1
|
Gómez-Martínez C, González-Estévez MA, deCastro-Arrazola I, Unglaub P, Lázaro A. Landscape conservation and orchard management influence carob tree yield through changes in pollinator communities. PLoS One 2025; 20:e0307357. [PMID: 39951454 PMCID: PMC11828422 DOI: 10.1371/journal.pone.0307357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Worldwide pollinator declines are a major problem for agricultural production. However, understanding how landscape characteristics and local management influence crop production through its pollinators is still a challenge. The carob tree (Ceratonia siliqua) is a pollinator-dependent Mediterranean crop of high economic importance in food and pharmaceutical industries. To understand how crop production can be enhanced in a sustainable manner, we evaluated the effects of landscape (habitat loss) and orchard local management (farming system: conventional vs. ecological; male-to-female ratio) on pollinator communities and crop production using data on 20 carob tree orchards across Mallorca Island (Spain). We found that orchards surrounded by a greater proportion of natural landcover received more visits by wild bees and butterflies and fewer by honeybees. Overall pollinator abundance was slightly higher in ecological than conventional orchards, but the difference was not significant. High male-to-female ratio enhanced overall pollinator abundance and shaped pollinator composition, by increasing hoverfly abundance and decreasing wasp and fly abundance. Male-to-female ratio showed hump-shaped relationships with fruit and seed production per female tree (peak at 0.7 males/female), although this quadratic relationship was lost when the most male-biased orchards were removed from the analyses. Total orchard production maximized with 25-30% of males. Seed weight (farmer's highest economic value) increased in conserved landscapes where wild pollinators prevailed, and with overall pollinator abundance; however, it decreased with male-to-female ratio, likely due to seed number-size trade-offs. Management strategies to enhance carob production may optimize sex ratios and favor wild pollinators by preserving natural landscapes.
Collapse
Affiliation(s)
- Carmelo Gómez-Martínez
- Global Change Research Group, Mediterranean Institute for Advanced Studies, Esporles, Balearic Islands, Spain
| | - Miguel A. González-Estévez
- Global Change Research Group, Mediterranean Institute for Advanced Studies, Esporles, Balearic Islands, Spain
| | | | - Peter Unglaub
- Global Change Research Group, Mediterranean Institute for Advanced Studies, Esporles, Balearic Islands, Spain
| | - Amparo Lázaro
- Global Change Research Group, Mediterranean Institute for Advanced Studies, Esporles, Balearic Islands, Spain
| |
Collapse
|
2
|
Vallejo-Marin M, Field DL, Fornoni J, Montesinos D, Dominguez CA, Hernandez I, Vallejo GC, Woodrow C, Ayala Barajas R, Jafferis N. Biomechanical properties of non-flight vibrations produced by bees. J Exp Biol 2024; 227:jeb247330. [PMID: 38773949 DOI: 10.1242/jeb.247330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/10/2024] [Indexed: 05/24/2024]
Abstract
Bees use thoracic vibrations produced by their indirect flight muscles for powering wingbeats in flight, but also during mating, pollination, defence and nest building. Previous work on non-flight vibrations has mostly focused on acoustic (airborne vibrations) and spectral properties (frequency domain). However, mechanical properties such as the vibration's acceleration amplitude are important in some behaviours, e.g. during buzz pollination, where higher amplitude vibrations remove more pollen from flowers. Bee vibrations have been studied in only a handful of species and we know very little about how they vary among species. In this study, we conducted the largest survey to date of the biomechanical properties of non-flight bee buzzes. We focused on defence buzzes as they can be induced experimentally and provide a common currency to compare among taxa. We analysed 15,000 buzzes produced by 306 individuals in 65 species and six families from Mexico, Scotland and Australia. We found a strong association between body size and the acceleration amplitude of bee buzzes. Comparison of genera that buzz-pollinate and those that do not suggests that buzz-pollinating bees produce vibrations with higher acceleration amplitude. We found no relationship between bee size and the fundamental frequency of defence buzzes. Although our results suggest that body size is a major determinant of the amplitude of non-flight vibrations, we also observed considerable variation in vibration properties among bees of equivalent size and even within individuals. Both morphology and behaviour thus affect the biomechanical properties of non-flight buzzes.
