1
|
Benkerroum N, Ismail A. Human Breast Milk Contamination with Aflatoxins, Impact on Children's Health, and Possible Control Means: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16792. [PMID: 36554670 PMCID: PMC9779431 DOI: 10.3390/ijerph192416792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Aflatoxins are natural toxicants produced mainly by species of the Aspergillus genus, which contaminate virtually all feeds and foods. Apart from their deleterious health effects on humans and animals, they can be secreted unmodified or carried over into the milk of lactating females, thereby posing health risks to suckling babies. Aflatoxin M1 (AFM1) is the major and most toxic aflatoxin type after aflatoxin B1 (AFB1). It contaminates human breast milk upon direct ingestion from dairy products or by carry-over from the parent molecule (AFB1), which is hydroxylated in the liver and possibly in the mammary glands by cytochrome oxidase enzymes and then excreted into breast milk as AFM1 during lactation via the mammary alveolar epithelial cells. This puts suckling infants and children fed on this milk at a high risk, especially that their detoxifying activities are still weak at this age essentially due to immature liver as the main organ responsible for the detoxification of xenobiotics. The occurrence of AFM1 at toxic levels in human breast milk and associated health conditions in nursing children is well documented, with developing countries being the most affected. Different studies have demonstrated that contamination of human breast milk with AFM1 represents a real public health issue, which should be promptly and properly addressed to reduce its incidence. To this end, different actions have been suggested, including a wider and proper implementation of regulatory measures, not only for breast milk but also for foods and feeds as the upstream sources for breast milk contamination with AFM1. The promotion of awareness of lactating mothers through the organization of training sessions and mass media disclosures before and after parturition is of a paramount importance for the success of any action. This is especially relevant that there are no possible control measures to ensure compliance of lactating mothers to specific regulatory measures, which can yet be appropriate for the expansion of breast milk banks in industrialized countries and emergence of breast milk sellers. This review attempted to revisit the public health issues raised by mother milk contamination with AFM1, which remains undermined despite the numerous relevant publications highlighting the needs to tackle its incidence as a protective measure for the children physical and mental health.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Expertise Aliments Santé, Food Health Consultancy, 7450 Dollier Str., Montréal, QC H1S 2J6, Canada
| | - Amir Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan
| |
Collapse
|
2
|
Telles NJ, Simon BT, Scallan EM, Gould EN, Papich MG, He Y, Lee MT, Lidbury JA, Steiner JM, Kathrani A, Katherine Tolbert M. Evaluation of gastrointestinal transit times and pH in healthy cats using a continuous pH monitoring system. J Feline Med Surg 2022; 24:954-961. [PMID: 34878315 PMCID: PMC10812322 DOI: 10.1177/1098612x211062096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was to characterize gastrointestinal (GI) transit times and pH in healthy cats. METHODS GI transit times and pH were measured in six healthy, colony-housed, purpose-bred spayed female cats using a continuous, non-invasive pH monitoring system in a sequential order design. For the first period ('pre-feeding'), food was withheld for 20 h, followed by oral administration of a pH capsule. Five hours post-capsule administration, cats were meal-fed by offering them their daily allowance of food for 1 h. For the second period ('post-feeding'), food was withheld for 24 h and cats were fed for 1 h, after which a pH capsule was orally administered. Studies in both periods were repeated three times. GI transit times and pH were compared between the two periods. RESULTS The median transit times for the pre- and post-feeding periods, respectively, were: gastric - 94 mins (range 1-4101) and 1068 mins (range 484-5521); intestinal - 1350 mins (range 929-2961) and 1534 mins (range 442-2538); and GI - 1732 mins (range 1105-5451) and 2795 mins (range 926-6563). The median GI pH values for the first and second periods, respectively, were: esophageal - 7.0 (range 3.5-7.8) and 4.5 (range 2.9-6.4); gastric - 2.7 (range 1.7-6.2) and 2.0 (range 1.1-3.3); intestinal - 8.2 (range 7.6-8.7) and 7.8 (range 6.7-8.5); first-hour small intestinal - 8.2 (range 7.4-8.7) and 8.3 (range 7.9-8.6); and last-hour large intestinal - 8.5 (range 7.0-8.9) and 7.8 (range 6.3-8.7). Gastric (P <0.0020) and intestinal pH (P <0.0059) were significantly increased in the pre-feeding period compared with the post-feeding period. CONCLUSIONS AND RELEVANCE Gastric and intestinal pH differed significantly when the capsule was administered 5 h prior to feeding compared with 1 h after feeding. Transit times for both periods showed high degrees of intra- and inter-individual variability.
