1
|
Martinez A, Binks S, Pumarola M, Hardas A, Easton A, Campo L, Browne M, Martins S, Garosi LS, Di Dona F, Tauro A. Gliosarcoma associated with bilateral hippocampal sclerosis in a cat presenting complex partial seizures with orofacial involvement: A case report. Clin Case Rep 2024; 12:e9123. [PMID: 39258027 PMCID: PMC11386245 DOI: 10.1002/ccr3.9123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 09/12/2024] Open
Abstract
Key Clinical Message Gliosarcoma, a rare cerebral neoplasm, has not been linked to hippocampal changes in cats. We report a case of complex partial seizures with orofacial involvement, revealing gliosarcoma concurrent with bilateral hippocampal sclerosis. Abstract A 16-year-old neutered female domestic shorthair cat presented with acute inappetence, ataxia, disorientation, and vacant staring. Brain MRI revealed an ill-defined, round, intra-axial mass in the right piriform lobe, showing hyperintensity on T2W, T2-FLAIR, and T2*W, and hypointensity on T1W images. The lesion exhibited mass effect and contrast enhancement in its center. Bilateral hyperintensity on T2-FLAIR images and contrast enhancement were observed in the hippocampus. Brain histologic and immunohistochemical analysis revealed cerebral gliosarcoma with concurrent hippocampal sclerosis. Feline LGI1-antibody testing on the serum and/or CSF was not performed due to insufficient biomaterial. Although retrospective testing on brain tissue was considered, it ultimately proved unfeasible, preventing us from ruling out antibody-associated limbic encephalitis. In conclusion, cerebral gliosarcoma should be included in feline intracranial tumor differentials, warranting brain MRI and feline LGI1-antibody testing in cats showing complex partial seizures with orofacial involvement. In our case, the prognosis remained poor due to the presence of a high-grade glioma.
Collapse
Affiliation(s)
- Ana Martinez
- Queen's Veterinary School University of Cambridge Cambridge UK
| | - Sophie Binks
- Oxford Autoimmune Neurology Group University of Oxford Oxford UK
| | - Martí Pumarola
- Mouse and Comparative Pathology Unit, Department of Animal Medicine and Surgery, Veterinary Faculty, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB Universitat Autònoma de Barcelona Barcelona Spain
| | - Alexandros Hardas
- Department of Pathobiology and Population Sciences The Royal Veterinary College Hatfield UK
| | - Alistair Easton
- Translational Histopathology Laboratory, Department of Oncology University of Oxford Oxford UK
| | - Leticia Campo
- Translational Histopathology Laboratory, Department of Oncology University of Oxford Oxford UK
| | - Molly Browne
- Translational Histopathology Laboratory, Department of Oncology University of Oxford Oxford UK
| | - Susana Martins
- Translational Histopathology Laboratory, Department of Oncology University of Oxford Oxford UK
| | | | | | - Anna Tauro
- Chestergates Veterinary Specialists, Units E&F Chester UK
- College of Veterinary Medicine North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
2
|
Hemmeter L, Bien CG, Bien CI, Tipold A, Neßler J, Bathen‐Nöthen A, Matiasek K, Dahlhoff M, Rusbridge C, Rotter Black C, Rentmeister K, Volk HA, Fischer A. Investigation of the presence of specific neural antibodies in dogs with epilepsy or dyskinesia using murine and human assays. J Vet Intern Med 2023; 37:1409-1417. [PMID: 37232512 PMCID: PMC10365065 DOI: 10.1111/jvim.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/07/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Autoimmune mechanisms represent a novel category for causes of seizures and epilepsies in humans, and LGI1-antibody associated limbic encephalitis occurs in cats. HYPOTHESIS/OBJECTIVES To investigate the presence of neural antibodies in dogs with epilepsy or dyskinesia of unknown cause using human and murine assays modified for use in dogs. ANIMALS Fifty-eight dogs with epilepsy of unknown cause or suspected dyskinesia and 57 control dogs. METHODS Serum and CSF samples were collected prospectively as part of the diagnostic work-up. Clinical data including onset and seizure/episode type were retrieved from the medical records. Screening for neural antibodies was done with cell-based assays transfected with human genes for typical autoimmune encephalitis antigens and tissue-based immunofluorescence assays on mouse hippocampus slices in serum and CSF samples from affected dogs and controls. The commercial human und murine assays were modified with canine-specific secondary antibody. Positive controls were from human samples. RESULTS The commercial assays used in this study did not provide unequivocal evidence for presence of neural antibodies in dogs including one dog with histopathologically proven limbic encephalitis. Low titer IgLON5 antibodies were present in serum from one dog from the epilepsy/dyskinesia group and in one dog from the control group. CONCLUSION AND CLINICAL IMPORTANCE Specific neural antibodies were not detected using mouse and human target antigens in dogs with epilepsy and dyskinesia of unknown origin. These findings emphasize the need for canine-specific assays and the importance of control groups.
