1
|
Ulrich D, Hensel A, Classen N, Hafezi W, Sendker J, Kühn J. Aescin Inhibits Herpes simplex Virus Type 1 Induced Membrane Fusion. PLANTA MEDICA 2024; 90:1156-1166. [PMID: 39442532 DOI: 10.1055/a-2441-6570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Infections with Herpes simplex virus can cause severe ocular diseases and encephalitis. The present study aimed to investigate potential inhibitors of fusion between HSV-1 and the cellular membrane of the host cell. Fusion and entry of HSV-1 into the host cell is mimicked by a virus-free eukaryotic cell culture system by co-expression of the HSV-1 glycoproteins gD, gH, gL, and gB in presence of a gD receptor, resulting in excessive membrane fusion and polykaryocyte formation. A microscopic read-out was used for the screening of potential inhibitors, whereas luminometric quantification of cell-cell fusion was used in a reporter fusion assay. HSV-1 gB was tagged at its C-terminus with mCherry to express mCherry-gB in both assay systems for the visualization of the polykaryocyte formation. Reporter protein expression of SEAP was regulated by a Tet-On 3 G system. The saponin mixture aescin was identified as the specific inhibitor (IC50 7.4 µM, CC50 24.3 µM, SI 3.3) of membrane fusion. A plaque reduction assay on Vero cells reduced HSV-1 entry into cells and HSV-1 cell-to-cell spread significantly; 15 µM aescin decreased relative plaque counts to 41%, and 10 µM aescin resulted in a residual plaque size of 11% (HSV-1 17 syn+) and 2% (HSV-1 ANG path). Release of the HSV-1 progeny virus was reduced by one log step in the presence of 15 µM aescin. Virus particle integrity was mainly unaffected. Analytical investigation of aescin by UHPLC-MS revealed aescin IA and -IB and isoaescin IA and -IB as the main compounds with different functional activities. Aescin IA had the lowest IC50, the highest CC50, and an SI of > 4.6.
Collapse
Affiliation(s)
- Diana Ulrich
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Nica Classen
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Wali Hafezi
- Institute of Virology Münster (IVM), University of Münster, Münster, Germany
| | - Jandirk Sendker
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Joachim Kühn
- Institute of Virology Münster (IVM), University of Münster, Münster, Germany
| |
Collapse
|
2
|
Jouhet J, Alves E, Boutté Y, Darnet S, Domergue F, Durand T, Fischer P, Fouillen L, Grube M, Joubès J, Kalnenieks U, Kargul JM, Khozin-Goldberg I, Leblanc C, Letsiou S, Lupette J, Markov GV, Medina I, Melo T, Mojzeš P, Momchilova S, Mongrand S, Moreira ASP, Neves BB, Oger C, Rey F, Santaeufemia S, Schaller H, Schleyer G, Tietel Z, Zammit G, Ziv C, Domingues R. Plant and algal lipidomes: Analysis, composition, and their societal significance. Prog Lipid Res 2024; 96:101290. [PMID: 39094698 DOI: 10.1016/j.plipres.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/INRAE/CEA/Grenoble Alpes Univ., 38000 Grenoble, France.
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | | | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Pauline Fischer
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Joanna M Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Dryland Agriculture and Biotechnology, The J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 8499000, Israel
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Ag. Spiridonos str. Egaleo, 12243 Athens, Greece
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Svetlana Momchilova
- Department of Lipid Chemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 9, BG-1113 Sofia, Bulgaria
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Bruna B Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Felisa Rey
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Sergio Santaeufemia
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67083 Strasbourg, France
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev 8531100, Israel
| | - Gabrielle Zammit
- Laboratory of Applied Phycology, Department of Biology, University of Malta, Msida MSD 2080, Malta
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal.