Collapse
Affiliation(s)
- Naila J Telles
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Bradley T Simon
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Elizabeth M Scallan
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Emily N Gould
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Yuqing He
- North Carolina State University, Raleigh, NC, USA
| | - Mu-Tien Lee
- North Carolina State University, Raleigh, NC, USA
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - M Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Morgan ER, Lanusse C, Rinaldi L, Charlier J, Vercruysse J. Confounding factors affecting faecal egg count reduction as a measure of anthelmintic efficacy. Parasite 2022; 29:20. [PMID: 35389336 PMCID: PMC8988865 DOI: 10.1051/parasite/2022017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Increasing anthelmintic resistance (AR) in livestock has stimulated growing efforts to monitor anthelmintic effectiveness (AE) on livestock farms. On-farm assessment of AE relies on measuring the reduction in faecal egg count (FEC) following treatment; and if conducted rigorously, qualifies as a formal FEC reduction test (FECRT) for AR. Substantial research effort has been devoted to designing robust protocols for the FECRT and its statistical interpretation; however, a wide range of factors other than AR can affect FEC reduction on farms. These are not always possible to control, and can affect the outcome and repeatability of AE measurements and confound the on-farm classification of AR using FECRT. This review considers confounders of FEC reduction, focusing on gastrointestinal nematodes of ruminants, including host and parasite physiology and demography; pharmacokinetic variation between drugs, parasites and hosts; and technical performance. Drug formulation and delivery, host condition and diet, and seasonal variation in parasite species composition, can all affect AE and hence observed FEC reduction. Causes of variation in FEC reduction should be attenuated, but this is not always possible. Regular monitoring of AE can indicate a need to improve anthelmintic administration practices, and detect AR early in its progression. Careful interpretation of FEC reduction, however, taking into account possible confounders, is essential before attributing reduced FEC reduction to AR. Understanding of confounders of FEC reduction will complement advances in FECRT design and interpretation to provide measures of anthelmintic efficacy that are both rigorous and accessible.
Collapse
Affiliation(s)
- Eric R Morgan
- School of Biological Sciences, Queen's University Belfast, 19, Chlorine Gardens, BT9 5DL Belfast, United Kingdom
| | - Carlos Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN) (UNCPBA-CICPBA-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, 7000 Tandil, Argentina
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino, 1, 80137 Naples, Italy
| | | | - Jozef Vercruysse
- Faculty of Veterinary Medicine, University of Gent, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
4
|
Nürnberger D, Müller SF, Hamann M, Geyer J. First Sequencing of Caprine Mdr1 (Abcb1) mRNA Due to Suspected Neurological Adverse Drug Reaction in a Thuringian Goat Following Extra-Label Use of Doramectin. Front Vet Sci 2021; 8:682393. [PMID: 34169111 PMCID: PMC8217441 DOI: 10.3389/fvets.2021.682393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
The multidrug resistance gene MDR1 encodes for an efflux transporter called P-glycoprotein (P-gp). In the canine Mdr1 gene, a nonsense mutation was identified in certain dog breeds causing increased drug sensitivity to various P-gp substrates such as antiparasitic macrocyclic lactones. Symptoms of neurologic toxicity include ataxia, depression, salivation, tremor, apparent blindness, and mydriasis. In the current report, a Thuringian goat developed similar neurological signs after treatment with doramectin, a compound from the macrocyclic lactone class. Therefore, Mdr1 might be defective in this individual goat. For diagnostic purposes, sequencing of the complete mRNA transcript coding for caprine Mdr1 was performed to investigate a potential missense mutation. The Mdr1 transcripts of two related goats without drug sensitivity were also sequenced to allow differential diagnosis and were compared to the suspected drug-sensitive goat. The only position where the Mdr1 sequence from the suspected drug-sensitive goat differed was in the 3′-untranslated region, being a heterozygous single nucleotide polymorphism c.3875C>A. It can be suspected that this variant affects the expression level, stability, or translation efficiency of the Mdr1 mRNA transcript and therefore might be associated with the suspected drug sensitivity. To clarify this, further studies are needed, particularly investigating the Mdr1 mRNA and protein expression levels from brain material of affected goats. In conclusion, Mdr1 variants may exist not only in dogs, but also in individual goats. The current report provides the first Mdr1 mRNA transcript sequence of a goat and therefore represents the basis for more detailed Mdr1 sequence and expression analyses.
