1
|
Gray M, Nash KR, Yao Y. Adenylyl cyclase 2 expression and function in neurological diseases. CNS Neurosci Ther 2024; 30:e14880. [PMID: 39073001 PMCID: PMC11284242 DOI: 10.1111/cns.14880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
Adenylyl cyclases (Adcys) catalyze the formation of cAMP, a secondary messenger essential for cell survival and neurotransmission pathways in the CNS. Adcy2, one of ten Adcy isoforms, is highly expressed in the CNS. Abnormal Adcy2 expression and mutations have been reported in various neurological disorders in both rodents and humans. However, due to the lack of genetic tools, loss-of-function studies of Adcy2 are scarce. In this review, we summarize recent findings on Adcy2 expression and function in neurological diseases. Specifically, we first introduce the biochemistry, structure, and function of Adcy2 briefly. Next, the expression and association of Adcy2 in human patients and rodent models of neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), psychiatric disorders (Tourette syndrome, schizophrenia, and bipolar disorder), and other neurological conditions (stress-associated disorders, stroke, epilepsy, and Lesch-Nyhan Syndrome) are elaborated. Furthermore, we discuss the pros and cons of current studies as well as key questions that need to be answered in the future. We hope to provide a focused review on Adcy2 that promotes future research in the field.
Collapse
Affiliation(s)
- Marsilla Gray
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Kevin R. Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
2
|
Wei W, Pan J, Wang J, Mao S, Qian Y, Lin X, Ling Q, Ye W, Zhou Y, Zhao Y, Huang J, Huang X, Ma Z, Wang H, Li C, Sun J, Jin J. circSLC25A13 acts as a ceRNA to regulate AML progression via miR-616-3p/ADCY2 axis. Mol Carcinog 2023; 62:1546-1562. [PMID: 37493101 DOI: 10.1002/mc.23598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 07/27/2023]
Abstract
Circular RNAs (circRNAs), a type of endogenous noncoding RNA (ncRNA), exert vital roles in leukemia progression and are promising prognostic factors. Here, we report a novel circRNA, circSLC25A13 (hsa_circ_0081188), which was increased in acute myeloid leukemia (AML) patients with poor overall survival (OS) comparing to patients with good prognosis. Knockdown of circSLC25A13 in AML cells inhibited proliferation and increased cell apoptosis in vitro and in vivo. Enhanced circSLC25A13 expression promoted the survival of AML cells. Mechanistically, circSLC25A13 played as a microRNA sponge of miR-616-3p, which inhibited the expression of adenylate cyclase 2 (ADCY2). Downregulation of miR-616-3p and overexpression of ADCY2 partially rescued circSLC25A13 deficient induced cell growth arrest. In summary, through competitive absorption of miR-616-3p and thereby upregulating ADCY2 expression, circSLC25A13 promoted AML progression. Moreover, circSLC25A13 may represent a potential novel biomarker for the prognosis of AML and offer a potential therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Wenwen Wei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Yu Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Yutong Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Yanchun Zhao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Zhixin Ma
- Department of Laboratorial Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Huanping Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Chenying Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematologic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, People's Republic of China
| |
Collapse
|
3
|
Factor VII Activating Protease (FSAP) and Its Importance in Hemostasis—Part I: FSAP Structure, Synthesis and Activity Regulation: A Narrative Review. Int J Mol Sci 2023; 24:ijms24065473. [PMID: 36982544 PMCID: PMC10052181 DOI: 10.3390/ijms24065473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
Factor VII activating protease (FSAP) was first isolated from human plasma less than 30 years ago. Since then, many research groups have described the biological properties of this protease and its role in hemostasis and other processes in humans and other animals. With the progress of knowledge about the structure of FSAP, several of its relationships with other proteins or chemical compounds that may modulate its activity have been explained. These mutual axes are described in the present narrative review. The first part of our series of manuscripts on FSAP describes the structure of this protein and the processes leading to the enhancement and inhibition of its activities. The following parts, II and III, concern the role of FSAP in hemostasis and in the pathophysiology of human diseases, with particular emphasis on cardiovascular diseases.
