1
|
Hacisuleyman A, Erman B. Fine tuning rigid body docking results using the Dreiding force field: A computational study of 36 known nanobody-protein complexes. Proteins 2023; 91:1417-1426. [PMID: 37232507 DOI: 10.1002/prot.26529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
This paper aims to understand the binding strategies of a nanobody-protein pair by studying known complexes. Rigid body protein-ligand docking programs produce several complexes, called decoys, which are good candidates with high scores of shape complementarity, electrostatic interactions, desolvation, buried surface area, and Lennard-Jones potentials. However, the decoy that corresponds to the native structure is not known. We studied 36 nanobody-protein complexes from the single domain antibody database, sd-Ab DB, http://www.sdab-db.ca/. For each structure, a large number of decoys are generated using the Fast Fourier Transform algorithm of the software ZDOCK. The decoys were ranked according to their target protein-nanobody interaction energies, calculated by using the Dreiding Force Field, with rank 1 having the lowest interaction energy. Out of 36 protein data bank (PDB) structures, 25 true structures were predicted as rank 1. Eleven of the remaining structures required Ångstrom size rigid body translations of the nanobody relative to the protein to match the given PDB structure. After the translation, the Dreiding interaction (DI) energies of all complexes decreased and became rank 1. In one case, rigid body rotations as well as translations of the nanobody were required for matching the crystal structure. We used a Monte Carlo algorithm that randomly translates and rotates the nanobody of a decoy and calculates the DI energy. Results show that rigid body translations and the DI energy are sufficient for determining the correct binding location and pose of ZDOCK created decoys. A survey of the sd-Ab DB showed that each nanobody makes at least one salt bridge with its partner protein, indicating that salt bridge formation is an essential strategy in nanobody-protein recognition. Based on the analysis of the 36 crystal structures and evidence from existing literature, we propose a set of principles that could be used in the design of nanobodies.
Collapse
Affiliation(s)
- Aysima Hacisuleyman
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Burak Erman
- Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
2
|
Kinoshita S, Nakakido M, Mori C, Kuroda D, Caaveiro JM, Tsumoto K. Molecular basis for thermal stability and affinity in a VHH: Contribution of the framework region and its influence in the conformation of the CDR3. Protein Sci 2022; 31:e4450. [PMID: 36153698 PMCID: PMC9601775 DOI: 10.1002/pro.4450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
The camelid single domain antibody, referred to VHH or Nanobody, is considered a versatile tool for various biotechnological and clinical applications because of its favorable biophysical properties. To take advantage of these characteristics and for its application in biotechnology and therapy, research on VHH engineering is currently vigorously conducted. To humanize a camelid VHH, we performed complementarity determining region (CDR) grafting using a humanized VHH currently in clinical trials, and investigated the effects of these changes on the biophysical properties of the resulting VHH. The chimeric VHH exhibited a significant decrease in affinity and thermal stability and a large conformational change in the CDR3. To elucidate the molecular basis for these changes, we performed mutational analyses on the framework regions revealing the contribution of individual residues within the framework region. It is demonstrated that the mutations resulted in the loss of affinity and lower thermal stability, revealing the significance of bulky residues in the vicinity of the CDR3, and the importance of intramolecular interactions between the CDR3 and the framework-2 region. Subsequently, we performed back-mutational analyses on the chimeric VHH. Back-mutations resulted in an increase of the thermal stability and affinity. These data suggested that back-mutations restored the intramolecular interactions, and proper positioning and/or dynamics of the CDR3, resulting in the gain of thermal stability and affinity. These observations revealed the molecular contribution of the framework region on VHHs and further designability of the framework region of VHHs without modifying the CDRs.