Collapse
Affiliation(s)
- Daniela Nürnberger
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| | - Simon F Müller
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| | - Melanie Hamann
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Geyer
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Gray P, Jenner R, Norris J, Page S, Browning G. Antimicrobial prescribing guidelines for poultry. Aust Vet J 2021; 99:181-235. [PMID: 33782952 PMCID: PMC8251962 DOI: 10.1111/avj.13034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 01/20/2023]
|
6
|
Martinez MN, Mochel JP, Neuhoff S, Pade D. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS JOURNAL 2021; 23:59. [PMID: 33907906 DOI: 10.1208/s12248-021-00590-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
This review is a summary of factors affecting the drug pharmacokinetics (PK) of dogs versus humans. Identifying these interspecies differences can facilitate canine-human PK extrapolations while providing mechanistic insights into species-specific drug in vivo behavior. Such a cross-cutting perspective can be particularly useful when developing therapeutics targeting diseases shared between the two species such as cancer, diabetes, cognitive dysfunction, and inflammatory bowel disease. Furthermore, recognizing these differences also supports a reverse PK extrapolations from humans to dogs. To appreciate the canine-human differences that can affect drug absorption, distribution, metabolism, and elimination, this review provides a comparison of the physiology, drug transporter/enzyme location, abundance, activity, and specificity between dogs and humans. Supplemental material provides an in-depth discussion of certain topics, offering additional critical points to consider. Based upon an assessment of available state-of-the-art information, data gaps were identified. The hope is that this manuscript will encourage the research needed to support an understanding of similarities and differences in human versus canine drug PK.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland, 20855, USA.
| | - Jonathan P Mochel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA
| | - Sibylle Neuhoff
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Devendra Pade
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
7
|
Population Pharmacokinetic Modelling of Orally Administered Doxycycline to Rabbits at Different Ages. Antibiotics (Basel) 2021; 10:antibiotics10030310. [PMID: 33802956 PMCID: PMC8002702 DOI: 10.3390/antibiotics10030310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/12/2023] Open
Abstract
Doxycycline is a well-tolerated tetracycline antibiotic, registered for use in rabbits and administered for treatment of bacterial infections in this animal species. Nevertheless, the available pharmacokinetic data are limited and this study aimed to investigate the pharmacokinetics of orally administered doxycycline in mature and immature rabbits by application of the population approach. The rabbits were treated orally with doxycycline hyclate (5 mg/kg bw) in the form of a solid gelatin capsules. Free plasma concentrations were determined with HPLC analysis with Photodiode array detection. The estimated typical value of volume of distribution (tvV), total body clearance, and absorption rate constant were 4.429 L/kg, 1.473 L/kg/h, and 0.257 h−1, respectively. The highest between-subject variability (BSV) of 69.30% was observed for tvV. Co-variates such as body weight, age, and biochemical parameters did not improve the tested model and did not contribute to explanation of the BSV. The population pharmacokinetic model of the orally administered doxycycline in rabbits should be further developed by addition of data from more animals treated with higher doses. An oral dose of 5 mg/kg could ensure percentage of the time from the dosing interval during which the concentration is above minimum inhibitory concentration (MIC) %fT > MIC of 35% if MIC of 0.18 μg·mL−1 and a dosing interval of 12 h is assumed which does not cover criteria for rational use of antibiotics.