Collapse
Affiliation(s)
- Mario Vallejo-Marin
- Department of Ecology and Genetics, Uppsala University, SE-752 36 Uppsala, Sweden
| | - David L Field
- Applied Biosciences, Macquarie University, Sydney, NSW 2109, Australia
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Juan Fornoni
- Instituto de Ecología, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Daniel Montesinos
- Australian Tropical Herbarium, James Cook University, Cairns, QLD 4870, Australia
- College of Science and Engineering, James Cook University, Cairns, QLD 4870, Australia
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Cesar A Dominguez
- Instituto de Ecología, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Ivan Hernandez
- Independent researcher, San Felipe del Agua, Oaxaca, Mexico
| | | | - Charlie Woodrow
- Department of Ecology and Genetics, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Ricardo Ayala Barajas
- Estación de Biología Chamela, National Autonomous University of Mexico (UNAM), Jalisco, Mexico
| | - Noah Jafferis
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
3
|
Kopper C, Schönenberger J, Dellinger AS. High floral disparity without pollinator shifts in buzz-bee-pollinated Melastomataceae. THE NEW PHYTOLOGIST 2024. [PMID: 38634161 DOI: 10.1111/nph.19735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Shifts among functional pollinator groups are commonly regarded as sources of floral morphological diversity (disparity) through the formation of distinct pollination syndromes. While pollination syndromes may be used for predicting pollinators, their predictive accuracy remains debated, and they are rarely used to test whether floral disparity is indeed associated with pollinator shifts. We apply classification models trained and validated on 44 functional floral traits across 252 species with empirical pollinator observations and then use the validated models to predict pollinators for 159 species lacking observations. In addition, we employ multivariate statistics and phylogenetic comparative analyses to test whether pollinator shifts are the main source of floral disparity in Melastomataceae. We find strong support for four well-differentiated pollination syndromes ('buzz-bee', 'nectar-foraging vertebrate', 'food-body-foraging vertebrate', 'generalist'). While pollinator shifts add significantly to floral disparity, we find that the most species-rich 'buzz-bee' pollination syndrome is most disparate, indicating that high floral disparity may evolve without pollinator shifts. Also, relatively species-poor clades and geographic areas contributed substantially to total disparity. Finally, our results show that machine-learning approaches are a powerful tool for evaluating the predictive accuracy of the pollination syndrome concept as well as for predicting pollinators where observations are missing.
Collapse
Affiliation(s)
- Constantin Kopper
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Agnes S Dellinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| |
Collapse
|
4
|
Vallejo-Marin M, Russell AL. Harvesting pollen with vibrations: towards an integrative understanding of the proximate and ultimate reasons for buzz pollination. ANNALS OF BOTANY 2024; 133:379-398. [PMID: 38071461 PMCID: PMC11006549 DOI: 10.1093/aob/mcad189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 04/12/2024]
Abstract
Buzz pollination, a type of interaction in which bees use vibrations to extract pollen from certain kinds of flowers, captures a close relationship between thousands of bee and plant species. In the last 120 years, studies of buzz pollination have contributed to our understanding of the natural history of buzz pollination, and basic properties of the vibrations produced by bees and applied to flowers in model systems. Yet, much remains to be done to establish its adaptive significance and the ecological and evolutionary dynamics of buzz pollination across diverse plant and bee systems. Here, we review for bees and plants the proximate (mechanism and ontogeny) and ultimate (adaptive significance and evolution) explanations for buzz pollination, focusing especially on integrating across these levels to synthesize and identify prominent gaps in our knowledge. Throughout, we highlight new technical and modelling approaches and the importance of considering morphology, biomechanics and behaviour in shaping our understanding of the adaptive significance of buzz pollination. We end by discussing the ecological context of buzz pollination and how a multilevel perspective can contribute to explain the proximate and evolutionary reasons for this ancient bee-plant interaction.
