1
|
Tsai HJ, Chang YF, Hsieh YJ, Wang JD, Wu CC, Ho MY, Cheng JC, Chen DP, Liao HR, Tseng CP. Human Disabled-2 regulates thromboxane A 2 signaling for efficient hemostasis in thrombocytopenia. Nat Commun 2024; 15:9816. [PMID: 39537612 PMCID: PMC11561248 DOI: 10.1038/s41467-024-54093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding platelet protein functions facilitates better assessment of platelet disorders. Megakaryocyte lineage-restricted human Disabled-2 knock-in (hDAB2-KI) mice are generated to delineate the functions of hDab2, a regulator of platelet function, in the control of bleeding associated with thrombocytopenia. Here we show that hDab2-KI mice with thrombocytopenia display decreased bleeding time when compared to the control mice. hDab2 augments thromboxane A2 (TxA2) mimetic U46619- but not other agonists-stimulated granule secretion, integrin activation, and aggregation at a lower platelet concentration in vitro. Binding of hDab2 to phosphatidic acid (PA) facilitates formation of the PA-hDab2-AKT complex leading to an increase in U46619-stimulated AKT-Ser473 phosphorylation and the first wave of ADP/ATP release. Consistent with these findings, hDab2 expression in platelets from patients with immune thrombocytopenic purpura is positively correlated with U46619-stimulated ATP release, which in turn inversely correlated with their bleeding tendency. hDab2 appears crucial in regulating bleeding severity associated with thrombocytopenia by a functional interplay with ADP/ATP release underlying TxA2 signaling.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ya-Fang Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, 407, Taiwan, Republic of China
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan, Republic of China
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Meng-Ying Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, North District, Taichung, 404, Taiwan, Republic of China
| | - Ding-Ping Chen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Hsiang-Rui Liao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China.
| |
Collapse
|
2
|
Zepeda-Olmos PM, Esparza-García E, Robles-Espinoza K, González-García JR, Rodríguez Gutiérrez PG, Magaña-Torres MT. Variants of the PTPN11 Gene in Mexican Patients with Noonan Syndrome. Genes (Basel) 2024; 15:1379. [PMID: 39596579 PMCID: PMC11593480 DOI: 10.3390/genes15111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Noonan syndrome (NS) is a genetic multisystem disease characterized by distinctive facial features, short stature, chest deformity, and congenital heart defects. NS is caused by gene variants of the RAS/MAPK pathway, with PTPN11 accounting for about 50% of cases. This study aimed to identify PTPN11 pathogenic variants in Mexican patients with NS to enhance our understanding of the disease in this population. Methods: This study included 91 probands and 60 relatives, all of which were clinically evaluated by a geneticist. Sanger sequencing was used to screen the entire PTPN11 gene. Results: Twenty-one previously reported pathogenic variants were identified in 47.3% of the probands. The most frequently occurring were p.Asn308Asp (16.3%) and p.Met504Val (16.3%). Variants p.Tyr279Cys and p.Thr468Met were found exclusively in patients with lentiginosis. Eighty-three percent of patients carried a variant in one of the three exons (3, 8, or 13) where the greatest genetic diversity was observed. Common clinical findings identified in probands included short stature (82%), cardiac anomalies (70.7%), short neck (68.4%), and pectus excavatum (63.2%), although features represented by only one patient each were also detected. Conclusions: This study confirmed the clinical diagnosis of NS in 43 probands and 11 relatives, and further genetic analysis of the remaining 48 probands is required to identify the causal variant. The genetic and clinical variability observed in our cohort was consistent with reports from other populations, underscoring the importance of comprehensive care for all patients. This research provides the most extensive clinical and molecular characterization of NS in Mexican patients, identifying pathogenic variants of PTPN11.
