1
|
Li J, Liu G, Yu H, Ma H, Liu X, Tian J, Yu B. Generation of cross-reactive DNA aptamers to construct the fluorescent sensing array for identifying the origin of Toad Venom. Talanta 2025; 287:127705. [PMID: 39929049 DOI: 10.1016/j.talanta.2025.127705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/29/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Toad venom, a traditional Chinese medicine, has long been used to treat various challenging ailments. Its effectiveness and toxicity can vary depending on the types and concentrations of bufadienolides, which vary from region to region. However, identifying the origin of toad venom is challenging due to the absence of distinct visual characteristics of the original animals. Therefore, developing a scientific and practical method for origin identification is crucial to ensure the safety and efficacy of toad venom. Integrating a fluorescent sensing array with cross-reactive aptamers provides a promising solution to this issue. We isolated cross-reactive aptamers using a combination of complex target-directed SELEX and convergent selection strategies. During the selection process, we used an immobilized stem-loop library to select aptamers and evaluated the enrichment rate and pool affinity using gel elution assays. After high-throughput sequencing, we selected three cross-reactive aptamers designated N4.8, N2.4, and S1 that exhibit distinct binding profiles for bufadienolides as the biorecognition elements for the fluorescent sensing array. This sensor is capable of distinguishing toad venom from different origins with high accuracy (98.7 %), offering convenient operation, and providing a new method for detecting the origin of toad venom.
Collapse
Affiliation(s)
- Jiwei Li
- Country State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Guocai Liu
- Country State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Haixiang Yu
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Xiufeng Liu
- Country State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jiangwei Tian
- Country State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Boyang Yu
- Country State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
2
|
Xia B, Shaheen N, Chen H, Zhao J, Guo P, Zhao Y. RNA aptamer-mediated RNA nanotechnology for potential treatment of cardiopulmonary diseases. Pharmacol Res 2025; 213:107659. [PMID: 39978660 DOI: 10.1016/j.phrs.2025.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/14/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Ribonucleic acid (RNA) aptamers are single-stranded RNAs that bind to target proteins or other molecules with high specificity and affinity, modulating biological functions through distinct mechanisms. These aptamers can act n as antagonists to block pathological interactions, agonists to activate signaling pathways, or delivery vehicles for therapeutic cargos such as siRNAs and miRNAs. The advances in RNA nanotechnology further enhances the versatility of RNA aptamers, offering scalable platforms for engineering. In this review, we have summarized recent developments in RNA aptamer-mediated RNA nanotechnology and provide an overview of its potential in treating cardiovascular and respiratory disorders, including atherosclerosis, acute coronary syndromes, heart failure, lung cancer, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), acute lung injury, viral respiratory infections, and pulmonary fibrosis. By integrating aptamer technologies with innovative delivery systems, RNA aptamers hold the potential to revolutionize the treatment landscape for cardiopulmonary diseases.