Collapse
|
4
|
Etscheid M, Hanschmann KM, Sandset PM, Kanse SM. Development of a Factor VII Activating Protease (FSAP) generation assay and its application in studying FSAP in venous thrombosis. Thromb Res 2022; 220:24-34. [DOI: 10.1016/j.thromres.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
5
|
Ekkert A, Šliachtenko A, Grigaitė J, Burnytė B, Utkus A, Jatužis D. Ischemic Stroke Genetics: What Is New and How to Apply It in Clinical Practice? Genes (Basel) 2021; 13:48. [PMID: 35052389 PMCID: PMC8775228 DOI: 10.3390/genes13010048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
The etiology of ischemic stroke is multifactorial. Although receiving less emphasis, genetic causes make a significant contribution to ischemic stroke genesis, especially in early-onset stroke. Several stroke classification systems based on genetic information corresponding to various stroke phenotypes were proposed. Twin and family history studies, as well as candidate gene approach, are common methods to discover genetic causes of stroke, however, both have their own limitations. Genome-wide association studies and next generation sequencing are more efficient, promising and increasingly used for daily diagnostics. Some monogenic disorders, despite covering only about 7% of stroke etiology, may cause well-known clinical manifestations that include stroke. Polygenic disorders are more frequent, causing about 38% of all ischemic strokes, and their identification is a rapidly developing field of modern stroke genetics. Current advances in human genetics provide opportunity for personalized prevention of stroke and novel treatment possibilities. Genetic risk scores (GRS) and extended polygenic risk scores (PRS) estimate cumulative contribution of known genetic factors to a specific outcome of stroke. Combining those scores with clinical information and risk factor profiles might result in better primary stroke prevention. Some authors encourage the use of stroke gene panels for stroke risk evaluation and further stroke research. Moreover, new biomarkers for stroke genetic causes and novel targets for gene therapy are on the horizon. In this article, we summarize the latest evidence and perspectives of ischemic stroke genetics that could be of interest to the practitioner and useful for day-to-day clinical work.
Collapse
Affiliation(s)
- Aleksandra Ekkert
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (J.G.); (D.J.)
| | | | - Julija Grigaitė
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (J.G.); (D.J.)
| | - Birutė Burnytė
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (B.B.); (A.U.)
| | - Algirdas Utkus
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (B.B.); (A.U.)
| | - Dalius Jatužis
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (J.G.); (D.J.)
| |
Collapse
|
6
|
Moksnes MR, Røsjø H, Richmond A, Lyngbakken MN, Graham SE, Hansen AF, Wolford BN, Gagliano Taliun SA, LeFaive J, Rasheed H, Thomas LF, Zhou W, Aung N, Surakka I, Douville NJ, Campbell A, Porteous DJ, Petersen SE, Munroe PB, Welsh P, Sattar N, Smith GD, Fritsche LG, Nielsen JB, Åsvold BO, Hveem K, Hayward C, Willer CJ, Brumpton BM, Omland T. Genome-wide association study of cardiac troponin I in the general population. Hum Mol Genet 2021; 30:2027-2039. [PMID: 33961016 PMCID: PMC8522636 DOI: 10.1093/hmg/ddab124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
Circulating cardiac troponin proteins are associated with structural heart disease and predict incident cardiovascular disease in the general population. However, the genetic contribution to cardiac troponin I (cTnI) concentrations and its causal effect on cardiovascular phenotypes are unclear. We combine data from two large population-based studies, the Trøndelag Health Study and the Generation Scotland Scottish Family Health Study, and perform a genome-wide association study of high-sensitivity cTnI concentrations with 48 115 individuals. We further use two-sample Mendelian randomization to investigate the causal effects of circulating cTnI on acute myocardial infarction (AMI) and heart failure (HF). We identified 12 genetic loci (8 novel) associated with cTnI concentrations. Associated protein-altering variants highlighted putative functional genes: CAND2, HABP2, ANO5, APOH, FHOD3, TNFAIP2, KLKB1 and LMAN1. Phenome-wide association tests in 1688 phecodes and 83 continuous traits in UK Biobank showed associations between a genetic risk score for cTnI and cardiac arrhythmias, metabolic and anthropometric measures. Using two-sample Mendelian randomization, we confirmed the non-causal role of cTnI in AMI (5948 cases, 355 246 controls). We found indications for a causal role of cTnI in HF (47 309 cases and 930 014 controls), but this was not supported by secondary analyses using left ventricular mass as outcome (18 257 individuals). Our findings clarify the biology underlying the heritable contribution to circulating cTnI and support cTnI as a non-causal biomarker for AMI in the general population. Using genetically informed methods for causal inference helps inform the role and value of measuring cTnI in the general population.
