1
|
Migné CV, Braga de Seixas H, Heckmann A, Galon C, Mohd Jaafar F, Monsion B, Attoui H, Moutailler S. Evaluation of Vector Competence of Ixodes Ticks for Kemerovo Virus. Viruses 2022; 14:1102. [PMID: 35632845 PMCID: PMC9147894 DOI: 10.3390/v14051102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Tick-borne viruses are responsible for various symptoms in humans and animals, ranging from simple fever to neurological disorders or haemorrhagic fevers. The Kemerovo virus (KEMV) is a tick-borne orbivirus, and it has been suspected to be responsible for human encephalitis cases in Russia and central Europe. It has been isolated from Ixodes persulcatus and Ixodes ricinus ticks. In a previous study, we assessed the vector competence of I. ricinus larvae from Slovakia for KEMV, using an artificial feeding system. In the current study, we used the same system to infect different tick population/species, including I. ricinus larvae from France and nymphs from Slovakia, and I. persulcatus larvae from Russia. We successfully confirmed the first two criteria of vector competence, namely, virus acquisition and trans-stadial transmission, for both tick species that we tested. The estimated infection rates of engorged and moulted ticks suggest specificities between viral strains and tick species/developmental stages.
Collapse
Affiliation(s)
- Camille Victoire Migné
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (C.V.M.); (H.B.d.S.); (A.H.); (C.G.)
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR 1161 Virologie, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.M.J.); (B.M.)
| | - Hélène Braga de Seixas
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (C.V.M.); (H.B.d.S.); (A.H.); (C.G.)
| | - Aurélie Heckmann
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (C.V.M.); (H.B.d.S.); (A.H.); (C.G.)
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (C.V.M.); (H.B.d.S.); (A.H.); (C.G.)
| | - Fauziah Mohd Jaafar
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR 1161 Virologie, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.M.J.); (B.M.)
| | - Baptiste Monsion
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR 1161 Virologie, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.M.J.); (B.M.)
| | - Houssam Attoui
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR 1161 Virologie, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.M.J.); (B.M.)
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (C.V.M.); (H.B.d.S.); (A.H.); (C.G.)
| |
Collapse
|
2
|
King'ori EM, Obanda V, Nyamota R, Remesar S, Chiyo PI, Soriguer R, Morrondo P. Population genetic structure of the elephant tick Amblyomma tholloni from different elephant populations in Kenya. Ticks Tick Borne Dis 2022; 13:101935. [DOI: 10.1016/j.ttbdis.2022.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 11/25/2022]
|
3
|
Hornok S, Daccord J, Takács N, Kontschán J, Tuska-Szalay B, Sándor AD, Szekeres S, Meli ML, Hofmann-Lehmann R. Investigation on haplotypes of ixodid ticks and retrospective finding of Borrelia miyamotoi in bank vole (Myodes glareolus) in Switzerland. Ticks Tick Borne Dis 2021; 13:101865. [PMID: 34814063 DOI: 10.1016/j.ttbdis.2021.101865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
The current status of tick species, important tick-borne bacteria and protozoan parasites is well-documented in Switzerland. However, reports on the genetic diversity and geographical relationships of tick species in this country appear to be in part lacking or outdated. Thus, the aim of this study was to collect ticks from various host species in southern Switzerland, to compare them in a geographical context and to screen in these samples rare tick-borne pathogens hitherto not reported or having low prevalence in Switzerland. In 2019-2020 altogether 177 ixodid ticks were collected from the vegetation, as well as from humans (n = 17), dogs (n = 23), cats (n = 41), red deer (n = 8), a European rabbit and a European hedgehog at 25 locations in three cantons of south Switzerland. Tick species were identified morphologically, followed by DNA extraction and comparison of mitochondrial haplotypes with molecular-phylogenetic methods. Tick DNA extracts, as well as sixty-two rodent liver or spleen tissue DNA extracts (representing six species) available from 2005 to 2006 were screened for trypanosomes, Occidentia massiliensis and Borrelia miyamotoi. Morphologically, three tick species were identified: Ixodes ricinus (n = 170), Rhipicephalus sanguineus sensu lato (n = 6) and I. hexagonus (n = 1). In contrast to companion animals (dogs, cats) immature ticks (larvae and nymphs) predominated on humans, which was a highly significant association (P < 0.0001). Molecular comparison of the cytochrome c oxidase subunit I (cox1) gene with GenBank data established the species as R. sanguineus sensu stricto and confirmed I. hexagonus, both showing 99.8-100% sequence identity to conspecific ticks from northern Italy. Seventy-nine specimens morphologically identified as I. ricinus revealed high 16S rRNA gene haplotype diversity and represented two phylogenetic groups. Two I. ricinus haplotypes from Switzerland belonged to the same haplogroup with I. inopinatus from Spain, Germany and Austria as well as with I. ricinus reported from a broad geographical range of Europe (including Italy, the Netherlands, Poland, Latvia and Sweden). All 141 tick DNA extracts (from five R. sanguineus s.l., 135 I. ricinus and one I. hexagonus) and 62 rodent tissue DNA extracts were negative for trypanosomes and O. massiliensis. However, B. miyamotoi was identified in a bank vole (Myodes glareolus) and three ticks by sequencing. From Switzerland, this is the first report of tick haplotypes that are phylogenetically closely related to I. inopinatus. However, based on their morphology, both specimens are considered as I. ricinus. These results highlight the importance that the identification of I. inopinatus should be based on coherent morphologic and molecular properties. This is also the first report of rodent-borne B. miyamotoi in Switzerland. Taking into account the year of collection (2005), in a chronological order this might be the first indication of B. miyamotoi in any rodent species in Europe.