Collapse
|
8
|
Min L, Fink-Gremmels J, Li D, Tong X, Tang J, Nan X, Yu Z, Chen W, Wang G. An overview of aflatoxin B1 biotransformation and aflatoxin M1 secretion in lactating dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:42-48. [PMID: 33997330 PMCID: PMC8110862 DOI: 10.1016/j.aninu.2020.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/11/2020] [Accepted: 11/20/2020] [Indexed: 01/16/2023]
Abstract
Milk is considered a perfect natural food for humans and animals. However, aflatoxin B1 (AFB1) contaminating the feeds fed to lactating dairy cows can introduce aflatoxin M1 (AFM1), the main toxic metabolite of aflatoxins into the milk, consequently posing a risk to human health. As a result of AFM1 monitoring in raw milk worldwide, it is evident that high AFM1 concentrations exist in raw milk in many countries. Thus, the incidence of AFM1 in milk from dairy cows should not be underestimated. To further optimize the intervention strategies, it is necessary to better understand the metabolism of AFB1 and its biotransformation into AFM1 and the specific secretion pathways in lactating dairy cows. The metabolism of AFB1 and its biotransformation into AFM1 in lactating dairy cows are drawn in this review. Furthermore, recent data provide evidence that in the mammary tissue of lactating dairy cows, aflatoxins significantly increase the activity of a protein, ATP-binding cassette super-family G member 2 (ABCG2), an efflux transporter known to facilitate the excretion of various xenobiotics and veterinary drugs into milk. Further research should focus on identifying and understanding the factors that affect the expression of ABCG2 in the mammary gland of cows.
Collapse
Affiliation(s)
- Li Min
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Dagang Li
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiong Tong
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jing Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, USA
| | - Weidong Chen
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gang Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
9
|
Non-Steroidal Anti-Inflammatory Drugs: Pharmacokinetics and Mitigation of Procedural-Pain in Cattle. Animals (Basel) 2021; 11:ani11020282. [PMID: 33499412 PMCID: PMC7912476 DOI: 10.3390/ani11020282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Common routine management practices in cattle, such as castration and disbudding, are recognized as being painful. In the United States (U.S.), these procedures are frequently performed without pain mitigation and there are currently no drugs federally approved for such use. Non-steroidal anti-inflammatory drugs, such as meloxicam, flunixin meglumine and aspirin, are the most commonly used analgesics in U.S. food-animal production systems. However, the body of research investigating the effectiveness of these pharmaceuticals to control pain in cattle at castration and disbudding has not been comprehensively evaluated. Therefore, this review examined existing literature to summarize meloxicam, flunixin and aspirin (1) pharmacokinetics (PK) and (2) administration outcome in regard to pain control during castration and disbudding procedures, in cattle. Following systematic searches and screening, 47 PK and 44 publications were extracted for data and are presented. The sample size contained notable variability and a general deficiency of validated and replicated methodologies for assessing pain in cattle remain substantial challenges within this research area. Future research should prioritize replication of pain assessment methodologies across different experimental conditions to close knowledge gaps identified by the present study and facilitate examination of analgesic efficacy.