Collapse
Affiliation(s)
- Boyu Xia
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nargis Shaheen
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Huilong Chen
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Sun F, Deng X, Gao H, Ding L, Zhu W, Luo H, Ye X, Luo X, Chen Z, Qin C. Characterization of Kunitz-Domain Anticoagulation Peptides Derived from Acinetobacter baumannii Exotoxin Protein F6W77. Toxins (Basel) 2024; 16:450. [PMID: 39453226 PMCID: PMC11511053 DOI: 10.3390/toxins16100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Recent studies have revealed that the coagulation system plays a role in mammalian innate defense by entrapping bacteria in clots and generating antibacterial peptides. So, it is very important for the survival of bacteria to defend against the host coagulation system, which suggests that bacterial exotoxins might be a new source of anticoagulants. In this study, we analyzed the genomic sequences of Acinetobacter baumannii and a new bacterial exotoxin protein, F6W77, with five Kunitz-domains, KABP1-5, was identified. Each Kunitz-type domain features a classical six-cysteine framework reticulated by three conserved disulfide bridges, which was obviously similar to animal Kunitz-domain peptides but different from plant Kunitz-domain peptides. Anticoagulation function evaluation showed that towards the intrinsic coagulation pathway, KABP1 and KABP5 had apparently inhibitory activity, KABP4 had weak inhibitory activity, and KBAP2 and KABP3 had no effect even at a high concentration of 20 μg/mL. All five Kunitz-domain peptides, KABP1-5, had no inhibitory activity towards the extrinsic coagulation pathway. Enzyme-inhibitor experiments showed that the high-activity anticoagulant peptide KABP1 had apparently inhibitory activity towards two key coagulation factors, Xa and XIa, which was further confirmed by pull-down experiments that showed that KABP1 can bind to coagulation factors Xa and XIa directly. Structure-function relationship analyses of five Kunitz-type domain peptides showed that the arginine of the P1 site of three new bacterial anticoagulants, KABP1, KABP4 and KABP5, might be the key residue for their anticoagulation activity. In conclusion, with bioinformatics analyses, peptide recombination, and functional evaluation, we firstly found bacterial-exotoxin-derived Kunitz-type serine protease inhibitors with selectively inhibiting activity towards intrinsic coagulation pathways, and highlighted a new interaction between pathogenic bacteria and the human coagulation system.
Collapse
Affiliation(s)
- Fang Sun
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaolin Deng
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Huanhuan Gao
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Li Ding
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wen Zhu
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Hongyi Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiangdong Ye
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xudong Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Zongyun Chen
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Chenhu Qin
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
4
|
Yu H, Kumar S, Frederiksen JW, Kolyadko VN, Pitoc G, Layzer J, Yan A, Rempel R, Francis S, Krishnaswamy S, Sullenger BA. Aptameric hirudins as selective and reversible EXosite-ACTive site (EXACT) inhibitors. Nat Commun 2024; 15:3977. [PMID: 38730234 PMCID: PMC11087511 DOI: 10.1038/s41467-024-48211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Surgery, Duke University, Durham, NC, USA
| | - Shekhar Kumar
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Vladimir N Kolyadko
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - George Pitoc
- Department of Surgery, Duke University, Durham, NC, USA
| | | | - Amy Yan
- Department of Surgery, Duke University, Durham, NC, USA
| | - Rachel Rempel
- Department of Surgery, Duke University, Durham, NC, USA
| | - Samuel Francis
- Department of Emergency Medicine, Duke University Hospital, Durham, NC, USA
| | - Sriram Krishnaswamy
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Bruce A Sullenger
- Department of Surgery, Duke University, Durham, NC, USA.
- Departments of Pharmacology & Cancer Biology and Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Yu H, Frederiksen J, Sullenger BA. Applications and future of aptamers that achieve rapid-onset anticoagulation. RNA (NEW YORK, N.Y.) 2023; 29:455-462. [PMID: 36697262 PMCID: PMC10019365 DOI: 10.1261/rna.079503.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this short Perspective, we discuss the history of, and recent progress toward, the development of aptamers that can serve as rapid onset anticoagulants during cardiopulmonary bypass (CPB), extracorporeal membrane oxygenation (ECMO), and catheter-based diagnostic and interventional procedures, several million of which are performed each year worldwide. Aptamer anticoagulants provide potent and antidote-controllable anticoagulation and have low immunogenicity. New methods of aptamer isolation and engineering have not only improved the quality of aptamers, but also accelerated their development. Unfortunately, no aptamer identified to date can produce an anticoagulant effect as potent as that produced by unfractionated heparin (UFH), the standard anticoagulant for CPB. We have suggested several possible strategies to amplify the anticoagulant potency of existing aptamer anticoagulants.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - James Frederiksen
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Bruce A Sullenger
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
6
|
Aptamers Regulating the Hemostasis System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238593. [PMID: 36500686 PMCID: PMC9739204 DOI: 10.3390/molecules27238593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The hemostasis system is a complex structure that includes the fibrinolysis system, and Yes this is correct coagulation and anticoagulation parts. Due to the multicomponent nature, it becomes relevant to study the key changes in the functioning of signaling pathways, and develop new diagnostic methods and modern drugs with high selectivity. One of the ways to solve this problem is the development of molecular recognition elements capable of blocking one of the hemostasis systems and/or activating another. Aptamers can serve as ligands for targeting specific clinical needs, promising anticoagulants with minor side effects and significant biological activity. Aptamers with several clotting factors and platelet proteins are used for the treatment of thrombosis. This review is focused on the aptamers used for the correction of the hemostasis system, and their structural and functional features. G-rich nucleic acid aptamers, mostly versatile G-quadruplexes, recognize different components of the hemostasis system and are capable of correcting the functioning.