Collapse
Affiliation(s)
- Paola Montserrat Zepeda-Olmos
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44360, Jalisco, Mexico; (P.M.Z.-O.); (K.R.-E.); (J.R.G.-G.); (P.G.R.G.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| | - Eduardo Esparza-García
- Unidad Médica de Alta Especialidad, Hospital de Pediatría del Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Belisario Domínguez 735, La Perla, Guadalajara 44360, Jalisco, Mexico;
| | - Kiabeth Robles-Espinoza
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44360, Jalisco, Mexico; (P.M.Z.-O.); (K.R.-E.); (J.R.G.-G.); (P.G.R.G.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| | - Juan Ramón González-García
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44360, Jalisco, Mexico; (P.M.Z.-O.); (K.R.-E.); (J.R.G.-G.); (P.G.R.G.)
| | - Perla Graciela Rodríguez Gutiérrez
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44360, Jalisco, Mexico; (P.M.Z.-O.); (K.R.-E.); (J.R.G.-G.); (P.G.R.G.)
| | - María Teresa Magaña-Torres
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44360, Jalisco, Mexico; (P.M.Z.-O.); (K.R.-E.); (J.R.G.-G.); (P.G.R.G.)
| |
Collapse
|
3
|
Montecino-Garrido H, Trostchansky A, Espinosa-Parrilla Y, Palomo I, Fuentes E. How Protein Depletion Balances Thrombosis and Bleeding Risk in the Context of Platelet's Activatory and Negative Signaling. Int J Mol Sci 2024; 25:10000. [PMID: 39337488 PMCID: PMC11432290 DOI: 10.3390/ijms251810000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Platelets are small cell fragments that play a crucial role in hemostasis, requiring fast response times and fine signaling pathway regulation. For this regulation, platelets require a balance between two pathway types: the activatory and negative signaling pathways. Activatory signaling mediators are positive responses that enhance stimuli initiated by a receptor in the platelet membrane. Negative signaling regulates and controls the responses downstream of the same receptors to roll back or even avoid spontaneous thrombotic events. Several blood-related pathologies can be observed when these processes are unregulated, such as massive bleeding in activatory signaling inhibition or thrombotic events for negative signaling inhibition. The study of each protein and metabolite in isolation does not help to understand the role of the protein or how it can be contrasted; however, understanding the balance between active and negative signaling could help develop effective therapies to prevent thrombotic events and bleeding disorders.
Collapse
Affiliation(s)
- Hector Montecino-Garrido
- Centro de Estudios en Alimentos Procesados (CEAP), ANID-Regional, Gore Maule R0912001, Talca 3480094, Chile
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Yolanda Espinosa-Parrilla
- Interuniversity Center for Healthy Aging (CIES), Centro Asistencial, Docente e Investigación-CADI-UMAG, Escuela de Medicina, Universidad de Magallanes, Punta Arenas 6210427, Chile
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
4
|
Sha M, Li H, Guo B, Geng X. Myeloid-specific knockout of SHP2 regulates PI3K/PLCγ signaling pathway to protect against early myocardial infarction injury. Aging (Albany NY) 2023; 15:9877-9889. [PMID: 37768203 PMCID: PMC10564428 DOI: 10.18632/aging.205096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVES To study the effects of myeloid-specific knockout of SHP2 on early myocardial infarction and explore its molecular mechanism. METHODS The model of myocardial infarction was established by using SHP2 in myeloid-specific knockout mice, and the effect of SHP2MAC-KO on myocardial function was detected by echocardiography. The effects of SHP2 on myocardial infarct size in myeloid-specific knockout mice was examined by TTC assay and Masson staining. Then, the detection of apoptosis was performed using TUNEL staining and inflammatory cell infiltration was observed using immunohistochemical staining. Moreover, macrophages in mouse hearts were selected by Flow Cytometry and treated with PI3K inhibitors respectively. Western blotting was then used to detect protein expression of p-SHP2 and PI3K/PLCγ signaling pathway. The phagocytic ability of cells was detected by endocytosis test, and the expression of inflammatory cytokines was detected by ELISA. RESULTS Specific knockout of SHP2 in mice with myocardial infarction can improve the cardiac function, decrease infarct size, and reduce apoptosis as well as inflammatory cell infiltration. It also can mediate the PI3K/PLCγ signaling pathway in macrophages, which in turn enhances the endocytosis of macrophages and reduces the expression of inflammatory cytokines in macrophages. CONCLUSIONS Myeloid-specific knockout of SHP2 regulates PI3K/PLCγ signaling pathway to protect against early myocardial infarction injury.