Collapse
Affiliation(s)
- Seisho Kinoshita
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Chinatsu Mori
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Daisuke Kuroda
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
- Research Center for Drug and Vaccine DevelopmentNational Institute of Infectious DiseasesTokyoJapan
| | - Jose M.M. Caaveiro
- Laboratory of Global Healthcare, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
- Medical Proteomics Laboratory, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
3
|
Zhou Q, Zhao L, Shao Z, Declerck P, Leung LLK, Morser J. Both plasma basic carboxypeptidases, carboxypeptidase B2 and carboxypeptidase N, regulate vascular leakage activity in mice. J Thromb Haemost 2022; 20:238-244. [PMID: 34626062 DOI: 10.1111/jth.15551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Kallikrein is generated when the contact system is activated, subsequently cleaving high molecular weight kininogen to bradykinin (BK). BK binds to bradykinin receptor 2, causing vascular leakage. BK is inactivated by proteolysis by the plasma carboxypeptidase B2 and N (CPB2 and CPN). CPN is constitutively active but CPB2 is generated from its zymogen, proCPB2. OBJECTIVES Determine the role of CPB2 and CPN in the regulation of vascular leakage. METHODS Mice deficient in CPB2, CPN, or both (Cpb2-/- , Cpn-/- , and Cpb2-/- /Cpn-/- ) were compared with wild-type mice (WT) in a model of vascular leakage caused by skin irritation. In some experiments, mice were pretreated with antibodies that prevent activation of proCPB2. RESULTS Skin irritation increased vascular leakage most in Cpb2-/- /Cpn-/- , less in Cpb2-/- and Cpn-/- , and least in WT mice. There was no difference in vascular leakage without the challenge. Antibodies inhibiting activation of proCPB2 by plasmin, but not by the thrombin/thrombomodulin complex, increased vascular leakage to the level seen in Cpb2-/- mice. There was no change in levels of markers of coagulation and fibrinolysis. CONCLUSIONS Bradykinin is inactivated by both CPB2 and CPN independently. Plasmin is the activator of proCPB2 in this model. Mice lacking both plasma carboxypeptidases have more vascular leak than those lacking either alone. Although BK levels were not determined, BK is the likely substrate for CPB2 and CPN in this model.
Collapse
Affiliation(s)
- Qin Zhou
- Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Lei Zhao
- Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Zhifei Shao
- Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Lawrence L K Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
4
|
PCRCR complex is essential for invasion of human erythrocytes by Plasmodium falciparum. Nat Microbiol 2022; 7:2039-2053. [PMID: 36396942 PMCID: PMC9712106 DOI: 10.1038/s41564-022-01261-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
The most severe form of malaria is caused by Plasmodium falciparum. These parasites invade human erythrocytes, and an essential step in this process involves the ligand PfRh5, which forms a complex with cysteine-rich protective antigen (CyRPA) and PfRh5-interacting protein (PfRipr) (RCR complex) and binds basigin on the host cell. We identified a heteromeric disulfide-linked complex consisting of P. falciparum Plasmodium thrombospondin-related apical merozoite protein (PfPTRAMP) and P. falciparum cysteine-rich small secreted protein (PfCSS) and have shown that it binds RCR to form a pentameric complex, PCRCR. Using P. falciparum lines with conditional knockouts, invasion inhibitory nanobodies to both PfPTRAMP and PfCSS, and lattice light-sheet microscopy, we show that they are essential for merozoite invasion. The PCRCR complex functions to anchor the contact between merozoite and erythrocyte membranes brought together by strong parasite deformations. We solved the structure of nanobody-PfCSS complexes to identify an inhibitory epitope. Our results define the function of the PCRCR complex and identify invasion neutralizing epitopes providing a roadmap for structure-guided development of these proteins for a blood stage malaria vaccine.
Collapse
|
5
|
Medcalf RL, Keragala CB. The Fibrinolytic System: Mysteries and Opportunities. Hemasphere 2021; 5:e570. [PMID: 34095754 PMCID: PMC8171360 DOI: 10.1097/hs9.0000000000000570] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The deposition and removal of fibrin has been the primary role of coagulation and fibrinolysis, respectively. There is also little doubt that these 2 enzyme cascades influence each other given they share the same serine protease family ancestry and changes to 1 arm of the hemostatic pathway would influence the other. The fibrinolytic system in particular has also been known for its capacity to clear various non-fibrin proteins and to activate other enzyme systems, including complement and the contact pathway. Furthermore, it can also convert a number of growth factors into their mature, active forms. More recent findings have extended the reach of this system even further. Here we will review some of these developments and also provide an account of the influence of individual players of the fibrinolytic (plasminogen activating) pathway in relation to physiological and pathophysiological events, including aging and metabolism.