Collapse
|
7
|
Chen X, Ma Y, Xie Y, Pu J. Aptamer-based applications for cardiovascular disease. Front Bioeng Biotechnol 2022; 10:1002285. [PMID: 36312558 PMCID: PMC9606242 DOI: 10.3389/fbioe.2022.1002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease (especially atherosclerosis) is a major cause of death worldwide, and novel diagnostic tools and treatments for this disease are urgently needed. Aptamers are single-stranded oligonucleotides that specifically recognize and bind to the targets by forming unique structures in vivo, enabling them to rival antibodies in cardiac applications. Chemically synthesized aptamers can be readily modified in a site-specific way, so they have been engineered in the diagnosis of cardiac diseases and anti-thrombosis therapeutics. Von Willebrand Factor plays a unique role in the formation of thrombus, and as an aptamer targeting molecule, has shown initial success in antithrombotic treatment. A combination of von Willebrand Factor and nucleic acid aptamers can effectively inhibit the progression of blood clots, presenting a positive diagnosis and therapeutic effect, as well as laying a novel theory and strategy to improve biocompatibility paclitaxel drug balloon or implanted stent in the future. This review summarizes aptamer-based applications in cardiovascular disease, including biomarker discovery and future management strategy. Although relevant applications are relatively new, the significant advancements achieved have demonstrated that aptamers can be promising agents to realize the integration of diagnosis and therapy in cardiac research.
Collapse
Affiliation(s)
| | | | | | - Jun Pu
- *Correspondence: Yuquan Xie, ; Jun Pu,
| |
Collapse
|
8
|
Woloszyk A, Tuong ZK, Perez L, Aguilar L, Bankole AI, Evans CH, Glatt V. Fracture hematoma micro-architecture influences transcriptional profile and plays a crucial role in determining bone healing outcomes. BIOMATERIALS ADVANCES 2022; 139:213027. [PMID: 35882120 DOI: 10.1016/j.bioadv.2022.213027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The hematoma that forms between broken fragments of bone serves as a natural fibrin scaffold, and its removal from the defect site delays bone healing. The hypothesis of this study is that the microarchitectural and mechanical properties of the initially formed hematoma has a significant effect on the regulation of the biological process, which ultimately determines the outcome of bone healing. To mimic three healing conditions in the rat femur (normal, delayed, and non-healing bone defects), three different defect sizes of 0.5, 1.5, and 5.0 mm, are respectively used. The analysis of 3-day-old hematomas demonstrates clear differences in fibrin clot micro-architecture in terms of fiber diameter, fiber density, and porosity of the formed fibrin network, which result in different mechanical properties (stiffness) of the hematoma in each model. Those differences directly affect the biological processes involved. Specifically, RNA-sequencing reveals almost 700 differentially expressed genes between normally healing and non-healing defects, including significantly up-regulated essential osteogenic genes in normally healing defects, also differences in immune cell populations, activated osteogenic transcriptional regulators as well as potential novel marker genes. Most importantly, this study demonstrates that the healing outcome has already been determined during the hematoma phase of bone healing, three days post-surgery.