Collapse
|
10
|
Vachkova E, Vasilev N, Grigorova N, Milanova A. Culturing of primary bovine mammary epithelial cells and validation of biotransformation capacity in experiments with enrofloxacin. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many drugs and toxic compounds are subjected to disposition and metabolism in bovine mammary epithelial cells (bMECs). For rapid investigation of different compounds and their possible interactions, validated in vitro models are needed. Therefore, the first objective of described experiments was to develop the techniques for cell isolation, purification and culturing of bMECs. The second objective was the application of these cell cultures in a well-known substrate for one of the major biotransformation enzymes in epithelial cells. To this end, the metabolism of enrofloxacin (ENR) into its active metabolite ciprofloxacin (CPR), was studied. This conversion is known to be catalysed by enzymes of the cytochrome P4501A and P4503A family. The expression profile of these enzymes shows a close correlation with cellular ABC-efflux transporters. Primary bMECs were isolated from healthy udders of lactating cows (n=5 animals). mRNA levels of α-casein, b-lactoferrin and cyclophilin B were determined as markers of cell identity of purity of the cultures. Subsequently, bMECs cultures were incubated with ENR (10 µM). Concentrations of ENR and its main metabolite CPR in the medium and in the cells were determined by HPLC-FL analysis. Gene expression of CYP1A1, CYP1A2 and CYP3A4, bovine ABCG2 was detected by qRT-PCR. Results showed that ENR penetrated into bMECs and was converted to CPR. CPR was excreted in the medium suggesting participation of ABCG2 in fluoroquinolone efflux. In conclusion, the data showed that the established bMEC cultures expressed major CYP450 enzymes as well as the most relevant efflux transport ABGG2. This model should be further validated and can serve as an interesting model for further studies on site-specific drug/toxin metabolism and transport in the bovine mammary gland.
Collapse
|
11
|
Lautz LS, Jeddi MZ, Girolami F, Nebbia C, Dorne JLCM. Metabolism and pharmacokinetics of pharmaceuticals in cats (Felix sylvestris catus) and implications for the risk assessment of feed additives and contaminants. Toxicol Lett 2020; 338:114-127. [PMID: 33253781 DOI: 10.1016/j.toxlet.2020.11.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/25/2023]
Abstract
In animal health risk assessment, hazard characterisation of feed additives has been often using the default uncertainty factor (UF) of 100 to translate a no-observed-adverse-effect level in test species (rat, mouse, dog, rabbit) to a 'safe' level of chronic exposure in farm and companion animal species. Historically, both 10-fold factors have been further divided to include chemical-specific data in both dimensions when available. For cats (Felis Sylvestris catus), an extra default UF of 5 is applied due to the species' deficiency in particularly glucuronidation and glycine conjugation. This paper aims to assess the scientific basis and validity of the UF for inter-species differences in kinetics (4.0) and the extra UF applied for cats through a comparison of kinetic parameters between rats and cats for 30 substrates of phase I and phase II metabolism. When the parent compound undergoes glucuronidation the default factor of 4.0 is exceeded, with exceptions for zidovudine and S-carprofen. Compounds that were mainly renally excreted did not exceed the 4.0-fold default. Mixed results were obtained for chemicals which are metabolised by CYP3A in rats. When chemicals were administered intravenously the 4.0-fold default was not exceeded with the exception of clomipramine, lidocaine and alfentanil. The differences seen after oral administration might be due to differences in first-pass metabolism and bioavailability. Further work is needed to further characterise phase I, phase II enzymes and transporters in cats to support the development of databases and in silico models to support hazard characterisation of chemicals particularly for feed additives.
Collapse
Affiliation(s)
- L S Lautz
- Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - M Z Jeddi
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno, 1A, 43126 Parma, Italy
| | - F Girolami
- University of Torino, Department of Veterinary Sciences, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - C Nebbia
- University of Torino, Department of Veterinary Sciences, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - J L C M Dorne
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno, 1A, 43126 Parma, Italy.
| |
Collapse
|
12
|
Martinez MN, Mochel JP, Pade D. Considerations in the extrapolation of drug toxicity between humans and dogs. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Şenel S. Nanotechnology and Animal Health. Pharm Nanotechnol 2020; 9:26-35. [PMID: 32912131 DOI: 10.2174/2211738508666200910101504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 08/07/2020] [Indexed: 01/09/2023]
Abstract
Nanotechnology has been a rapidly expanding area of research with huge potential in many sectors, including animal healthcare. It promises to revolutionize drug and vaccine delivery, diagnostics, and theranostics, which has become an important tool in personalized medicine by integrating therapeutics and diagnostics. Nanotechnology has also been used successfully in animal nutrition. In this review, the application of nanotechnology in animal health will be reviewed with its pros and cons.