Collapse
Affiliation(s)
- Robert L. Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Victoria, Australia
| | - Charithani B. Keragala
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Victoria, Australia
| |
Collapse
|
6
|
Sillen M, Declerck PJ. Thrombin Activatable Fibrinolysis Inhibitor (TAFI): An Updated Narrative Review. Int J Mol Sci 2021; 22:ijms22073670. [PMID: 33916027 PMCID: PMC8036986 DOI: 10.3390/ijms22073670] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/02/2023] Open
Abstract
Thrombin activatable fibrinolysis inhibitor (TAFI), a proenzyme, is converted to a potent attenuator of the fibrinolytic system upon activation by thrombin, plasmin, or the thrombin/thrombomodulin complex. Since TAFI forms a molecular link between coagulation and fibrinolysis and plays a potential role in venous and arterial thrombotic diseases, much interest has been tied to the development of molecules that antagonize its function. This review aims at providing a general overview on the biochemical properties of TAFI, its (patho)physiologic function, and various strategies to stimulate the fibrinolytic system by interfering with (activated) TAFI functionality.
Collapse
|
7
|
Cheloha RW, Harmand TJ, Wijne C, Schwartz TU, Ploegh HL. Exploring cellular biochemistry with nanobodies. J Biol Chem 2020; 295:15307-15327. [PMID: 32868455 PMCID: PMC7650250 DOI: 10.1074/jbc.rev120.012960] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Reagents that bind tightly and specifically to biomolecules of interest remain essential in the exploration of biology and in their ultimate application to medicine. Besides ligands for receptors of known specificity, agents commonly used for this purpose are monoclonal antibodies derived from mice, rabbits, and other animals. However, such antibodies can be expensive to produce, challenging to engineer, and are not necessarily stable in the context of the cellular cytoplasm, a reducing environment. Heavy chain-only antibodies, discovered in camelids, have been truncated to yield single-domain antibody fragments (VHHs or nanobodies) that overcome many of these shortcomings. Whereas they are known as crystallization chaperones for membrane proteins or as simple alternatives to conventional antibodies, nanobodies have been applied in settings where the use of standard antibodies or their derivatives would be impractical or impossible. We review recent examples in which the unique properties of nanobodies have been combined with complementary methods, such as chemical functionalization, to provide tools with unique and useful properties.
Collapse
Affiliation(s)
- Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Charlotte Wijne
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
8
|
Peyron I, Kizlik‐Masson C, Dubois M, Atsou S, Ferrière S, Denis CV, Lenting PJ, Casari C, Christophe OD. Camelid-derived single-chain antibodies in hemostasis: Mechanistic, diagnostic, and therapeutic applications. Res Pract Thromb Haemost 2020; 4:1087-1110. [PMID: 33134775 PMCID: PMC7590285 DOI: 10.1002/rth2.12420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
Hemostasis is a complex process involving the concerted action of molecular and vascular components. Its basic understanding as well as diagnostic and therapeutic aspects have greatly benefited from the use of monoclonal antibodies. Interestingly, camelid-derived single-domain antibodies (sdAbs), also known as VHH or nanobodies, have become available during the previous 2 decades as alternative tools in this regard. Compared to classic antibodies, sdAbs are easier to produce and their small size facilitates their engineering and functionalization. It is not surprising, therefore, that sdAbs are increasingly used in hemostasis-related research. In addition, they have the capacity to recognize unique epitopes unavailable to full monoclonal antibodies. This property can be used to develop novel diagnostic tests identifying conformational variants of hemostatic proteins. Examples include sdAbs that bind active but not globular von Willebrand factor or free factor VIIa but not tissue factor-bound factor VIIa. Finally, sdAbs have a high therapeutic potential, exemplified by caplacizumab, a homodimeric sdAb targeting von Willebrand factor that is approved for the treatment of thrombotic thrombocytopenic purpura. In this review, the various applications of sdAbs in thrombosis and hemostasis-related research, diagnostics, and therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ivan Peyron
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | | - Marie‐Daniéla Dubois
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
- EA 7525 VPMCUniversité des AntillesSchoelcherMartiniqueFrance
| | - Sénadé Atsou
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Stephen Ferrière
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Cécile V. Denis
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Peter J. Lenting
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Caterina Casari
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | |
Collapse
|
9
|
Rehill AM, Preston RJS. A new thrombomodulin-related coagulopathy. J Thromb Haemost 2020; 18:2123-2125. [PMID: 32881335 DOI: 10.1111/jth.14987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
10
|
Sillen M, Weeks SD, Strelkov SV, Declerck PJ. Structural Insights into the Mechanism of a Nanobody That Stabilizes PAI-1 and Modulates Its Activity. Int J Mol Sci 2020; 21:ijms21165859. [PMID: 32824134 PMCID: PMC7461574 DOI: 10.3390/ijms21165859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being critically involved in fibrinolysis and wound healing, emerging evidence indicates that PAI-1 plays an important role in many diseases, including cardiovascular disease, tissue fibrosis, and cancer. Targeting PAI-1 is therefore a promising therapeutic strategy in PAI-1 related pathologies. Despite ongoing efforts no PAI-1 inhibitors were approved to date for therapeutic use in humans. A better understanding of the molecular mechanisms of PAI-1 inhibition is therefore necessary to guide the rational design of PAI-1 modulators. Here, we present a 1.9 Å crystal structure of PAI-1 in complex with an inhibitory nanobody VHH-s-a93 (Nb93). Structural analysis in combination with biochemical characterization reveals that Nb93 directly interferes with PAI-1/PA complex formation and stabilizes the active conformation of the PAI-1 molecule.