Collapse
Affiliation(s)
- Mario Vallejo-Marin
- Department of Ecology and Genetics, Uppsala University, Uppsala, 752 36, Sweden
| | - Avery L Russell
- Department of Biology, Missouri State University, Springfield, MO, 65897, USA
| |
Collapse
|
5
|
Nevard L, Vallejo‐Marín M. Floral orientation affects outcross-pollen deposition in buzz-pollinated flowers with bilateral symmetry. AMERICAN JOURNAL OF BOTANY 2022; 109:1568-1578. [PMID: 36193950 PMCID: PMC9828177 DOI: 10.1002/ajb2.16078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/28/2023]
Abstract
PREMISE Floral orientation is central to plant-pollinator interactions and is commonly associated with floral symmetry. Bilaterally symmetrical flowers are often oriented horizontally for optimal pollinator positioning and pollen transfer efficiency, while the orientation of radially symmetrical flowers is variable. Buzz-pollinated species (pollinated by vibration-producing bees) include bilateral, horizontally oriented flowers, and radial, pendant flowers. The effect of floral orientation on pollen transfer has never been tested in buzz-pollinated species. METHODS Here, we examined the effect of floral orientation on bumblebee-mediated pollen deposition in three buzz-pollinated Solanum species with different floral symmetry and natural orientations: S. lycopersicum and S. seaforthianum (radial, pendant), and S. rostratum (bilateral, horizontal). We tested whether orientation affects total stigmatic pollen deposition (both self and outcross pollen) when all flowers have the same orientation (either pendant or horizontal). In a second experiment, we evaluated whether different orientations of donor and recipient flowers affects the receipt of outcross pollen by S. rostratum. RESULTS For the three Solanum species studied, there was no effect of floral orientation on total pollen deposition (both self and outcross) when flowers shared the same orientation. In contrast, in our experiment with S. rostratum, we found that pendant flowers received fewer outcross-pollen grains when paired with pendant donors. CONCLUSIONS We suggest that floral orientation influences the quality of pollen transferred, with more outcross pollen transferred to horizontally oriented recipients in the bilaterally symmetrical S. rostratum. Whether other bilaterally symmetrical, buzz-pollinated flowers also benefit from increased cross-pollination when presented horizontally remains to be established.
Collapse
Affiliation(s)
- Lucy Nevard
- Biological & Environmental SciencesUniversity of StirlingStirlingUKFK9 4LA
| | | |
Collapse
|
6
|
Carpenter bee thorax vibration and force generation inform pollen release mechanisms during floral buzzing. Sci Rep 2022; 12:12654. [PMID: 35931708 PMCID: PMC9355986 DOI: 10.1038/s41598-022-16859-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Approximately 10% of flowering plant species conceal their pollen within tube-like poricidal anthers. Bees extract pollen from poricidal anthers via floral buzzing, a behavior during which they apply cyclic forces by biting the anther and rapidly contracting their flight muscles. The success of pollen extraction during floral buzzing relies on the direction and magnitude of the forces applied by the bees, yet these forces and forcing directions have not been previously quantified. In this work, we developed an experiment to simultaneously measure the directional forces and thorax kinematics produced by carpenter bees (Xylocopa californica) during defensive buzzing, a behavior regulated by similar physiological mechanisms as floral buzzing. We found that the buzzing frequencies averaged about 130 Hz and were highly variable within individuals. Force amplitudes were on average 170 mN, but at times reached nearly 500 mN. These forces were 30–80 times greater than the weight of the bees tested. The two largest forces occurred within a plane formed by the bees’ flight muscles. Force amplitudes were moderately correlated with thorax displacement, velocity and acceleration amplitudes but only weakly correlated with buzzing frequency. Linear models developed through this work provide a mechanism to estimate forces produced during non-flight behaviors based on thorax kinematic measurements in carpenter bees. Based on the buzzing frequencies, individual bee’s capacity to vary buzz frequency and predominant forcing directions, we hypothesize that carpenter bees leverage vibration amplification to increase the deformation of poricidal anthers, and hence the amount of pollen ejected.