Collapse
Affiliation(s)
- Sevda Şenel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100-Ankara, Turkey
| |
Collapse
|
14
|
Lautz LS, Nebbia C, Hoeks S, Oldenkamp R, Hendriks AJ, Ragas AMJ, Dorne JLCM. An open source physiologically based kinetic model for the chicken (Gallus gallus domesticus): Calibration and validation for the prediction residues in tissues and eggs. ENVIRONMENT INTERNATIONAL 2020; 136:105488. [PMID: 31991240 DOI: 10.1016/j.envint.2020.105488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Xenobiotics from anthropogenic and natural origin enter animal feed and human food as regulated compounds, environmental contaminants or as part of components of the diet. After dietary exposure, a chemical is absorbed and distributed systematically to a range of organs and tissues, metabolised, and excreted. Physiologically based kinetic (PBK) models have been developed to estimate internal concentrations from external doses. In this study, a generic multi-compartment PBK model was developed for chicken. The PBK model was implemented for seven compounds (with log Kow range -1.37-6.2) to quantitatively link external dose and internal dose for risk assessment of chemicals. Global sensitivity analysis was performed for a hydrophilic and a lipophilic compound to identify the most sensitive parameters in the PBK model. Model predictions were compared to measured data according to dataset-specific exposure scenarios. Globally, 71% of the model predictions were within a 3-fold change of the measured data for chicken and only 7% of the PBK predictions were outside a 10-fold change. While most model input parameters still rely on in vivo experiments, in vitro data were also used as model input to predict internal concentration of the coccidiostat monensin. Future developments of generic PBK models in chicken and other species of relevance to animal health risk assessment are discussed.
Collapse
Affiliation(s)
- L S Lautz
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands.
| | - C Nebbia
- Department of Veterinary Sciences, University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - S Hoeks
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - R Oldenkamp
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - A J Hendriks
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - A M J Ragas
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands; Department of Science, Faculty of Management, Science &Technology, Open University, 6419 AT Heerlen, the Netherlands
| | - J L C M Dorne
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| |
Collapse
|
15
|
Martinez SE, Shi J, Zhu HJ, Perez Jimenez TE, Zhu Z, Court MH. Absolute Quantitation of Drug-Metabolizing Cytochrome P450 Enzymes and Accessory Proteins in Dog Liver Microsomes Using Label-Free Standard-Free Analysis Reveals Interbreed Variability. Drug Metab Dispos 2019; 47:1314-1324. [PMID: 31427433 PMCID: PMC6800445 DOI: 10.1124/dmd.119.088070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Dogs are commonly used in human and veterinary pharmaceutical development. Physiologically based pharmacokinetic modeling using recombinant cytochrome P450 (CYP) enzymes requires accurate estimates of CYP abundance, particularly in liver. However, such estimates are currently available for only seven CYPs, which were determined in a limited number of livers from one dog breed (beagle). In this study, we used a label-free shotgun proteomics method to quantitate 11 CYPs (including four CYPs not previously measured), cytochrome P450 oxidoreductase, and cytochrome b5 in liver microsomes from 59 dogs representing four different breeds and mixed-breed dogs. Validation included showing correlation with CYP marker activities, immunoquantified protein, as well as CYP1A2 and CYP2C41 null allele genotypes. Abundance values largely agreed with those previously published. Average CYP abundance was highest (>120 pmol/mg protein) for CYP2D15 and CYP3A12; intermediate (40-89 pmol/mg) for CYP1A2, CYP2B11, CYP2E1, and CYP2C21; and lowest (<12 pmol/mg) for CYP2A13, CYP2A25, CYP2C41, CYP3A26, and CYP1A1. The CYP2C41 gene was detected in 12 of 58 (21%) livers. CYP2C41 protein abundance averaged 8.2 pmol/mg in those livers, and was highest (19 pmol/mg) in the only liver with two CYP2C41 gene copies. CYP1A2 protein was not detected in the only liver homozygous for the CYP1A2 stop codon mutation. Large breed-associated differences were observed for CYP2B11 (P < 0.0001; ANOVA) but not for other CYPs. Research hounds and Beagles had the highest CYP2B11 abundance; mixed-breed dogs and Chihuahua were intermediate; whereas greyhounds had the lowest abundance. These results provide the most comprehensive estimates to date of CYP abundance and variability in canine liver. SIGNIFICANCE STATEMENT: This work provides the most comprehensive quantitative analysis to date of the drug-metabolizing cytochrome P450 proteome in dogs that will serve as a valuable reference for physiologically based scaling and modeling used in drug development and research. This study also revealed high interindividual variation and dog breed-associated differences in drug-metabolizing cytochrome P450 expression that may be important for predicting drug disposition variability among a genetically diverse canine population.