Collapse
Affiliation(s)
- Marta R Moksnes
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Helge Røsjø
- Division of Research and Innovation, Akershus University Hospital, 1478 Lørenskog, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Anne Richmond
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Magnus N Lyngbakken
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
- Division of Medicine, Department of Cardiology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Sarah E Graham
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ailin Falkmo Hansen
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Brooke N Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah A Gagliano Taliun
- Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Montréal Heart Institute, Montréal, QC H1T 1C8, Canada
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Jonathon LeFaive
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Humaira Rasheed
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Laurent F Thomas
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
- BioCore - Bioinformatics Core Facility, NTNU - Norwegian University of Science and Technology, 7491 Trondheim. Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nay Aung
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London E1 4NS, UK
- Barts Heart Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, London EC1A 7BE, UK
| | - Ida Surakka
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas J Douville
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Archie Campbell
- Medical Genetics Section, CGEM, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David J Porteous
- Medical Genetics Section, CGEM, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Steffen E Petersen
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London E1 4NS, UK
- Barts Heart Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, London EC1A 7BE, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London E1 4NS, UK
| | - Paul Welsh
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Lars G Fritsche
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Jonas B Nielsen
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology Research, Statens Serum Institute, 2300 Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Bjørn Olav Åsvold
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Public Health and Nursing, HUNT Research Centre, NTNU - Norwegian University of Science and Technology, 7600 Levanger, Norway
- Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Kristian Hveem
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Public Health and Nursing, HUNT Research Centre, NTNU - Norwegian University of Science and Technology, 7600 Levanger, Norway
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Cristen J Willer
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ben M Brumpton
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Clinic of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Torbjørn Omland
- Division of Research and Innovation, Akershus University Hospital, 1478 Lørenskog, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
- Division of Medicine, Department of Cardiology, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|
7
|
Chao X, Miao F, Feng X, Shi H, Wang Y, Wu J, Zhao L, Zhang W, Jiang C. ADCY2 rs10059539 C>T polymorphism confers a decreased risk of hepatocellular carcinoma in Chinese Han women. Eur J Cancer Prev 2021; 30:351-356. [PMID: 34010241 DOI: 10.1097/cej.0000000000000638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) poses a serious threat to human health. ADCY2 gene polymorphisms may be related to HCC susceptibility. Therefore, we investigated whether ADCY2 gene polymorphisms are correlated to the risk of HCC in a Chinese Han population. METHODS In a case-control study, we examined the associations between single nucleotide polymorphisms (SNPs) in ADCY2 and HCC risk. In 434 HCC cases and 442 healthy controls, we used the Agena MassARRAY platform to select and genotype four tag SNPs in ADCY2. We used logistic regression after adjusting for age and sex to calculate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The results showed that ADCY2 rs10059539 polymorphism was associated with a reduced susceptibility to HCC in women under the dominant model (TC/TT vs. CC; OR = 0.32; 95% CI = 0.13-0.83; P = 0.018) and the log-additive model (OR = 0.32; 95% CI = 0.13-0.83; P = 0.018). CONCLUSIONS Our results support the hypothesis that ADCY2 gene polymorphisms influence the genetic susceptibility to HCC.