Collapse
Affiliation(s)
- Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary.
| | - Julie Daccord
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Nóra Takács
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Jenő Kontschán
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Budapest, Hungary
| | - Barbara Tuska-Szalay
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Attila D Sándor
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary; Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Sándor Szekeres
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Marina L Meli
- Department of Clinical Diagnostics and Services, Clinical Laboratory, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Department of Clinical Diagnostics and Services, Clinical Laboratory, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Paulauskas A, Aleksandravičienė A, Lipatova I, Griciuvienė L, Kibiša A, Žukauskienė J, Radzijevskaja J. Molecular detection of Babesia spp. in European bison (Bison bonasus) and their ticks. Ticks Tick Borne Dis 2021; 12:101807. [PMID: 34416567 DOI: 10.1016/j.ttbdis.2021.101807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Babesia spp. are tick-borne haemoparasites that infect a wide range of domestic and wild mammals. Free-ranging ungulates are considered to be important reservoir hosts of Babesia parasites. The European bison (Bison bonasus) is a large and rare ungulate species, reintroduced into the forests of Central Europe after an absence of several decades. Owing to their protected status, studies of tick-borne pathogens in European bison have so far been rare and fragmented. The aim of this study was to investigate the presence of Babesia infection in free-ranging and captive herds of European bison and their ticks. Tissue samples obtained from 37 European bison individuals and 242 ticks belonging to two species, Ixodes ricinus and Dermacentor reticulatus, collected from bison were subjected to PCR analysis of the 18S rRNA gene followed by sequencing. Babesia spp. were detected in 8% of the samples from European bison and in 11% of the ticks. Sequence analysis of partial 18S rRNA gene indicated the presence of B. divergens and B. capreoli in European bison, while B. divergens, B. microti and B. venatorum were detected in ixodid ticks. To the best of authors' knowledge, this is the first molecular detection and characterization of Babesia spp. in European bison and their ticks.
Collapse
Affiliation(s)
| | | | - Indrė Lipatova
- Vytautas Magnus University, K. Donelaičio 58, Kaunas LT-44248, Lithuania
| | - Loreta Griciuvienė
- Vytautas Magnus University, K. Donelaičio 58, Kaunas LT-44248, Lithuania
| | - Artūras Kibiša
- Vytautas Magnus University, K. Donelaičio 58, Kaunas LT-44248, Lithuania
| | - Judita Žukauskienė
- Vytautas Magnus University, K. Donelaičio 58, Kaunas LT-44248, Lithuania
| | - Jana Radzijevskaja
- Vytautas Magnus University, K. Donelaičio 58, Kaunas LT-44248, Lithuania
| |
Collapse
|
5
|
Vikse R, Paulsen KM, Edgar KS, H-O Pettersson J, Ottesen PS, Okbaldet YB, Kiran N, Lamsal A, Lindstedt HEH, Pedersen BN, Soleng A, Andreassen ÅK. Geographical distribution and prevalence of tick-borne encephalitis virus in questing Ixodes ricinus ticks and phylogeographic structure of the Ixodes ricinus vector in Norway. Zoonoses Public Health 2020; 67:370-381. [PMID: 32112526 DOI: 10.1111/zph.12696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 12/30/2022]
Abstract
The tick-borne encephalitis virus (TBEV), a zoonotic flaviviral infection, is endemic in large parts of Norway and Eurasia. Humans are mainly infected with TBEV via bites from infected ticks. In Norway, the main geographical distribution of ticks is along the Norwegian coastline from southeast (~59°N) and up to the southern parts of Nordland County (~65°N). In this study, we collected ticks by flagging along the coast from Østfold County to Nordland County. By whole-genome sequencing of the mitochondrial genome of Ixodes ricinus, the phylogenetic tree suggests that there is limited phylogeographic structure both in Norway and in Europe. The overall TBEV prevalence is 0.3% for nymphs and 4.3% for adults. The highest estimated TBEV prevalence in adult ticks was detected in Rogaland and Vestfold County, while for nymphs it is highest in Vestfold, Vest-Agder and Rogaland. The present work is one of the largest studies on distribution and prevalence of TBEV in ticks in Scandinavia, showing that the virus is wider distributed in Norway than previously anticipated.