Collapse
Affiliation(s)
- Anna Woloszyk
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba 4102, QLD, Australia; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| | - Louis Perez
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Leonardo Aguilar
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Abraham I Bankole
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Christopher H Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester 55902, MN, USA.
| | - Vaida Glatt
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| |
Collapse
|
9
|
Ding L, Shu Z, Hao J, Luo X, Ye X, Zhu W, Duan W, Chen Z. Schixator, a new FXa inhibitor from Schistosoma japonicum with antithrombotic effect and low bleeding risk. Biochem Biophys Res Commun 2022; 603:138-143. [DOI: 10.1016/j.bbrc.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022]
|
10
|
Soule EE, Yu H, Olson L, Naqvi I, Kumar S, Krishnaswamy S, Sullenger BA. Generation of an anticoagulant aptamer that targets factor V/Va and disrupts the FVa-membrane interaction in normal and COVID-19 patient samples. Cell Chem Biol 2022; 29:215-225.e5. [PMID: 35114109 PMCID: PMC8808741 DOI: 10.1016/j.chembiol.2022.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/11/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.
Collapse
Affiliation(s)
- Erin E. Soule
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Haixiang Yu
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Lyra Olson
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Ibtehaj Naqvi
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shekhar Kumar
- The Children’s Hospital of Philadelphia, Division of Hematology, Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sriram Krishnaswamy
- The Children’s Hospital of Philadelphia, Division of Hematology, Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bruce A. Sullenger
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA,Corresponding author
| |
Collapse
|
11
|
A review on the therapeutic applications of aptamers and aptamer-conjugated nanoparticles in cancer, inflammatory and viral diseases. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Ouyang Y, Biniuri Y, Fadeev M, Zhang P, Carmieli R, Vázquez-González M, Willner I. Aptamer-Modified Cu 2+-Functionalized C-Dots: Versatile Means to Improve Nanozyme Activities-"Aptananozymes". J Am Chem Soc 2021; 143:11510-11519. [PMID: 34286967 PMCID: PMC8856595 DOI: 10.1021/jacs.1c03939] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The covalent linkage of aptamer binding
sites to nanoparticle nanozymes
is introduced as a versatile method to improve the catalytic activity
of nanozymes by concentrating the reaction substrates at the catalytic
nanozyme core, thereby emulating the binding and catalytic active-site
functions of native enzymes. The concept is exemplified with the synthesis
of Cu2+ ion-functionalized carbon dots (C-dots), modified
with the dopamine binding aptamer (DBA) or the tyrosinamide binding
aptamer (TBA), for the catalyzed oxidation of dopamine to aminochrome
by H2O2 or the oxygenation of l-tyrosinamide
to the catechol product, which is subsequently oxidized to amidodopachrome,
in the presence of H2O2/ascorbate mixture. Sets
of structurally functionalized DBA-modified Cu2+ ion-functionalized
C-dots or sets of structurally functionalized TBA-modified Cu2+ ion-functionalized C-dots are introduced as nanozymes of
superior catalytic activities (aptananozymes) toward the oxidation
of dopamine or the oxygenation of l-tyrosinamide, respectively.
The aptananozymes reveal enhanced catalytic activities as compared
to the separated catalyst and respective aptamer constituents. The
catalytic functions of the aptananozymes are controlled by the structure
of the aptamer units linked to the Cu2+ ion-functionalized
C-dots. In addition, the aptananozyme shows chiroselective catalytic
functions demonstrated by the chiroselective-catalyzed oxidation of l/d-DOPA to l/d-dopachrome. Binding
studies of the substrates to the different aptananozymes and mechanistic
studies associated with the catalytic transformations are discussed.