Collapse
|
7
|
Vallejo-Marín M. How and why do bees buzz? Implications for buzz pollination. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1080-1092. [PMID: 34537837 PMCID: PMC8866655 DOI: 10.1093/jxb/erab428] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Buzz pollination encompasses the evolutionary convergence of specialized floral morphologies and pollinator behaviour in which bees use vibrations (floral buzzes) to remove pollen. Floral buzzes are one of several types of vibrations produced by bees using their thoracic muscles. Here I review how bees can produce these different types of vibrations and discuss the implications of this mechanistic understanding for buzz pollination. I propose that bee buzzes can be categorized according to their mode of production and deployment into: (i) thermogenic, which generate heat with little mechanical vibration; (ii) flight buzzes which, combined with wing deployment and thoracic vibration, power flight; and (iii) non-flight buzzes in which the thorax vibrates but the wings remain mostly folded, and include floral, defence, mating, communication, and nest-building buzzes. I hypothesize that the characteristics of non-flight buzzes, including floral buzzes, can be modulated by bees via modification of the biomechanical properties of the thorax through activity of auxiliary muscles, changing the rate of activation of the indirect flight muscles, and modifying flower handling behaviours. Thus, bees should be able to fine-tune mechanical properties of their floral vibrations, including frequency and amplitude, depending on flower characteristics and pollen availability to optimize energy use and pollen collection.
Collapse
Affiliation(s)
- Mario Vallejo-Marín
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
8
|
Tayal M, Kariyat R. Examining the Role of Buzzing Time and Acoustics on Pollen Extraction of Solanum elaeagnifolium. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122592. [PMID: 34961064 PMCID: PMC8709443 DOI: 10.3390/plants10122592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Buzz pollination is a specialized pollination syndrome that requires vibrational energy to extract concealed pollen grains from poricidal anthers. Although a large body of work has examined the ecology of buzz pollination, whether acoustic properties of buzz pollinators affect pollen extraction is less understood, especially in weeds and invasive species. We examined the pollination biology of Silverleaf nightshade (Solanum elaeagnifolium), a worldwide invasive weed, in its native range in the Lower Rio Grande Valley (LRGV) in south Texas. Over two years, we documented the floral visitors on S. elaeagnifolium, their acoustic parameters (buzzing amplitude, frequency, and duration of buzzing) and estimated the effects of the latter two factors on pollen extraction. We found five major bee genera: Exomalopsis, Halictus, Megachile, Bombus, and Xylocopa, as the most common floral visitors on S. elaeagnifolium in the LRGV. Bee genera varied in their duration of total buzzing time, duration of each visit, and mass. While we did not find any significant differences in buzzing frequency among different genera, an artificial pollen collection experiment using an electric toothbrush showed that the amount of pollen extracted is significantly affected by the duration of buzzing. We conclude that regardless of buzzing frequency, buzzing duration is the most critical factor in pollen removal in this species.
Collapse
Affiliation(s)
- Mandeep Tayal
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Rupesh Kariyat
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- School of Earth, Environment and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
9
|
Nevard L, Russell AL, Foord K, Vallejo-Marín M. Transmission of bee-like vibrations in buzz-pollinated plants with different stamen architectures. Sci Rep 2021; 11:13541. [PMID: 34188153 PMCID: PMC8241880 DOI: 10.1038/s41598-021-93029-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022] Open
Abstract
In buzz-pollinated plants, bees apply thoracic vibrations to the flower, causing pollen release from anthers, often through apical pores. Bees grasp one or more anthers with their mandibles, and vibrations are transmitted to this focal anther(s), adjacent anthers, and the whole flower. Pollen release depends on anther vibration, and thus it should be affected by vibration transmission through flowers with distinct morphologies, as found among buzz-pollinated taxa. We compare vibration transmission between focal and non-focal anthers in four species with contrasting stamen architectures: Cyclamen persicum, Exacum affine, Solanum dulcamara and S. houstonii. We used a mechanical transducer to apply bee-like vibrations to focal anthers, measuring the vibration frequency and displacement amplitude at focal and non-focal anther tips simultaneously using high-speed video analysis (6000 frames per second). In flowers in which anthers are tightly arranged (C. persicum and S. dulcamara), vibrations in focal and non-focal anthers are indistinguishable in both frequency and displacement amplitude. In contrast, flowers with loosely arranged anthers (E. affine) including those with differentiated stamens (heterantherous S. houstonii), show the same frequency but higher displacement amplitude in non-focal anthers compared to focal anthers. We suggest that stamen architecture modulates vibration transmission, potentially affecting pollen release and bee behaviour.
Collapse
Affiliation(s)
- Lucy Nevard
- Biological & Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Avery L Russell
- Department of Biology, Missouri State University, Springfield, MO, 65897, USA
| | - Karl Foord
- Minnesota Extension, University of Minnesota, St Paul, MN, 55108, USA
| | - Mario Vallejo-Marín
- Biological & Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|