Collapse
Affiliation(s)
- Rose Vikse
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Katrine M Paulsen
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway.,Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristin Skarsfjord Edgar
- Division for Infection Control and Environmental Health, Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | - John H-O Pettersson
- Division for Infection Control and Environmental Health, Department of Infectious Diseases Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway.,Department of Medical Biochemistry and Microbiology/Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Preben Skrede Ottesen
- Division for Infection Control and Environmental Health, Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Yohannes Bein Okbaldet
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Nosheen Kiran
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Alaka Lamsal
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway.,University of South East Norway, Bø i Telemark, Norway
| | - Heidi Elisabeth H Lindstedt
- Division for Infection Control and Environmental Health, Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Benedikte Nevjen Pedersen
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway.,University of South East Norway, Bø i Telemark, Norway
| | - Arnulf Soleng
- Division for Infection Control and Environmental Health, Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Åshild K Andreassen
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway.,University of South East Norway, Bø i Telemark, Norway
| |
Collapse
|
6
|
Mitochondrial Gene Heterogeneity and Population Genetics of Haemaphysalis longicornis (Acari: Ixodidae) in China. Acta Parasitol 2019; 64:360-366. [PMID: 31077030 DOI: 10.2478/s11686-019-00053-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Haemaphysalis longicornis is an important ectoparasite of domestic and wild animals that can transmit many pathogens including viruses, fungi, bacteria and protozoa. MATERIALS AND METHODS In this study, we examined genetic variation and population genetics in three mitochondrial (mt) genes [cox1 (cytochrome c subunit 1), rrnL (large subunit ribosomal RNA) and nad5 (NADH dehydrogenase 5)] among four H. longicornis populations from China. RESULTS The sizes of the partial sequences of cox1, rrnL and nad5 were 776 bp, 409 bp, 510 bp, respectively. Among the obtained sequences, we identified 22 haplotypes for cox1, 2 haplotypes for rrnL and 17 haplotypes for nad5. Low gene flow and significant genetic differentiation (66.2%) were detected among H. longicornis populations. There was no rapid expansion event in the demographic history of four H. longicornis populations in China. In addition, phylogenetic analyses confirmed that all the Haemaphysalis isolates were H. longicornis which were segregated into two major clades. CONCLUSION The mt DNA genes provide a potential novel genetic marker for molecular epidemiology of H. longicornis and assist in the control of tick and tick-borne diseases in humans and animals.
Collapse
|
7
|
Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. PLoS One 2017; 12:e0189092. [PMID: 29206879 PMCID: PMC5716528 DOI: 10.1371/journal.pone.0189092] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background Ixodes ricinus is a species of hard tick that transmits several important diseases in Europe and North Africa, including Lyme borreliosis and tick-borne encephalitis. Climate change is affecting the geographic distributions and abundances of arthropod vectors, which in turn influence the geographic distribution and epidemiology of associated vector-borne diseases. To date, few studies have investigated effects of climate change on the spatial distribution of I. ricinus at continental extents. Here, we assessed the potential distribution of I. ricinus under current and future climate conditions to understand how climate change will influence the geographic distribution of this important tick vector in coming decades. Method We used ecological niche modeling to estimate the geographic distribution of I. ricinus with respect to current climate, and then assessed its future potential distribution under different climate change scenarios. This approach integrates occurrence records of I. ricinus with six relevant environmental variables over a continental extent that includes Europe, North Africa, and the Middle East. Future projections were based on climate data from 17 general circulation models (GCMs) under 2 representative concentration pathway emissions scenarios (RCPs), for the years 2050 and 2070. Result The present and future potential distributions of I. ricinus showed broad overlap across most of western and central Europe, and in more narrow zones in eastern and northern Europe, and North Africa. Potential expansions were observed in northern and eastern Europe. These results indicate that I. ricinus populations could emerge in areas in which they are currently lacking, posing increased risks to human health in those areas. However, the future of I. ricinus ticks in some important regions such the Mediterranean was unclear owing to high uncertainty in model predictions.
Collapse
|
8
|
Matulaitytė V, Radzijevskaja J, Paulauskas A. First records of Ixodes lividus from sand martin (Riparia riparia) nests in Lithuania. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:264-270. [PMID: 29125245 DOI: 10.1111/jvec.12266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/16/2017] [Indexed: 05/10/2023]
Abstract
Ixodes lividus (Koch, 1844) ticks are specific parasites of the sand martin Riparia riparia (L.). The distribution range of I. lividus covers Europe (being absent from the Mediterranean area) and Asia. However, until now there have been no reports on the presence of this tick in Lithuania. A total of 47 nests were collected in three different colonies of sand martins in the central part of Lithuania and 46.8% of them were infested with ticks. In total, 2,770 ticks were found and identified as I. lividus based on morphological characteristics. Larvae were the predominant stage, representing 99.6% of all collected ticks. The taxonomic identification of I. lividus was confirmed by sequence analysis of the tick mitochondrial 16S rRNA gene. Phylogenetic analysis of 16S rRNA sequences indicates six genotypes of I. lividus transported by the sand martin in the Baltic region. The detection of genotypes like those reported from other European regions pointed to the importance of avian migratory connections, which are associated with the dispersal of I. lividus and the related tick-borne pathogens in the Baltic region. This study represents the first record of I. lividus from sand martin nests in Lithuania.
Collapse
|