Collapse
Affiliation(s)
- Menglin Sha
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongxing Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bingyan Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyong Geng
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Liu K, Hao Z, Zheng H, Wang H, Zhang L, Yan M, Tuerhong R, Zhou Y, Wang Y, Pang T, Shi L. Repurposing of rilpivirine for preventing platelet β3 integrin-dependent thrombosis by targeting c-Src active autophosphorylation. Thromb Res 2023; 229:53-68. [PMID: 37413892 DOI: 10.1016/j.thromres.2023.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND HIV-infected individuals are known to be at higher risk for thrombotic cardiovascular disease (CVD), which may also be differentially affected by components of anti-HIV drugs. To identify the effects of a series of FDA-approved anti-HIV drugs on platelet aggregation in humans, focusing on the novel pharmacological effects of rilpivirine (RPV), a reverse transcriptase inhibitor, on platelet function both in vitro and in vivo and the mechanisms involved. METHODS AND RESULTS In vitro studies showed that RPV was the only anti-HIV reagent that consistently and efficiently inhibited aggregation elicited by different agonists, exocytosis, morphological extension on fibrinogen, and clot retraction. Treatment of mice with RPV significantly prevented thrombus formation in FeCl3-injured mesenteric vessels, postcava with stenosis surgery, and ADP -induced pulmonary embolism models without defects in platelet viability, tail bleeding, and coagulation activities. RPV also improved cardiac performance in mice with post-ischemic reperfusion. A mechanistic study revealed that RPV preferentially attenuated fibrinogen-stimulated Tyr773 phosphorylation of β3-integrin by inhibiting Tyr419 autophosphorylation of c-Src. Molecular docking and surface plasmon resonance analyses showed that RPV can bind directly to c-Src. Further mutational analysis showed that the Phe427 residue of c-Src is critical for RPV interaction, suggesting a novel interaction site for targeting c-Src to block β3-integrin outside-in signaling. CONCLUSION These results demonstrated that RPV was able to prevent the progression of thrombotic CVDs by interrupting β3-integrin-mediated outside-in signaling via inhibiting c-Src activation without hemorrhagic side effects, highlighting RPV as a promising reagent for the prevention and therapy of thrombotic CVDs.
Collapse
Affiliation(s)
- Kui Liu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China; State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Hao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China; College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Hao Zheng
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Haojie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Luying Zhang
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Minghui Yan
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Reyisha Tuerhong
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Yuling Zhou
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Shi
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China; College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China.
| |
Collapse
|
6
|
Fernández DI, Diender M, Hermida-Nogueira L, Huang J, Veiras S, Henskens YMC, Te Loo MWM, Heemskerk JWM, Kuijpers MJE, García Á. Role of SHP2 (PTPN11) in glycoprotein VI-dependent thrombus formation: Improved platelet responsiveness by the allosteric drug SHP099 in Noonan syndrome patients. Thromb Res 2023; 228:105-116. [PMID: 37302266 DOI: 10.1016/j.thromres.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION The protein tyrosine phosphatase SHP2 (PTPN11) is a negative regulator of glycoprotein VI (GPVI)-induced platelet signal under certain conditions. Clinical trials with derivatives of the allosteric drug SHP099, inhibiting SHP2, are ongoing as potential therapy for solid cancers. Gain-of-function mutations of the PTPN11 gene are observed in part of the patients with the Noonan syndrome, associated with a mild bleeding disorder. Assessment of the effects of SHP2 inhibition in platelets from controls and Noonan syndrome patients. MATERIALS AND METHODS Washed human platelets were incubated with SHP099 and stimulated with collagen-related peptide (CRP) for stirred aggregation and flow cytometric measurements. Whole-blood microfluidics assays using a dosed collagen and tissue factor coating were performed to assess shear-dependent thrombus and fibrin formation. Effects on clot formation were evaluated by thromboelastometry. RESULTS Pharmacological inhibition of SHP2 did not alter GPVI-dependent platelet aggregation under stirring, but it enhanced integrin αIIbβ3 activation in response to CRP. Using whole-blood microfluidics, SHP099 increased the thrombus buildup on collagen surfaces. In the presence of tissue factor and coagulation, SHP099 increased thrombus size and reduced time to fibrin formation. Blood from PTPN11-mutated Noonan syndrome patients, with low platelet responsiveness, after ex vivo treatment with SHP099 showed a normalized platelet function. In thromboelastometry, SHP2 inhibition tended to increase tissue factor-induced blood clotting profiles with tranexamic acid, preventing fibrinolysis. CONCLUSION Pharmacological inhibition of SHP2 by the allosteric drug SHP099 enhances GPVI-induced platelet activation under shear conditions with a potential to improve platelet functions of Noonan syndrome patients.