Collapse
Affiliation(s)
- Stephanie E Martinez
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Jian Shi
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Hao-Jie Zhu
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Tania E Perez Jimenez
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Zhaohui Zhu
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Michael H Court
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| |
Collapse
|
16
|
Lautz L, Oldenkamp R, Dorne J, Ragas A. Physiologically based kinetic models for farm animals: Critical review of published models and future perspectives for their use in chemical risk assessment. Toxicol In Vitro 2019; 60:61-70. [DOI: 10.1016/j.tiv.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
|
17
|
Mealey KL, Martinez SE, Villarino NF, Court MH. Personalized medicine: going to the dogs? Hum Genet 2019; 138:467-481. [PMID: 31032534 DOI: 10.1007/s00439-019-02020-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
Interindividual variation in drug response occurs in canine patients just as it does in human patients. Although canine pharmacogenetics still lags behind human pharmacogenetics, significant life-saving discoveries in the field have been made over the last 20 years, but much remains to be done. This article summarizes the available published data about the presence and impact of genetic polymorphisms on canine drug transporters, drug-metabolizing enzymes, drug receptors/targets, and plasma protein binding while comparing them to their human counterparts when applicable. In addition, precision medicine in cancer treatment as an application of canine pharmacogenetics and pertinent considerations for canine pharmacogenetics testing is reviewed. The field is poised to transition from single pharmacogene-based studies, pharmacogenetics, to pharmacogenomic-based studies to enhance our understanding of interindividual variation of drug response in dogs. Advances made in the field of canine pharmacogenetics will not only improve the health and well-being of dogs and dog breeds, but may provide insight into individual drug efficacy and toxicity in human patients as well.
Collapse
Affiliation(s)
- Katrina L Mealey
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA.
| | - Stephanie E Martinez
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Nicolas F Villarino
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Michael H Court
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| |
Collapse
|
18
|
Li M, Mainquist-Whigham C, Karriker LA, Wulf LW, Zeng D, Gehring R, Riviere JE, Coetzee JF, Lin Z. An integrated experimental and physiologically based pharmacokinetic modeling study of penicillin G in heavy sows. J Vet Pharmacol Ther 2019; 42:461-475. [PMID: 31012501 DOI: 10.1111/jvp.12766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/12/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023]
Abstract
Penicillin G is widely used in food-producing animals at extralabel doses and is one of the most frequently identified violative drug residues in animal-derived food products. In this study, the plasma pharmacokinetics and tissue residue depletion of penicillin G in heavy sows after repeated intramuscular administrations at label (6.5 mg/kg) and 5 × label (32.5 mg/kg) doses were determined. Plasma, urine, and environmental samples were tested as potential antemortem markers for penicillin G residues. The collected new data and other available data from the literature were used to develop a population physiologically based pharmacokinetic (PBPK) model for penicillin G in heavy sows. The results showed that antemortem testing of urine provided potential correlation with tissue residue levels. Based on the United States Department of Agriculture Food Safety and Inspection Service action limit of 25 ng/g, the model estimated a withdrawal interval of 38 days for penicillin G in heavy sows after 3 repeated intramuscular injections at 5 × label dose. This study improves our understanding of penicillin G pharmacokinetics and tissue residue depletion in heavy sows and provides a tool to predict proper withdrawal intervals after extralabel use of penicillin G in heavy sows, thereby helping safety assessment of sow-derived meat products.