Collapse
Affiliation(s)
- Xu Chao
- The Second Affiliated Hospital
- The College of Basic medicine, Shaanxi University of Chinese Medicine, Xianyang
| | | | - Xuesong Feng
- The College of Basic medicine, Shaanxi University of Chinese Medicine, Xianyang
| | - Hailong Shi
- The College of Basic medicine, Shaanxi University of Chinese Medicine, Xianyang
| | - Yuewen Wang
- The College of Basic medicine, Shaanxi University of Chinese Medicine, Xianyang
| | | | | | | | - Chao Jiang
- The Second Affiliated Hospital
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Cole JW, Adigun T, Akinyemi R, Akpa OM, Bell S, Chen B, Jimenez Conde J, Lazcano Dobao U, Fernandez I, Fornage M, Gallego-Fabrega C, Jern C, Krawczak M, Lindgren A, Markus HS, Melander O, Owolabi M, Schlicht K, Söderholm M, Srinivasasainagendra V, Soriano Tárraga C, Stenman M, Tiwari H, Corasaniti M, Fecteau N, Guizzardi B, Lopez H, Nguyen K, Gaynor B, O’Connor T, Stine OC, Kittner SJ, McArdle P, Mitchell BD, Xu H, Grond-Ginsbach C. The copy number variation and stroke (CaNVAS) risk and outcome study. PLoS One 2021; 16:e0248791. [PMID: 33872305 PMCID: PMC8055008 DOI: 10.1371/journal.pone.0248791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The role of copy number variation (CNV) variation in stroke susceptibility and outcome has yet to be explored. The Copy Number Variation and Stroke (CaNVAS) Risk and Outcome study addresses this knowledge gap. METHODS Over 24,500 well-phenotyped IS cases, including IS subtypes, and over 43,500 controls have been identified, all with readily available genotyping on GWAS and exome arrays, with case measures of stroke outcome. To evaluate CNV-associated stroke risk and stroke outcome it is planned to: 1) perform Risk Discovery using several analytic approaches to identify CNVs that are associated with the risk of IS and its subtypes, across the age-, sex- and ethnicity-spectrums; 2) perform Risk Replication and Extension to determine whether the identified stroke-associated CNVs replicate in other ethnically diverse datasets and use biomarker data (e.g. methylation, proteomic, RNA, miRNA, etc.) to evaluate how the identified CNVs exert their effects on stroke risk, and lastly; 3) perform outcome-based Replication and Extension analyses of recent findings demonstrating an inverse relationship between CNV burden and stroke outcome at 3 months (mRS), and then determine the key CNV drivers responsible for these associations using existing biomarker data. RESULTS The results of an initial CNV evaluation of 50 samples from each participating dataset are presented demonstrating that the existing GWAS and exome chip data are excellent for the planned CNV analyses. Further, some samples will require additional considerations for analysis, however such samples can readily be identified, as demonstrated by a sample demonstrating clonal mosaicism. CONCLUSION The CaNVAS study will cost-effectively leverage the numerous advantages of using existing case-control data sets, exploring the relationships between CNV and IS and its subtypes, and outcome at 3 months, in both men and women, in those of African and European-Caucasian descent, this, across the entire adult-age spectrum.
Collapse
Affiliation(s)
- John W. Cole
- Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | | | | | | | - Steven Bell
- Unversity of Cambridge, Cambridge, England, United Kingdom
| | - Bowang Chen
- National Center for Cardiovascular Diseases, Beijing, China
| | | | - Uxue Lazcano Dobao
- IMIM-Hospital del Mar; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Israel Fernandez
- Institute of Research Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Myriam Fornage
- University of Texas Health Science at Houston, Institute of Molecular Medicine & School of Public Health, Houston, TX, United States of America
| | | | | | - Michael Krawczak
- Institute of Medical Statistics and Informatics, University of Kiel, Kiel, Germany
| | | | - Hugh S. Markus
- Unversity of Cambridge, Cambridge, England, United Kingdom
| | | | | | - Kristina Schlicht
- Institute of Medical Statistics and Informatics, University of Kiel, Kiel, Germany
| | - Martin Söderholm
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital Malmö and Lund, Lund, Sweden
| | | | | | | | - Hemant Tiwari
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Margaret Corasaniti
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Natalie Fecteau
- Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Beth Guizzardi
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Haley Lopez
- Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Kevin Nguyen
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Brady Gaynor
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Timothy O’Connor
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - O. Colin Stine
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Steven J. Kittner
- Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Patrick McArdle
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Braxton D. Mitchell
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Huichun Xu
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | | |
Collapse
|
9
|
Olsson Lindvall M, Angerfors A, Andersson B, Nilsson S, Davila Lopez M, Hansson L, Stanne TM, Jern C. Comparison of DNA Methylation Profiles of Hemostatic Genes between Liver Tissue and Peripheral Blood within Individuals. Thromb Haemost 2020; 121:573-583. [PMID: 33202445 PMCID: PMC8116175 DOI: 10.1055/s-0040-1720980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
DNA methylation has become increasingly recognized in the etiology of complex diseases, including thrombotic disorders. Blood is often collected in epidemiological studies for genotyping and has recently also been used to examine DNA methylation in epigenome-wide association studies. DNA methylation patterns are often tissue-specific, thus, peripheral blood may not accurately reflect the methylation pattern in the tissue of relevance. Here, we collected paired liver and blood samples concurrently from 27 individuals undergoing liver surgery. We performed targeted bisulfite sequencing for a set of 35 hemostatic genes primarily expressed in liver to analyze DNA methylation levels of >10,000 cytosine-phosphate-guanine (CpG) dinucleotides. We evaluated whether DNA methylation in blood could serve as a proxy for DNA methylation in liver at individual CpGs. Approximately 30% of CpGs were nonvariable and were predominantly hypo- (<25%) or hypermethylated (>70%) in both tissues. While blood can serve as a proxy for liver at these CpGs, the low variability renders these unlikely to explain phenotypic differences. We therefore focused on CpG sites with variable methylation levels in liver. The level of blood-liver tissue correlation varied widely across these variable CpGs; moderate correlations (0.5 ≤ r < 0.75) were detected for 6% and strong correlations (r ≥ 0.75) for a further 4%. Our findings indicate that it is essential to study the concordance of DNA methylation between blood and liver at individual CpGs. This paired blood-liver dataset is intended as a resource to aid interpretation of blood-based DNA methylation results.