Collapse
Affiliation(s)
- Machteld Sillen
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium;
| | - Stephen D. Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.D.W); (S.V.S.)
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.D.W); (S.V.S.)
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium;
- Correspondence:
| |
Collapse
|
11
|
Jank L, Pinto-Espinoza C, Duan Y, Koch-Nolte F, Magnus T, Rissiek B. Current Approaches and Future Perspectives for Nanobodies in Stroke Diagnostic and Therapy. Antibodies (Basel) 2019; 8:antib8010005. [PMID: 31544811 PMCID: PMC6640704 DOI: 10.3390/antib8010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022] Open
Abstract
Antibody-based biologics are the corner stone of modern immunomodulatory therapy. Though highly effective in dampening systemic inflammatory processes, their large size and Fc-fragment mediated effects hamper crossing of the blood brain barrier (BBB). Nanobodies (Nbs) are single domain antibodies derived from llama or shark heavy-chain antibodies and represent a new generation of biologics. Due to their small size, they display excellent tissue penetration capacities and can be easily modified to adjust their vivo half-life for short-term diagnostic or long-term therapeutic purposes or to facilitate crossing of the BBB. Furthermore, owing to their characteristic binding mode, they are capable of antagonizing receptors involved in immune signaling and of neutralizing proinflammatory mediators, such as cytokines. These qualities combined make Nbs well-suited for down-modulating neuroinflammatory processes that occur in the context of brain ischemia. In this review, we summarize recent findings on Nbs in preclinical stroke models and how they can be used as diagnostic and therapeutic reagents. We further provide a perspective on the design of innovative Nb-based treatment protocols to complement and improve stroke therapy.
Collapse
Affiliation(s)
- Larissa Jank
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Carolina Pinto-Espinoza
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Yinghui Duan
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
12
|
Bobkov V, Zarca AM, Van Hout A, Arimont M, Doijen J, Bialkowska M, Toffoli E, Klarenbeek A, van der Woning B, van der Vliet HJ, Van Loy T, de Haard H, Schols D, Heukers R, Smit MJ. Nanobody-Fc constructs targeting chemokine receptor CXCR4 potently inhibit signaling and CXCR4-mediated HIV-entry and induce antibody effector functions. Biochem Pharmacol 2018; 158:413-424. [PMID: 30342023 DOI: 10.1016/j.bcp.2018.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
|
13
|
Arolas JL, Goulas T, Cuppari A, Gomis-Rüth FX. Multiple Architectures and Mechanisms of Latency in Metallopeptidase Zymogens. Chem Rev 2018; 118:5581-5597. [PMID: 29775286 DOI: 10.1021/acs.chemrev.8b00030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metallopeptidases cleave polypeptides bound in the active-site cleft of catalytic domains through a general base/acid mechanism. This involves a solvent molecule bound to a catalytic zinc and general regulation of the mechanism through zymogen-based latency. Sixty reported structures from 11 metallopeptidase families reveal that prosegments, mostly N-terminal of the catalytic domain, block the cleft regardless of their size. Prosegments may be peptides (5-14 residues), which are only structured within the zymogens, or large moieties (<227 residues) of one or two folded domains. While some prosegments globally shield the catalytic domain through a few contacts, others specifically run across the cleft in the same or opposite direction as a substrate, making numerous interactions. Some prosegments block the zinc by replacing the solvent with particular side chains, while others use terminal α-amino or carboxylate groups. Overall, metallopeptidase zymogens employ disparate mechanisms that diverge even within families, which supports that latency is less conserved than catalysis.