Collapse
Affiliation(s)
- Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yonatan Biniuri
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
13
|
Vázquez-González M, Willner I. Aptamer-Functionalized Hybrid Nanostructures for Sensing, Drug Delivery, Catalysis and Mechanical Applications. Int J Mol Sci 2021; 22:1803. [PMID: 33670386 PMCID: PMC7918352 DOI: 10.3390/ijms22041803] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
Sequence-specific nucleic acids exhibiting selective recognition properties towards low-molecular-weight substrates and macromolecules (aptamers) find growing interest as functional biopolymers for analysis, medical applications such as imaging, drug delivery and even therapeutic agents, nanotechnology, material science and more. The present perspective article introduces a glossary of examples for diverse applications of aptamers mainly originated from our laboratory. These include the introduction of aptamer-functionalized nanomaterials such as graphene oxide, Ag nanoclusters and semiconductor quantum dots as functional hybrid nanomaterials for optical sensing of target analytes. The use of aptamer-functionalized DNA tetrahedra nanostructures for multiplex analysis and aptamer-loaded metal-organic framework nanoparticles acting as sense-and-treat are introduced. Aptamer-functionalized nano and microcarriers are presented as stimuli-responsive hybrid drug carriers for controlled and targeted drug release, including aptamer-functionalized SiO2 nanoparticles, carbon dots, metal-organic frameworks and microcapsules. A further application of aptamers involves the conjugation of aptamers to catalytic units as a means to mimic enzyme functions "nucleoapzymes". In addition, the formation and dissociation of aptamer-ligand complexes are applied to develop mechanical molecular devices and to switch nanostructures such as origami scaffolds. Finally, the article discusses future challenges in applying aptamers in material science, nanotechnology and catalysis.
Collapse
Affiliation(s)
- Margarita Vázquez-González
- Center for Nanoscience and Nanotechnology, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Center for Nanoscience and Nanotechnology, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
14
|
Kusadasi N, Sikma M, Huisman A, Westerink J, Maas C, Schutgens R. A Pathophysiological Perspective on the SARS-CoV-2 Coagulopathy. Hemasphere 2020; 4:e457. [PMID: 32885147 PMCID: PMC7430228 DOI: 10.1097/hs9.0000000000000457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
Recent evidence is focusing on the presence of a hypercoagulable state with development of both venous and arterial thromboembolic complications in patients infected with SARS-CoV-2. The ongoing activation of coagulation related to the severity of the illness is further characterized by thrombotic microangiopathy and endotheliitis. These microangiopathic changes cannot be classified as classical disseminated intravascular coagulation (DIC). In this short review we describe the interaction between coagulation and inflammation with focus on the possible mechanisms that might be involved in SARS-CoV-2 infection associated coagulopathy in the critically ill.
Collapse
Affiliation(s)
- Nuray Kusadasi
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike Sikma
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Dutch Poisons Information Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert Huisman
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Westerink
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Coen Maas
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roger Schutgens
- Van Creveldkliniek, Benign Hematology Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
15
|
Ponce AT, Hong KL. A Mini-Review: Clinical Development and Potential of Aptamers for Thrombotic Events Treatment and Monitoring. Biomedicines 2019; 7:biomedicines7030055. [PMID: 31357413 PMCID: PMC6784064 DOI: 10.3390/biomedicines7030055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023] Open
Abstract
The unique opportunity for aptamer uses in thrombotic events has sparked a considerable amount of research in the area. The short half-lives of unmodified aptamers in vivo remain one of the major challenges in therapeutic aptamers. Much of the incremental successful therapeutic aptamer stories were due to modifications in the aptamer bases. This mini-review briefly summarizes the successes and challenges in the clinical development of aptamers for thrombotic events, and highlights some of the most recent developments in using aptamers for anticoagulation monitoring.