Collapse
Affiliation(s)
- Martina Olsson Lindvall
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Annelie Angerfors
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Bioinformatics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Björn Andersson
- Bioinformatics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | - Tara M Stanne
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christina Jern
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
10
|
Miner GH, Renton AE, Taubenfeld E, Tadros RO, Marcora E, Lookstein RA, Faries PL, Marin ML. Whole genome sequencing identifies loci specifically associated with thoracic aortic wall defects and abdominal aortic aneurysms in patients with European ancestry. JVS Vasc Sci 2020; 1:233-245. [PMID: 34617051 PMCID: PMC8489199 DOI: 10.1016/j.jvssci.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE The objective of this study was to better understand the pathophysiology and underlying genetic mechanisms behind two abdominal aortic aneurysm (AAA) subtypes using computed tomographic imaging in combination with whole genome sequencing. METHODS Patients with a known AAA and European ancestry were included in this investigation and underwent genetic and image analysis. Patients with AAAs and indications of descending thoracic aortic pathology (aortic dissection, penetrating aortic ulcers, intramural hematoma, atheromas, ulcerative plaque, and intramural ulceration, and intimal flaps/tears) were classified as having thoracic aortic disease, grouped together, and compared with patients with an AAA and a normal descending thoracic aorta. Whole genome sequencing was then performed on the 93 patients who had imaging features consistent with thoracic aortic disease and the 126 patients with a normal descending thoracic aorta. RESULTS The results of this study suggest one variant-level, four gene-level, and one gene set-level associations in patients with thoracic aortic disease who also had an AAA. The variant rs79508780 located in TSEN54 achieved study-wide significance (P = 1.71E-06). BATF3 and SMLR1 were significantly associated and EFCAB3 and TAF4 were reached suggestive assocation with a diseased descending thoracic aorta (P = 5.23E-26, P = 1.86E-25, P = 1.54E-05, and P = 8.31E-05, respectively). Gene sets were also compiled using MSigDB and trait-based index single nucleotide variation from major genome-wide association studies. GO_DNA_DOUBLE_STRAND_BREAK_PROCESSING, a gene set related to double-stranded DNA break repair, was significantly associated with thoracic aortic disease in AAA patients (P = 1.80E-06). CONCLUSIONS This pilot study provides further evidence that an AAA may be the end result of multiple degenerative pathways. Genetic variations in vitamin D signaling, cholesterol metabolism, extracellular matrix breakdown, and double-stranded DNA break repair pathways were associated with European patients who had an AAA and thoracic aortic disease. Additionally, this study provides support for the application of a radiogenomic approach for the investigation of other potential pathologies that could lead to the development of an AAA or influence future management decisions. (JVS-Vascular Science.). CLINICAL RELEVANCE In this study, we provide evidence that abdominal aortic aneurysms (AAAs) may be a result of multiple pathophysiologies rather than a single disease. We have identified genetic variants involved in vitamin D signaling, cholesterol metabolism, extracellular matrix breakdown, and double-stranded DNA break repair associated with structural defects in the aortic wall in patients with AAAs who are of European descent. Patients with AAAs and structural defects in the thoracic aorta have been previously linked to differential behavior after endovascular aneurysm repair. These patients with wall defects exhibited greater sac regression, a marker of surgical success, after endovascular aneurysm repair. Our study demonstrates the usefulness of a radiogenomic approach for elucidating mechanisms behind the formation and future behavior of AAAs that could aid surgeons in making future procedural and management decisions.