Collapse
Affiliation(s)
- Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Christine Mainquist-Whigham
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Locke A Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.,Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Larry W Wulf
- Pharmacology Analytical Support Team (PhAST), Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Dongping Zeng
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ronette Gehring
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Johann F Coetzee
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.,Pharmacology Analytical Support Team (PhAST), Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
19
|
Campion DP, Dowell FJ. Translating Pharmacogenetics and Pharmacogenomics to the Clinic: Progress in Human and Veterinary Medicine. Front Vet Sci 2019; 6:22. [PMID: 30854372 PMCID: PMC6396708 DOI: 10.3389/fvets.2019.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022] Open
Abstract
As targeted personalized therapy becomes more widely used in human medicine, clients will expect the veterinary clinician to be able to implement an evidence-based strategy regarding both the prescribing of medicines and also recognition of the potential for adverse drug reactions (ADR) for their pet, at breed and individual level. This review aims to provide an overview of current developments and challenges in pharmacogenetics in medicine for a veterinary audience and to map these to developments in veterinary pharmacogenetics. Pharmacogenetics has been in development over the past 100 years but has been revolutionized following the publication of the human, and then veterinary species genomes. Genetic biomarkers called pharmacogenes have been identified as specific genetic loci on chromosomes which are associated with either positive or adverse drug responses. Pharmacogene variation may be classified according to the associated drug response, such as a change in (1) the pharmacokinetics; (2) the pharmacodynamics; (3) genes in the downstream pathway of the drug or (4) the effect of “off-target” genes resulting in a response that is unrelated to the intended target. There are many barriers to translation of pharmacogenetic information to the clinic, however, in human medicine, international initiatives are promising real change in the delivery of personalized medicine by 2025. We argue that for effective translation into the veterinary clinic, clinicians, international experts, and stakeholders must collaborate to ensure quality assurance and genetic test validation so that animals may also benefit from this genomics revolution.
Collapse
Affiliation(s)
- Deirdre P Campion
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Fiona J Dowell
- Division of Veterinary Science and Education, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
20
|
Lee PM, Faus MCL, Court MH. High interindividual variability in plasma clopidogrel active metabolite concentrations in healthy cats is associated with sex and cytochrome P450 2C genetic polymorphism. J Vet Pharmacol Ther 2018; 42:16-25. [PMID: 30251376 DOI: 10.1111/jvp.12717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 08/27/2018] [Indexed: 11/29/2022]
Abstract
Clopidogrel response variability has been identified in cats. In humans, evidence suggests that variable clopidogrel active metabolite (CAM) generation is the primary explanation for clopidogrel response variability with differences in body weight, sex, and variable metabolism of clopidogrel primarily due to polymorphisms of the gene encoding cytochrome P450 (CYP) 2C19 as some proposed mechanisms. The aim of this study was to evaluate whether variation in CAM concentrations exists in healthy cats and what the cause of such variation might be. Nineteen healthy cats were given 18.75 mg clopidogrel by mouth. Blood was collected 2 hr later. Plasma CAM concentrations were measured using high performance liquid chromatography and tandem mass spectrometry. Clopidogrel metabolism was estimated by calculating CAM metabolic ratio. DNA was collected, and feline CYP2C genotyping was performed. The cats demonstrated high interindividual variation of plasma CAM concentrations. Approximately 69% of this interindividual variation was primarily explained by differences in clopidogrel metabolism as measured by CAM metabolic ratio with some influence by sex but not by weight. A single nucleotide polymorphism was identified in the feline CYP2C gene that explained in part individual differences in CAM metabolic ratio and CAM plasma concentrations.
Collapse
Affiliation(s)
- Pamela M Lee
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Michele C L Faus
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Michael H Court
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|