Collapse
Affiliation(s)
- Alex T Ponce
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, 84 W. South Street, Wilkes-Barre, PA 18766, USA
| | - Ka Lok Hong
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, 84 W. South Street, Wilkes-Barre, PA 18766, USA.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Since the selection of the first thrombin-binding aptamer in 1992, the use of nucleic acid aptamers to target specific coagulation factors has emerged as a valuable approach for generating novel anticoagulant and procoagulant therapeutics. Herein, we highlight the most recent discoveries involving application of aptamers for those purposes. RECENT FINDINGS Learning from the successes and pitfalls of the FIXa-targeting aptamer pegnivacogin in preclinical and clinical studies, the latest efforts to develop antidote-controllable anticoagulation strategies for cardiopulmonary bypass that avoid unfractionated heparin involve potentiation of the exosite-binding factor X (FX)a aptamer 11F7t by combination with either a small molecule FXa catalytic site inhibitor or a thrombin aptamer. Recent work has also focused on identifying aptamer inhibitors of contact pathway factors such as FXIa and kallikrein, which may prove to be well tolerated and effective antithrombotic agents in certain clinical settings. Finally, new approaches to develop procoagulant aptamers to control bleeding associated with hemophilia and other coagulopathies involve targeting activated protein C and tissue plasminogen activator. SUMMARY Overall, these recent findings exemplify the versatility of aptamers to modulate a variety of procoagulant and anticoagulant factors, along with their capacity to be used complementarily with other aptamers or drugs for wide-ranging applications.
Collapse
|
17
|
Tillman BF, Gruber A, McCarty OJT, Gailani D. Plasma contact factors as therapeutic targets. Blood Rev 2018; 32:433-448. [PMID: 30075986 PMCID: PMC6185818 DOI: 10.1016/j.blre.2018.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
Direct oral anticoagulants (DOACs) are small molecule inhibitors of the coagulation proteases thrombin and factor Xa that demonstrate comparable efficacy to warfarin for several common indications, while causing less serious bleeding. However, because their targets are required for the normal host-response to bleeding (hemostasis), DOACs are associated with therapy-induced bleeding that limits their use in certain patient populations and clinical situations. The plasma contact factors (factor XII, factor XI, and prekallikrein) initiate blood coagulation in the activated partial thromboplastin time assay. While serving limited roles in hemostasis, pre-clinical and epidemiologic data indicate that these proteins contribute to pathologic coagulation. It is anticipated that drugs targeting the contact factors will reduce risk of thrombosis with minimal impact on hemostasis. Here, we discuss the biochemistry of contact activation, the contributions of contact factors in thrombosis, and novel antithrombotic agents targeting contact factors that are undergoing pre-clinical and early clinical testing.
Collapse
Affiliation(s)
- Benjamin F Tillman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andras Gruber
- Department of Biomedical Engineering, Oregon Health & Sciences University, Portland, OR, USA; Division of Hematology and Medical Oncology School of Medicine, Oregon Health & Sciences University, Portland, OR, USA; Aronora, Inc., Portland, OR, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Sciences University, Portland, OR, USA; Division of Hematology and Medical Oncology School of Medicine, Oregon Health & Sciences University, Portland, OR, USA
| | - David Gailani
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
18
|
Gómez-Outes A, García-Fuentes M, Suárez-Gea ML. Discovery methods of coagulation-inhibiting drugs. Expert Opin Drug Discov 2017; 12:1195-1205. [DOI: 10.1080/17460441.2017.1384811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Antonio Gómez-Outes
- Division of Pharmacology and Clinical Drug Evaluation, Medicines for Human Use, Spanish Agency for Medicines and Medical Devices (AEMPS), Madrid, Spain
| | - Minerva García-Fuentes
- Division of Pharmacology and Clinical Drug Evaluation, Medicines for Human Use, Spanish Agency for Medicines and Medical Devices (AEMPS), Madrid, Spain
| | - Mª Luisa Suárez-Gea
- Division of Pharmacology and Clinical Drug Evaluation, Medicines for Human Use, Spanish Agency for Medicines and Medical Devices (AEMPS), Madrid, Spain
| |
Collapse
|