1
|
Jergens AE, Heilmann RM. Canine chronic enteropathy—Current state-of-the-art and emerging concepts. Front Vet Sci 2022; 9:923013. [PMID: 36213409 PMCID: PMC9534534 DOI: 10.3389/fvets.2022.923013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, chronic inflammatory enteropathies (CIE) in dogs have received great attention in the basic and clinical research arena. The 2010 ACVIM Consensus Statement, including guidelines for the diagnostic criteria for canine and feline CIE, was an important milestone to a more standardized approach to patients suspected of a CIE diagnosis. Great strides have been made since understanding the pathogenesis and classification of CIE in dogs, and novel diagnostic and treatment options have evolved. New concepts in the microbiome-host-interaction, metabolic pathways, crosstalk within the mucosal immune system, and extension to the gut-brain axis have emerged. Novel diagnostics have been developed, the clinical utility of which remains to be critically evaluated in the next coming years. New directions are also expected to lead to a larger spectrum of treatment options tailored to the individual patient. This review offers insights into emerging concepts and future directions proposed for further CIE research in dogs for the next decade to come.
Collapse
Affiliation(s)
- Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Albert E. Jergens
| | - Romy M. Heilmann
- Department for Small Animals, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| |
Collapse
|
2
|
Li Y, Wang Z. Interleukin 32 participates in cardiomyocyte‑induced oxidative stress, inflammation and apoptosis during hypoxia/reoxygenation via the NOD2/NOX2/MAPK signaling pathway. Exp Ther Med 2022; 24:567. [PMID: 35978933 PMCID: PMC9366315 DOI: 10.3892/etm.2022.11504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/24/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yuanyuan Li
- Department of Cardiovascular Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhongyan Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
3
|
Isidori M, Corbee RJ, Trabalza-Marinucci M. Nonpharmacological Treatment Strategies for the Management of Canine Chronic Inflammatory Enteropathy—A Narrative Review. Vet Sci 2022; 9:vetsci9020037. [PMID: 35202290 PMCID: PMC8878421 DOI: 10.3390/vetsci9020037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammatory enteropathy (CIE) refers to a heterogeneous group of idiopathic diseases of the dog characterised by persistent gastrointestinal (GI) clinical signs. If conventional dietary treatment alone would be unsuccessful, management of CIE is traditionally attained by the use of pharmaceuticals, such as antibiotics and immunosuppressive drugs. While being rather effective, however, these drugs are endowed with side effects, which may impact negatively on the animal’s quality of life. Therefore, novel, safe and effective therapies for CIE are highly sought after. As gut microbiota imbalances are often associated with GI disorders, a compelling rationale exists for the use of nonpharmacological methods of microbial manipulation in CIE, such as faecal microbiota transplantation and administration of pre-, pro-, syn- and postbiotics. In addition to providing direct health benefits to the host via a gentle modulation of the intestinal microbiota composition and function, these treatments may also possess immunomodulatory and epithelial barrier-enhancing actions. Likewise, intestinal barrier integrity, along with mucosal inflammation, are deemed to be two chief therapeutic targets of mesenchymal stem cells and selected vegetable-derived bioactive compounds. Although pioneering studies have revealed encouraging findings regarding the use of novel treatment agents in CIE, a larger body of research is needed to address fully their mode of action, efficacy and safety.
Collapse
Affiliation(s)
- Marco Isidori
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
- Correspondence:
| | - Ronald Jan Corbee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Yalelaan 108, 3584 CM Utrecht, The Netherlands;
| | | |
Collapse
|
4
|
Sacoor C, Barros LM, Montezinho L. What are the potential biomarkers that should be considered in diagnosing and managing canine chronic inflammatory enteropathies? Open Vet J 2021; 10:412-430. [PMID: 33614437 PMCID: PMC7830176 DOI: 10.4314/ovj.v10i4.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammatory enteropathies in dogs are characterized by persistent or recurrent gastrointestinal signs that last for more than 3 weeks. Despite unclear etiopathogenesis, it is considered that a genetic predisposition associated with environmental factors, such as dietary antigens and intestinal microbiota, might induce an abnormal immune response in the host. The diagnosis of this condition requires full investigation in order to exclude all other possible causes. Currently, the observation of clinical signs associated with histopathologic evaluation and systematic therapeutic trials is the gold standard for the diagnosis of chronic enteropathies. Furthermore, diagnosis, monitoring the disease progression, and treatment response evaluation can be exhausting, since this whole process is time-consuming, costly, and partially invasive. Therefore, biomarkers appear as non-invasive tools, which can be useful in evaluating gastrointestinal function, identifying the presence of the disease and assessing its natural progression, monitoring gastrointestinal inflammation, predicting response to treatment, and clinical outcomes. Over the past decade, several studies were conducted in order to explore the clinical utility of biomarkers. Thus, the aim of this dissertation is to provide an overview of the biomarkers considered relevant in the diagnosis and management of dogs with chronic inflammatory enteropathies. The biomarkers addressed in this study may be serological, present in urine and feces, or even tissue-derived. This study argues that biomarkers, in particular calprotectin and calgranulin C, have great potential to be used in clinical practice in the diagnosis and management of affected dogs. However, a single biomarker cannot assuredly predict disease severity, progression, response to treatment, and clinical outcomes. Therefore, in order to achieve greater accuracy, it would be beneficial if these tools are used in conjunction with contemporary ones. Future research is needed with the aim to better determine the usefulness of these tools in chronic inflammatory enteropathies in dogs.