Collapse
Affiliation(s)
- Lea Hemmeter
- Section of Neurology, Centre for Clinical Veterinary MedicineLMU MunichMunichGermany
| | - Christian G. Bien
- Department of Epileptology (Krankenhaus Mara)Bielefeld University, Medical SchoolBielefeldGermany
- Laboratory KroneBad SalzuflenGermany
| | | | - Andrea Tipold
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary Medicine Hannover FoundationHannoverGermany
| | - Jasmin Neßler
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary Medicine Hannover FoundationHannoverGermany
| | | | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary MedicineLMU MunichMunichGermany
| | - Maik Dahlhoff
- Institute of In Vivo and In Vitro Models, University of Veterinary Medicine ViennaViennaAustria
| | - Clare Rusbridge
- Fitzpatrick Referrals, Halfway LaneSurreyUK
- School of Veterinary Medicine, Faculty of Health & Medical SciencesUniversity of SurreySurreyUK
| | | | | | - Holger A. Volk
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary Medicine Hannover FoundationHannoverGermany
| | - Andrea Fischer
- Section of Neurology, Centre for Clinical Veterinary MedicineLMU MunichMunichGermany
| |
Collapse
|
3
|
Binks S, Lamquet S, Crawford AH, Meurs A, Irani SR, Pakozdy A. Parallel roles of neuroinflammation in feline and human epilepsies. Vet J 2022; 290:105912. [PMID: 36209994 PMCID: PMC10912827 DOI: 10.1016/j.tvjl.2022.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Autoimmune encephalitis refers to a group of disorders characterised by a non-infectious encephalitis, often with prominent seizures and surface neuronal autoantibodies. AE is an important cause of new-onset refractory status epilepticus in humans and is frequently responsive to immunotherapies including corticosteroids, plasma exchange, intravenous immunoglobulin G and rituximab. Recent research suggests that parallel autoantibodies can be detected in non-human mammalian species. The best documented example is leucine-rich glioma-inactivated 1 (LGI1)-antibodies in domestic cats with limbic encephalitis (LE). In this review, we discuss the role of neuroinflammation and autoantibodies in human and feline epilepsy and LE.
Collapse
Affiliation(s)
- Sophie Binks
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals Foundation Trust, Oxford OX3 9DU, UK.
| | - Simon Lamquet
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Abbe H Crawford
- Clinical Science and Services, The Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Alfred Meurs
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals Foundation Trust, Oxford OX3 9DU, UK
| | - Akos Pakozdy
- University Clinic for Small Animals, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
4
|
Hasegawa D, Kanazono S, Chambers JK, Uchida K. Neurosurgery in feline epilepsy, including clinicopathology of feline epilepsy syndromes. Vet J 2022; 290:105928. [PMID: 36347391 DOI: 10.1016/j.tvjl.2022.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
Feline epilepsy is treated with antiseizure medications, which achieves fair to good seizure control. However, a small subset of feline patients with drug-resistant epilepsy requires alternative therapies. Furthermore, approximately 50 % of cats with epileptic seizures are diagnosed with structural epilepsy with or without hippocampal abnormality and may respond to surgical intervention. The presence of hippocampal pathology and intracranial tumors is a key point to consider for surgical treatment. This review describes feline epilepsy syndrome and epilepsy-related pathology, and discusses the indications for and availability of neurosurgery, including lesionectomy, temporal lobectomy with hippocampectomy, and corpus callosotomy, for cats with different epilepsy types.
Collapse
Affiliation(s)
- Daisuke Hasegawa
- Laboratory of Veterinary Radiology, Nippon Veterinary and Life Science University, 1-7-1 Kyounancho, Musashino, Tokyo 180-8602, Japan; The Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyounancho, Musashino, Tokyo 180-8602, Japan.
