion recovery and in vivo hemostatic function in recipient mice than control platelets. Consistently, 5G6 Fab-stored, 8-day-old human platelets produced similar improvement in post-transfusion recovery in immunodeficient mice and in ex vivo thrombus formation over collagen under shear flow. CONCLUSIONS Specific inhibition of GPIbα shedding in the stored platelets improves post-transfusion platelet recovery and hemostatic function, providing clear evidence for GPIbα shedding as a cause of platelet clearance. These results suggest that specific inhibition of GPIbα shedding may be used to optimize platelet storage conditions.
Collapse
Affiliation(s)
- Wenchun Chen
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Xin Liang
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Anum K Syed
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Paula Jessup
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - William R Church
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Jerry Ware
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Cassandra D Josephson
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Renhao Li
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.).
| |
Collapse
|
12
|
Abstract
Platelet numbers are intricately regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. The growth factor thrombopoietin (TPO) drives platelet biogenesis by inducing megakaryocyte production. A recent study in mice identified a feedback mechanism by which clearance of aged, desialylated platelets stimulates TPO synthesis by hepatocytes. This new finding generated renewed interest in platelet clearance mechanisms. Here, different established and emerging mechanisms of platelet senescence and clearance will be reviewed with specific emphasis on the role of posttranslational modifications.
Collapse
Affiliation(s)
- Renhao Li
- a Aflac Cancer and Blood Disorders Center, Department of Pediatrics , Emory University School of Medicine , Atlanta , GA , USA
| | - Karin M Hoffmeister
- b Division of Hematology, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Hervé Falet
- b Division of Hematology, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| |
Collapse
|