Collapse
Affiliation(s)
- Carina Sacoor
- Center for Investigation Vasco da Gama (CIVG), University School of Vasco da Gama, Coimbra, Portugal
| | - Luís Meireles Barros
- Center for Investigation Vasco da Gama (CIVG), University School of Vasco da Gama, Coimbra, Portugal
| | - Liliana Montezinho
- Center for Investigation Vasco da Gama (CIVG), University School of Vasco da Gama, Coimbra, Portugal
| |
Collapse
|
5
|
Konstantinidis AO, Adamama-Moraitou KK, Pardali D, Dovas CI, Brellou GD, Papadopoulos T, Jergens AE, Allenspach K, Rallis TS. Colonic mucosal and cytobrush sample cytokine mRNA expression in canine inflammatory bowel disease and their correlation with disease activity, endoscopic and histopathologic score. PLoS One 2021; 16:e0245713. [PMID: 33471872 PMCID: PMC7817028 DOI: 10.1371/journal.pone.0245713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/09/2020] [Indexed: 01/02/2023] Open
Abstract
Canine inflammatory bowel disease (IBD) is a group of chronic gastrointestinal disorders, the pathogenesis of which remains elusive, but it possibly involves the interaction of the intestinal immune system with luminal microbiota and food-derived antigens. Mucosal cytokines profiles in canine IBD have been investigated mainly in small intestinal disease, while data on cytokine profiles in large intestinal IBD are limited. The objective of this study was to measure colonic mucosal and cytobrush sample messenger (m)RNA expression of interleukin (IL)-1β, IL-2, IL-12p40, IL-23p19, tumor necrosis factor-alpha (TNF-α) and chemokine C-C motif ligand (CCL28) in dogs with IBD and healthy controls using quantitative real-time polymerase chain reaction (PCR), and assess their correlation with clinical disease activity, endoscopic and histopathologic score. Dogs with IBD had a significantly increased mRNA expression of IL-1β, IL-23p19 and CCL28 in the colonic mucosa, compared to healthy controls. None of the selected cytokines had significantly different mRNA expression in the colonic cytobrush samples between the two groups or between the colonic mucosa and cytobrush samples of dogs with IBD. Finally, there was a statistically significant correlation of clinical disease activity with endoscopic activity score and fibrosis and atrophy of the colonic mucosa in dogs with large intestinal IBD. IL-1β, IL-23p19 and CCL28 could play a role in the pathogenesis of canine large intestinal IBD. Colonic cytokine expression does not correlate with clinical disease activity and/or endoscopic score. However, clinical signs reflect the severity of endoscopic lesions.
Collapse
Affiliation(s)
- Alexandros O. Konstantinidis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- * E-mail:
| | - Katerina K. Adamama-Moraitou
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Pardali
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysostomos I. Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia D. Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theologos Papadopoulos
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Albert E. Jergens
- Department of Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States of America
| | - Karin Allenspach
- Department of Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States of America
| | - Timoleon S. Rallis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Aono K, Azuma YT, Nabetani T, Hatoya S, Furuya M, Miki M, Hirota K, Fujimoto Y, Nishiyama K, Ogata Y, Mochizuki T, Tani H. Correlation between toll-like receptor 4 and nucleotide-binding oligomerization domain 2 (NOD2) and pathological severity in dogs with chronic gastrointestinal diseases. Vet Immunol Immunopathol 2019; 210:15-22. [PMID: 30947975 DOI: 10.1016/j.vetimm.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/27/2019] [Accepted: 03/09/2019] [Indexed: 12/12/2022]
Abstract
Toll-like receptor 4 (TLR4), nucleotide-binding oligomerization domain 2 (NOD2), and TNF-α play important roles in human inflammatory bowel diseases. The aim of this study was to elucidate the relationship between Toll-like receptor 4, NOD2, and TNF-α and the severity of chronic gastrointestinal diseases in dogs. We examined the expression levels of TLR4, NOD2, and TNF-α in the stomach, duodenum, ileum, colon, and rectum obtained from 21 dogs with chronic gastrointestinal disease, including inflammatory bowel disease, high-grade lymphoma, food responsive enteropathy, chronic pancreatitis, low-grade lymphoma, inflammatory colorectal polyp, and chronic colitis. Next, we demonstrated whether there is good correlation between the expression levels of TLR4, NOD2, and TNF-α and the histopathological analysis of each sample. We found that the level of TLR4 expression in the ileum of dogs with chronic gastrointestinal disease was positively associated with the histopathological severity. We also found that the level of NOD2 expression in the duodenum, stomach, and rectum was positively associated with the histopathological severity. However, there was no correlation between TNF-α expression in the 5 regions tested in this study and the histopathological severity. These findings indicate that TLR4 and NOD2 are remarkably associated with the severity of chronic gastrointestinal disease in dogs.