| | - Shinichi Kanazono
- Neurology and Neurosurgery Service, Veterinary Specialists and Emergency Center, 815 Ishigami, Kawaguchi, Saitama 333-0823, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Huenerfauth EI, Bien CG, Bien C, Volk HA, Meyerhoff N. Case Report: Anti-GABAA Receptor Encephalitis in a Dog. Front Vet Sci 2022; 9:886711. [PMID: 35812851 PMCID: PMC9262380 DOI: 10.3389/fvets.2022.886711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/25/2022] [Indexed: 01/21/2023] Open
Abstract
Autoantibodies against neurotransmitter receptors detected in cerebrospinal fluid (CSF) and serum are increasingly recognized in people with human autoimmune encephalitis causing severe neurological deficits, such as seizures and behavioral abnormalities. This case report describes the first encephalitis associated with antibodies against the γ-aminobutyric acid-A receptor (GABAAR) in a dog. A young male intact Cavalier King Charles Spaniel was presented with recent onset of initial multiple generalized tonic-clonic seizures progressing into a status epilepticus. Interictally, he showed alternating stupor and hyperexcitability, ataxia, pleurothotonus and circling behavior to the left side. Magnetic resonance imaging (MRI) of the brain showed breed-specific anatomical abnormalities. Standard CSF analysis was unremarkable. Despite treatment with multiple antiseizure medications (ASMs) seizures and behavior abnormalities sustained. Immunotherapy with dexamethasone was started on the fifth day after disease manifestation. This led to rapid improvement of clinical signs. An extensive antibody search in CSF and serum demonstrated a neuropil staining pattern on a tissue-based assay compatible with GABAAR antibodies. The diagnosis was confirmed by binding of serum and CSF antibodies to GABAAR transfected Human Embryonic Kidney cells. The serum titer was 1:320, the CSF titer 1:2. At the control visit 4.5 weeks after start of immunotherapy, the dog was clinically normal. The GABAAR antibody titer in serum had strongly decreased. The antibodies were no longer detectable in CSF. Based on clinical presentation and testing for GABAAR binding antibodies, this describes the first veterinary patient with an anti-GABAAR encephalitis with a good outcome following ASM and corticosteroid treatment.
Collapse
Affiliation(s)
- Enrice I. Huenerfauth
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
- *Correspondence: Enrice I. Huenerfauth
| | | | | | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Nina Meyerhoff
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| |
Collapse
|
6
|
Scalia B, Caine A, Pittaway R, Cherubini GB. Feline temporal lobe epilepsy: seven cases of hippocampal and piriform lobe necrosis in England and literature review. J Feline Med Surg 2022; 24:596-608. [PMID: 34355984 PMCID: PMC11104249 DOI: 10.1177/1098612x211035049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CASE SERIES SUMMARY Seven cases of feline hippocampal and piriform lobe necrosis (FHN) are described, with particular emphasis on clinical, radiographic and histopathological correlations. FHN is an uncommon acute epileptic condition resembling human autoimmune limbic encephalitis and temporal lobe epilepsy. Seizures are typically focal and feature uni- or bilateral orofacial or head twitching, hypersalivation, lip smacking, mydriasis, vocalisation and motionless staring, with inter-ictal behavioural changes such as unprovoked aggression and rapid running. Emerging evidence supports an autoimmune aetiology, although disruption of hippocampal architecture secondary to brain neoplasia has also been recognised. Most commonly, however, the underlying cause remains unknown. Diagnosis is achieved clinically and with brain MRI; electroencephalography and voltage-gated potassium channel-complex autoantibodies are currently the subject of research. Affected cats are frequently refractory to conventional antiepileptic treatment. RELEVANCE AND NOVEL INFORMATION Following a review of the literature, including potential complicating factors and comparisons with human medicine, the hippocampus and piriform lobe are proposed as the neuroanatomical localisation for focal seizures with orofacial involvement in cats, regardless of aetiology.
Collapse
Affiliation(s)
| | - Abby Caine
- Dick White Referrals, Six Mile Bottom, UK
| | | | | |
Collapse
|
7
|
Rusbridge C. Neurobehavioral Disorders: The Corticolimbic System in Health and Disease. Vet Clin North Am Small Anim Pract 2020; 50:1157-1181. [PMID: 32680665 DOI: 10.1016/j.cvsm.2020.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The corticolimbic system (prefrontal cortices, amygdala, and hippocampus) integrates emotion with cognition and produces a behavioral output that is flexible based on the environmental circumstances. It also modulates pain, being implicated in pathophysiology of maladaptive pain. Because of the anatomic and function overlap between corticolimbic circuitry for pain and emotion, the pathophysiology for maladaptive pain conditions is extremely complex. Addressing environmental needs and underlying triggers is more important than pharmacotherapy when dealing with feline orofacial pain syndrome or feline hyperesthesia syndrome. By contrast, autoimmune limbic encephalitis requires prompt diagnosis and management with immunosuppression and seizure control.