Collapse
Affiliation(s)
- Delia I Fernández
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; Department of Biochemistry, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands.
| | - Marije Diender
- Department of Pediatric Hematology, Amalia children's hospital, Radboud UMC, Nijmegen, the Netherlands
| | - Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Jingnan Huang
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; Department of Biochemistry, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands; ISAS Leibniz-Institut fur Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Sonia Veiras
- Department of Anesthesiology and Intensive Care Medicine, Clinical University Hospital of Santiago, Santiago de Compostela, Spain
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Maroeska W M Te Loo
- Department of Pediatric Hematology, Amalia children's hospital, Radboud UMC, Nijmegen, the Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands; Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, the Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands; Thrombosis Expertise Centre, Heart and Vascular Centre, Maastricht University Medical Centre(+), Maastricht, the Netherlands.
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Protein tyrosine phosphatase PTPN22 negatively modulates platelet function and thrombus formation. Blood 2022; 140:1038-1051. [PMID: 35767715 DOI: 10.1182/blood.2022015554] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/21/2022] [Indexed: 11/20/2022] Open
Abstract
Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is a protein tyrosine phosphatase that negatively regulates T-cell signaling. However, whether it is expressed and functions in platelets remains unknown. Here we investigated the expression and role of PTPN22 in platelet function. We reported PTPN22 expression in both human and mouse platelets. Using PTPN22-/- mice, we showed that PTPN22 deficiency significantly shortened tail-bleeding time and accelerated arterial thrombus formation without affecting venous thrombosis and the coagulation factors VIII and IX. Consistently, PTPN22-deficient platelets exhibited enhanced platelet aggregation, granule secretion, calcium mobilization, lamellipodia formation, spreading, and clot retraction. Quantitative phosphoproteomic analysis revealed the significant difference of phosphodiesterase 5A (PDE5A) phosphorylation in PTPN22-deficient platelets compared with wild-type platelets after collagen-related peptide stimulation, which was confirmed by increased PDE5A phosphorylation (Ser92) in collagen-related peptide-treated PTPN22-deficient platelets, concomitant with reduced level and vasodilator-stimulated phosphoprotein phosphorylation (Ser157/239). In addition, PTPN22 interacted with phosphorylated PDE5A (Ser92) and dephosphorylated it in activated platelets. Moreover, purified PTPN22 but not the mutant form (C227S) possesses intrinsic serine phosphatase activity. Furthermore, inhibition of PTPN22 enhanced human platelet aggregation, spreading, clot retraction, and increased PDE5A phosphorylation (Ser92). In conclusion, our study shows a novel role of PTPN22 in platelet function and arterial thrombosis, identifying new potential targets for future prevention of thrombotic or cardiovascular diseases.