Collapse
Affiliation(s)
- Kimiya Aono
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan.
| | - Tomoyo Nabetani
- Veterinary Medical Center, Osaka Prefecture University College of Life, Environmental, and Advanced Sciences, Izumisano, Osaka, Japan
| | - Shingo Hatoya
- Laboratory of Cell Pathobiology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Masaru Furuya
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Mariko Miki
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Kana Hirota
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan
| | - Yoshiyuki Ogata
- Laboratory of Functional Genomics, Course of Integrated Bioscience, Division of Applied Life Sciences, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Sakai, Osaka, Japan
| | - Tomofumi Mochizuki
- Laboratory of Plant Pathology, Course of Plant Production Science, Division of Applied Life Sciences, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Sakai, Osaka, Japan
| | - Hiroyuki Tani
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka, Japan.
| |
Collapse
|
7
|
Eissa N, Kittana H, Gomes-Neto JC, Hussein H. Mucosal immunity and gut microbiota in dogs with chronic enteropathy. Res Vet Sci 2018; 122:156-164. [PMID: 30504001 DOI: 10.1016/j.rvsc.2018.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022]
Abstract
Chronic enteropathy (CE) in dogs is a chronic and relapsing immunopathology, of unknown etiology, that usually manifests with a plethora of clinical signs reflecting the underlying heterogeneity in its pathogenesis. Alterations of the mucosal immune responses and the gut microbiota composition are thought to play an essential role in CE. Similar to humans, it is hypothesized that the breakdown in mucosal tolerance leads to aberrant and pathological immune responses toward the gut microbiota, that in turn, may contribute to the severity of disease, at least for certain CE subsets. Therefore, in this review, we discuss some of the most relevant and recent insights microbiological and immunological aspects characterizing CE in dogs.
Collapse
Affiliation(s)
- Nour Eissa
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
| | - Hatem Kittana
- Department of Food Science and Technology, University of Nebraska-, Lincoln, NE, USA
| | - João Carlos Gomes-Neto
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Hayam Hussein
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
8
|
Ogawa M, Osada H, Hasegawa A, Ohno H, Yanuma N, Sasaki K, Shimoda M, Shirai J, Kondo H, Ohmori K. Effect of interleukin-1β on occludin mRNA expression in the duodenal and colonic mucosa of dogs with inflammatory bowel disease. J Vet Intern Med 2018; 32:1019-1025. [PMID: 29572935 PMCID: PMC5980446 DOI: 10.1111/jvim.15117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/06/2018] [Accepted: 02/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mucosal imbalance of interleukin (IL)-1β and IL-1 receptor antagonist (Ra) has been reported in the duodenal mucosa of dogs with inflammatory bowel disease (IBD). However, the imbalance in the colonic mucosa and its role in duodenitis and colitis in IBD of dogs remain unclear. OBJECTIVES To measure the expression of IL-1β and IL-1Ra proteins in the colonic mucosa of dogs with IBD, and to determine the effect of IL-1β on expression of occludin (ocln) mRNA, a tight junction component, in the duodenal and colonic mucosa of dogs with IBD. ANIMALS Twelve dogs with IBD and 6 healthy dogs. METHODS IL-1β and IL-1 Ra proteins in the colonic mucosa were quantified by ELISA in 7 of the 12 dogs with IBD. Expression of ocln mRNA in the duodenal and colonic mucosa was examined in the 12 dogs by real-time PCR. RESULTS The ratio of IL-1β to IL-1Ra in the colonic mucosa was significantly higher in dogs with IBD than in healthy dogs. The ex vivo experiment determined that IL-1β suppressed expression of ocln mRNA in the colonic mucosa, but not in the duodenal mucosa, of healthy dogs. Expression of ocln mRNA in the colonic mucosa, but not in the duodenal mucosa, was significantly lower in dogs with IBD than in healthy dogs. CONCLUSIONS AND CLINICAL IMPORTANCE A relative increase in IL-1β may attenuate ocln expression, leading to intestinal barrier dysfunction and promotion of intestinal inflammation in the colonic mucosa, but not in the duodenal mucosa, of dogs with IBD.