Collapse
Affiliation(s)
- Clare Rusbridge
- Fitzpatrick Referrals, Godalming, Surrey GU7 2QQ, UK; School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey GU2 7AL, UK.
| |
Collapse
|
8
|
Kaczmarska A, José-López R, Czopowicz M, Lazzerini K, Leblond G, Stalin C, Gutierrez-Quintana R. Postencephalitic epilepsy in dogs with meningoencephalitis of unknown origin: Clinical features, risk factors, and long-term outcome. J Vet Intern Med 2020; 34:808-820. [PMID: 31990104 PMCID: PMC7096646 DOI: 10.1111/jvim.15687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022] Open
Abstract
Background Although the presence of seizures in dogs with meningoencephalitis of unknown origin (MUO) has been associated with shorter survival times, data regarding the prevalence and risk factors for postencephalitic epilepsy (PEE) is lacking. Objectives To describe the clinical features, prevalence, risk factors, and long‐term outcome of PEE in dogs with MUO. Animals Sixty‐one dogs with presumptive diagnosis of MUO based on the clinicopathological and diagnostic imaging findings. Methods Retrospective study. Cases were identified by search of hospital medical records for dogs with suspected or confirmed MUO. Medical records of dogs meeting inclusion criteria were reviewed. Signalment, seizure history, clinicopathologic, and magnetic resonance imaging (MRI) findings were recorded. Results Among 61 dogs at risk of PEE, 14 (23%) dogs developed PEE. Three of 14 dogs with PEE (21%) developed drug‐resistant epilepsy. Dogs with PEE were younger (P = .03; ORadjusted = 0.75; 95% confidence interval [CI], 0.58‐0.98) and had significantly shorter survival times (log‐rank test P = .04) when compared to dogs that did not develop epilepsy. The risk factors associated with the development of PEE were the presence of acute symptomatic seizures (ASS; P = .04; ORadjusted = 4.76; 95% CI, 1.11‐20.4) and MRI lesions in the hippocampus (P = .04; ORadjusted = 4.75; 95% CI, 1.07‐21.0). Conclusions and Clinical Importance Dogs with MUO and seizures at the early stage of the disease (ASS) seem to be at a higher risk of developing PEE.
Collapse
Affiliation(s)
- Adriana Kaczmarska
- Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Roberto José-López
- Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Michał Czopowicz
- Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Kali Lazzerini
- Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Guillaume Leblond
- Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Catherine Stalin
- Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
9
|
Hasegawa D, Ohnishi Y, Koyama E, Matsunaga S, Ohtani S, Nakanishi A, Shiga T, Chambers JK, Uchida K, Yokoi N, Fukata Y, Fukata M. Deleted in colorectal cancer (netrin-1 receptor) antibodies and limbic encephalitis in a cat with hippocampal necrosis. J Vet Intern Med 2019; 33:1440-1445. [PMID: 30942925 PMCID: PMC6524083 DOI: 10.1111/jvim.15492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/19/2019] [Indexed: 12/01/2022] Open
Abstract
A 7‐year‐old neutered female domestic shorthaired cat born in Poland and then moved to Japan presented to the local clinic with recent onset of convulsive cluster seizures and status epilepticus. Magnetic resonance imaging revealed bilateral swelling of the hippocampus with T2 hyperintensity and contrast enhancing image, suggesting hippocampal necrosis. The cat completely recovered after treatment with antiepileptic drugs (AED) and administration of prednisolone (1 mg/kg PO q24h for 4 days and tapered). However, cluster seizures reoccurred and developed into status epilepticus despite increasing doses of AED. Although the convulsions were resolved by other AEDs, stupor and renal failure developed, and the cat was euthanized. Pathological findings were consistent with hippocampal necrosis. Immunological analysis for leucine‐rich glioma inactivated 1 (LGI1) autoantibodies was negative, but antibodies against DCC (deleted in colorectal carcinoma) known as netrin‐1 receptor were found. This report describes a case of feline autoimmune limbic encephalitis and hippocampal necrosis that were presumably associated with DCC autoantibodies.
Collapse
Affiliation(s)
- Daisuke Hasegawa
- Department of Veterinary Clinical Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yumi Ohnishi
- Companion Animal Medical Imaging Center, Tokyo, Japan
| | - Eiji Koyama
- Companion Animal Medical Imaging Center, Tokyo, Japan.,Sendai General Animal Hospital, Miyagi, Japan
| | | | | | | | - Takanori Shiga
- Laboratory of Veterinary Pathology, The University of Tokyo, Tokyo, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, The University of Tokyo, Tokyo, Japan
| | - Norihiko Yokoi
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Science, Aichi, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Science, Aichi, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Science, Aichi, Japan
| |
Collapse
|