Collapse
|
8
|
Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. The role of phospho-tyrosine signaling in platelet biology and hemostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118927. [PMID: 33310067 DOI: 10.1016/j.bbamcr.2020.118927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Platelets are small enucleated cell fragments specialized in the control of hemostasis, but also playing a role in angiogenesis, inflammation and immunity. This plasticity demands a broad range of physiological processes. Platelet functions are mediated through a variety of receptors, the concerted action of which must be tightly regulated, in order to allow specific and timely responses to different stimuli. Protein phosphorylation is one of the main key regulatory mechanisms by which extracellular signals are conveyed. Despite the importance of platelets in health and disease, the molecular pathways underlying the activation of these cells are still under investigation. Here, we review current literature on signaling platelet biology and in particular emphasize the newly emerging role of phosphatases in these processes.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands; Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | | | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Gutiérrez-Herrero S, Fernández-Infante C, Hernández-Cano L, Ortiz-Rivero S, Guijas C, Martín-Granado V, González-Porras JR, Balsinde J, Porras A, Guerrero C. C3G contributes to platelet activation and aggregation by regulating major signaling pathways. Signal Transduct Target Ther 2020; 5:29. [PMID: 32296045 PMCID: PMC7109025 DOI: 10.1038/s41392-020-0119-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/25/2023] Open
Abstract
C3G is a GEF (guanine nucleotide exchange factor) for Rap GTPases, among which the isoform Rap1b is an essential protein in platelet biology. Using transgenic mouse models with platelet-specific overexpression of C3G or mutant C3GΔCat, we have unveiled a new function of C3G in regulating the hemostatic function of platelets through its participation in the thrombin-PKC-Rap1b pathway. C3G also plays important roles in angiogenesis, tumor growth, and metastasis through its regulation of the platelet secretome. In addition, C3G contributes to megakaryopoiesis and thrombopoiesis. Here, we used a platelet-specific C3G-KO mouse model to further support the role of C3G in hemostasis. C3G-KO platelets showed a significant delay in platelet activation and aggregation as a consequence of the defective activation of Rap1, which resulted in decreased thrombus formation in vivo. Additionally, we explored the contribution of C3G-Rap1b to platelet signaling pathways triggered by thrombin, PMA or ADP, in the referenced transgenic mouse model, through the use of a battery of specific inhibitors. We found that platelet C3G is phosphorylated at Tyr504 by a mechanism involving PKC-Src. This phosphorylation was shown to be positively regulated by ERKs through their inhibition of the tyrosine phosphatase Shp2. Moreover, C3G participates in the ADP-P2Y12-PI3K-Rap1b pathway and is a mediator of thrombin-TXA2 activities. However, it inhibits the synthesis of TXA2 through cPLA2 regulation. Taken together, our data reveal the critical role of C3G in the main pathways leading to platelet activation and aggregation through the regulation of Rap1b.
Collapse
Affiliation(s)
- Sara Gutiérrez-Herrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Sara Ortiz-Rivero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Víctor Martín-Granado
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain
| | - José Ramón González-Porras
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Hematología, Hospital Universitario de Salamanca (HUS), Salamanca, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Complutense University of Madrid. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), University of Salamanca-CSIC, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
- Departamento de Medicina, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
10
|
Catalytic dysregulation of SHP2 leading to Noonan syndromes affects platelet signaling and functions. Blood 2020; 134:2304-2317. [PMID: 31562133 DOI: 10.1182/blood.2019001543] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Src homology 2 domain-containing phosphatase 2 (SHP2), encoded by the PTPN11 gene, is a ubiquitous protein tyrosine phosphatase that is a critical regulator of signal transduction. Germ line mutations in the PTPN11 gene responsible for catalytic gain or loss of function of SHP2 cause 2 disorders with multiple organ defects: Noonan syndrome (NS) and NS with multiple lentigines (NSML), respectively. Bleeding anomalies have been frequently reported in NS, but causes remain unclear. This study investigates platelet activation in patients with NS and NSML and in 2 mouse models carrying PTPN11 mutations responsible for these 2 syndromes. Platelets from NS mice and patients displayed a significant reduction in aggregation induced by low concentrations of GPVI and CLEC-2 agonists and a decrease in thrombus growth on a collagen surface under arterial shear stress. This was associated with deficiencies in GPVI and αIIbβ3 integrin signaling, platelet secretion, and thromboxane A2 generation. Similarly, arterial thrombus formation was significantly reduced in response to a local carotid injury in NS mice, associated with a significant increase in tail bleeding time. In contrast, NSML mouse platelets exhibited increased platelet activation after GPVI and CLEC-2 stimulation and enhanced platelet thrombotic phenotype on collagen matrix under shear stress. Blood samples from NSML patients also showed a shear stress-dependent elevation of platelet responses on collagen matrix. This study brings new insights into the understanding of SHP2 function in platelets, points to new thrombopathies linked to platelet signaling defects, and provides important information for the medical care of patients with NS in situations involving risk of bleeding.
Collapse
|
11
|
SHP2: when cardiology meets hematology. Blood 2019; 134:2231-2232. [PMID: 31856271 DOI: 10.1182/blood.2019003523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, Zhou Y, Mao J, Long Z, Ma Z, Ye W, Pan J, Xi X, Jin J. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12:26. [PMID: 30845955 PMCID: PMC6407232 DOI: 10.1186/s13045-019-0709-6] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mark Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|