Collapse
Affiliation(s)
- Misato Ogawa
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hironari Osada
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Ayana Hasegawa
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hikaru Ohno
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Nanako Yanuma
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kazuaki Sasaki
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Minoru Shimoda
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Junsuke Shirai
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hirotaka Kondo
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Keitaro Ohmori
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
9
|
Heilmann RM, Allenspach K. Pattern-recognition receptors: signaling pathways and dysregulation in canine chronic enteropathies—brief review. J Vet Diagn Invest 2017; 29:781-787. [DOI: 10.1177/1040638717728545] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pattern-recognition receptors (PRRs) are expressed by innate immune cells and recognize pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular pattern (DAMP) molecules. With a large potential for synergism or convergence between their signaling pathways, PRRs orchestrate a complex interplay of cellular mediators and transcription factors, and thus play a central role in homeostasis and host defense. Aberrant activation of PRR signaling, mutations of the receptors and/or their downstream signaling molecules, and/or DAMP/PAMP complex–mediated receptor signaling can potentially lead to chronic auto-inflammatory diseases or development of cancer. PRR signaling pathways appear to also present an interesting new avenue for the modulation of inflammatory responses and to serve as potential novel therapeutic targets. Evidence for a dysregulation of the PRR toll-like receptor (TLR)2, TLR4, TLR5, and TLR9, nucleotide-binding oligomerization domain–containing protein (NOD)2, and the receptor of advanced glycation end products (RAGE) exists in dogs with chronic enteropathies. We describe the TLR, NOD2, and RAGE signaling pathways and evaluate the current veterinary literature—in comparison to human medicine—to determine the role of TLRs, NOD2, and RAGE in canine chronic enteropathies.
Collapse
Affiliation(s)
- Romy M. Heilmann
- Department of Small Animal Medicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Saxony, Germany (Heilmann)
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA (Allenspach)
| | - Karin Allenspach
- Department of Small Animal Medicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Saxony, Germany (Heilmann)
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA (Allenspach)
| |
Collapse
|
10
|
Okanishi H, Kagawa Y, Watari T. Expression of selectins and P-selectin glycoprotein ligand-1 in dogs with lymphocytic–plasmacytic enteritis. Vet Immunol Immunopathol 2014; 161:42-8. [DOI: 10.1016/j.vetimm.2014.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/20/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022]
|
11
|
Prevention of DSS induced acute colitis by Petit Vert, a newly developed function improved vegetable, in mice. PHARMANUTRITION 2014. [DOI: 10.1016/j.phanu.2013.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Tamura Y, Ohta H, Yokoyama N, Lim SY, Osuga T, Morishita K, Nakamura K, Yamasaki M, Takiguchi M. Evaluation of selected cytokine gene expression in colonic mucosa from dogs with idiopathic lymphocytic-plasmacytic colitis. J Vet Med Sci 2014; 76:1407-10. [PMID: 24976586 PMCID: PMC4221177 DOI: 10.1292/jvms.13-0635] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lymphocytic-plasmacytic
colitis (LPC) is a common form of inflammatory bowel disease (IBD) affecting the canine
large intestine. Cytokines are thought to be involved in the pathogenesis of IBD. However,
to date, few studies have investigated cytokine mRNA expression in dogs with LPC. In this
study, we investigated mRNA transcription levels of T helper cell cytokines, such as
IFN-γ, IL-4, IL-17 and IL-10 and pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α,
IL-8, IL-12 and IL-23, in colonic mucosa from LPC dogs by quantitative real-time RT-PCR.
No significant differences were detected in cytokine mRNA expressions between dogs with
LPC and controls, except for IL-23p19. Dogs with LPC failed to express a predominant
cytokine profile in inflamed colonic mucosa as opposed to human IBD.
Collapse
Affiliation(s)
- Yu Tamura
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Igarashi H, Ohno K, Maeda S, Kanemoto H, Fukushima K, Uchida K, Tsujimoto H. Expression profiling of pattern recognition receptors and selected cytokines in miniature dachshunds with inflammatory colorectal polyps. Vet Immunol Immunopathol 2014; 159:1-10. [DOI: 10.1016/j.vetimm.2014.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 12/16/2022]
|
14
|
Okanishi H, Kabeya H, Maruyama S, Kagawa Y, Watari T. Activation of nuclear factor-kappa B and cell adhesion molecule mRNA expression in duodenal mucosa of dogs with lymphocytic-plasmacytic enteritis. Vet Immunol Immunopathol 2013; 154:145-52. [DOI: 10.1016/j.vetimm.2013.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/07/2013] [Accepted: 05/19/2013] [Indexed: 01/26/2023]
|