Collapse
Affiliation(s)
- Joan L Arolas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Theodoros Goulas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Anna Cuppari
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| |
Collapse
|
14
|
Gue YX, Gorog DA. Importance of Endogenous Fibrinolysis in Platelet Thrombus Formation. Int J Mol Sci 2017; 18:E1850. [PMID: 28841147 PMCID: PMC5618499 DOI: 10.3390/ijms18091850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
The processes of thrombosis and coagulation are finely regulated by endogenous fibrinolysis maintaining healthy equilibrium. When the balance is altered in favour of platelet activation and/or coagulation, or if endogenous fibrinolysis becomes less efficient, pathological thrombosis can occur. Arterial thrombosis remains a major cause of morbidity and mortality in the world despite advances in medical therapies. The role endogenous fibrinolysis in the pathogenesis of arterial thrombosis has gained increasing attention in recent years as it presents novel ways to prevent and treat existing diseases. In this review article, we discuss the role of endogenous fibrinolysis in platelet thrombus formation, methods of measurement of fibrinolytic activity, its role in predicting cardiovascular diseases and clinical outcomes and future directions.
Collapse
Affiliation(s)
- Ying X Gue
- Department of Cardiology, East and North Hertfordshire NHS Trust, Hertfordshire SG1 4AB, UK.
| | - Diana A Gorog
- Department of Cardiology, East and North Hertfordshire NHS Trust, Hertfordshire SG1 4AB, UK.
- Department of Postgraduate Medicine, University of Hertfordshire, Hertfordshire AL10 9AB, UK.
- National Heart & Lung Institute, Imperial College, London SW3 6LY, UK.
| |
Collapse
|
15
|
Kearney K, Tomlinson D, Smith K, Ajjan R. Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk. Cardiovasc Diabetol 2017; 16:34. [PMID: 28279217 PMCID: PMC5345237 DOI: 10.1186/s12933-017-0515-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022] Open
Abstract
An enhanced thrombotic environment and premature atherosclerosis are key factors for the increased cardiovascular risk in diabetes. The occlusive vascular thrombus, formed secondary to interactions between platelets and coagulation proteins, is composed of a skeleton of fibrin fibres with cellular elements embedded in this network. Diabetes is characterised by quantitative and qualitative changes in coagulation proteins, which collectively increase resistance to fibrinolysis, consequently augmenting thrombosis risk. Current long-term therapies to prevent arterial occlusion in diabetes are focussed on anti-platelet agents, a strategy that fails to address the contribution of coagulation proteins to the enhanced thrombotic milieu. Moreover, antiplatelet treatment is associated with bleeding complications, particularly with newer agents and more aggressive combination therapies, questioning the safety of this approach. Therefore, to safely control thrombosis risk in diabetes, an alternative approach is required with the fibrin network representing a credible therapeutic target. In the current review, we address diabetes-specific mechanistic pathways responsible for hypofibrinolysis including the role of clot structure, defects in the fibrinolytic system and increased incorporation of anti-fibrinolytic proteins into the clot. Future anti-thrombotic therapeutic options are discussed with special emphasis on the potential advantages of modulating incorporation of the anti-fibrinolytic proteins into fibrin networks. This latter approach carries theoretical advantages, including specificity for diabetes, ability to target a particular protein with a possible favourable risk of bleeding. The development of alternative treatment strategies to better control residual thrombosis risk in diabetes will help to reduce vascular events, which remain the main cause of mortality in this condition.
Collapse
Affiliation(s)
- Katherine Kearney
- Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, LS2 9JT, UK
| | - Darren Tomlinson
- Biomedical Health Research Centre, Astbury Building, University of Leeds, Leeds, LS2 9JT, UK
| | - Kerrie Smith
- Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, LS2 9JT, UK
| | - Ramzi Ajjan
- Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|