Collapse
|
11
|
Olsson M, Stanne TM, Pedersen A, Lorentzen E, Kara E, MartinezâPalacian A, RÃnnow Sand NP, Jacobsen AF, Sandset PM, Sidelmann JJ, EngstrÃm G, Melander O, Kanse SM, Jern C. Genome-wide analysis of genetic determinants of circulating factor VII-activating protease (FSAP) activity. J Thromb Haemost 2018; 16:2024-2034. [PMID: 30070759 PMCID: PMC6485504 DOI: 10.1111/jth.14258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 01/17/2023]
Abstract
Essentials Knowledge of genetic regulators of plasma factor VII activating protease (FSAP) levels is limited. We performed a genome-wide analysis of variants influencing FSAP activity in Scandinavian cohorts. We replicated an association for Marburg-1 and identified an association for a HABP2 stop variant. We identified a novel locus near ADCY2 as a potential additional regulator of FSAP activity. SUMMARY Background Factor VII-activating protease (FSAP) has roles in both coagulation and fibrinolysis. Recent data indicate its involvement in several other processes, such as vascular remodeling and inflammation. Plasma FSAP activity is highly variable among healthy individuals and, apart from the low-frequency missense variant Marburg-I (rs7080536) in the FSAP-encoding gene HABP2, determinants of this variation are unclear. Objectives To identify novel genetic variants within and outside of the HABP2 locus that influence circulating FSAP activity. Patients/Methods We performed an exploratory genome-wide association study (GWAS) on plasma FSAP activity amongst 3230 Swedish subjects. Directly genotyped rare variants were also analyzed with gene-based tests. Using GWAS, we confirmed the strong association between the Marburg-I variant and FSAP activity. HABP2 was also significant in the gene-based analysis, and remained significant after exclusion of Marburg-I carriers. This was attributable to a rare HABP2 stop variant (rs41292628). Carriers of this stop variant showed a similar reduction in FSAP activity as Marburg-I carriers, and this finding was replicated. A secondary genome-wide significant locus was identified at a 5p15 locus (rs35510613), and this finding requires future replication. This common variant is located upstream of ADCY2, which encodes a protein catalyzing the formation of cAMP. Results and Conclusions This study verified the Marburg-I variant to be a strong regulator of FSAP activity, and identified an HABP2 stop variant with a similar impact on FSAP activity. A novel locus near ADCY2 was identified as a potential additional regulator of FSAP activity.
Collapse
Affiliation(s)
- M. Olsson
- Department of Pathology and GeneticsInstitute of BiomedicineThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - T. M. Stanne
- Department of Pathology and GeneticsInstitute of BiomedicineThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - A. Pedersen
- Department of Pathology and GeneticsInstitute of BiomedicineThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - E. Lorentzen
- Bioinformatics Core FacilityUniversity of GothenburgGothenburgSweden
| | - E. Kara
- Institute of Basic Medical SciencesFaculty of MedicineUniversity of OsloOsloNorway
| | - A. MartinezâPalacian
- Institute of Basic Medical SciencesFaculty of MedicineUniversity of OsloOsloNorway
| | - N. P. RÃnnow Sand
- Department of CardiologyHospital of South West DenmarkEsbjerg and Department of Regional Health ResearchFaculty of Health ScienceUniversity of Southern DenmarkEsbjergDenmark
| | - A. F. Jacobsen
- Department of ObstetricsOslo University Hospital and University of OsloOsloNorway
| | - P. M. Sandset
- Department of HematologyOslo University Hospital and University of OsloOsloNorway
| | - J. J. Sidelmann
- Unit for Thrombosis ResearchDepartment of Regional Health ResearchFaculty of Health ScienceUniversity of Southern DenmarkEsbjergDenmark
| | - G. EngstrÃm
- Department of Clinical Sciences, MalmÃLund UniversityLundSweden
| | - O. Melander
- Department of Clinical Sciences, MalmÃLund UniversityLundSweden
| | - S. M. Kanse
- Institute of Basic Medical SciencesFaculty of MedicineUniversity of OsloOsloNorway
| | - C. Jern
- Department of Pathology and GeneticsInstitute of BiomedicineThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
| |
Collapse
|