| |
Collapse
|
3
|
Mahmoud GAE, Rashed NM, El-Ganainy SM, Salem SH. Unveiling the Neem ( Azadirachta indica) Effects on Biofilm Formation of Food-Borne Bacteria and the Potential Mechanism Using a Molecular Docking Approach. PLANTS (BASEL, SWITZERLAND) 2024; 13:2669. [PMID: 39339644 PMCID: PMC11434743 DOI: 10.3390/plants13182669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Biofilms currently represent the most prevalent bacterial lifestyle, enabling them to resist environmental stress and antibacterial drugs. Natural antibacterial agents could be a safe solution for controlling bacterial biofilms in food industries without affecting human health and environmental safety. A methanolic extract of Azadirachta indica (neem) leaves was prepared and analyzed using gas chromatography-mass spectrometry for the identification of its phytochemical constituents. Four food-borne bacterial pathogens (Bacillus cereus, Novosphingobium aromaticivorans, Klebsiella pneumoniae, and Serratia marcescens) were tested for biofilm formation qualitatively and quantitatively. The antibacterial and antibiofilm properties of the extract were estimated using liquid cultures and a microtiter plate assay. The biofilm inhibition mechanisms were investigated using a light microscope and molecular docking technique. The methanolic extract contained 45 identified compounds, including fatty acids, ester, phenols, flavonoids, terpenes, steroids, and antioxidants with antimicrobial, anticancer, and anti-inflammatory properties. Substantial antibacterial activity in relation to the extract was recorded, especially at 100 μg/mL against K. pneumoniae and S. marcescens. The extract inhibited biofilm formation at 100 μg/mL by 83.83% (S. marcescens), 73.12% (K. pneumoniae), and 54.4% (N. aromaticivorans). The results indicate efficient biofilm formation by the Gram-negative bacteria S. marcescens, K. pneumoniae, and N. aromaticivorans, giving 0.74, 0.292, and 0.219 OD at 595 nm, respectively, while B. cereus was found to have a low biofilm formation potential, i.e., 0.14 OD at 595 nm. The light microscope technique shows the antibiofilm activities with the biofilm almost disappearing at 75 μg/mL and 100 μg/mL concentrations. This antibiofilm property was attributed to DNA gyrase inhibition as illustrated by the molecular docking approach.
Collapse
Affiliation(s)
| | - Nahed M Rashed
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Horticulture Department, Faculty of Agriculture, Damietta University, Damietta 34519, Egypt
| | - Sherif M El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Shimaa H Salem
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
4
|
Cai M, Xu Q, Zhao S, Zhou X, Cai Y, He X. Antibacterial Effect of Euryale ferox Seed Shell Polyphenol Extract on Salmonella Typhimurium. Foodborne Pathog Dis 2024; 21:570-577. [PMID: 38957974 DOI: 10.1089/fpd.2023.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
This study aimed to evaluate the effects of Euryale ferox Seed Shell Polyphenol Extract (EFSSPE) on a foodborne pathogenic bacterium. EFSSPE showed antimicrobial activity toward Salmonella Typhimurium CICC 22956; the minimum inhibitory concentration of EFSSPE was 1.25 mg/mL, the inhibition curve also reflected the inhibitory effect of EFSSPE on the growth of S. Typhimurium. Detection of alkaline phosphatase outside the cell revealed that EFSSPE treatment damaged the cell wall integrity of S. Typhimurium. EFSSPE also altered the membrane integrity, thereby causing leaching of 260-nm-absorbing material (bacterial proteins and DNA). Moreover, the activities of succinate dehydrogenase and malate dehydrogenase were inhibited by EFSSPE. The hydrophobicity and clustering ability of cells were affected by EFSSPE. Scanning electron microscopy showed that EFSSPE treatment damaged the morphology of the tested bacteria. These results indicate that EFSSPE can destroy the cell wall integrity and alter the permeability of the cell membrane of S. Typhimurium.
Collapse
Affiliation(s)
- Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qiaoqiao Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shili Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianhan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuelin Cai
- College of Life Science and Technology, Inner Mongolia Normal University, Huhehaote, China
| | - Xingle He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Yang L, Zhang Q, Yu D, Zhu W, Wang Y. Synergistic Inhibitions of Gram-Negative Bacteria by Combination Treatment with Ciprofloxacin and a Novel Glucolipid. Chem Biodivers 2024; 21:e202400578. [PMID: 38634186 DOI: 10.1002/cbdv.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Psychrophilic fungus Pseudogymnoascus sp. OUCMDZ-4032 derived from Antarctica was cultivated under 16 °C to produce a new glucolipid compound (1). Its structure was elucidated by analysis of detailed spectroscopic data, acid hydrolysis and 1-phenyl-3-methyl-5-pyrazolone precolumn derivatization, and 13C NMR quantum chemical calculations. Though compound 1 did not show inhibitory activity against bacteria, it can reduce the minimum inhibitory concentration (MIC) of ciprofloxacin against Gram-negative bacteria Pseudomonas aeruginosa, Escherichia coli, and Salmonella paratyphi by 1024, 256 and 256-fold. Compound 1 showed potential as a synergistically inhibiting adjuvant in co-administration with antibiotic to enhance antibacterial activities.
Collapse
Affiliation(s)
- Liyuan Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qingqing Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Deng Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Key Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yi Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Key Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
6
|
Dini S, Bekhit AEDA, Roohinejad S, Vale JM, Agyei D. The Physicochemical and Functional Properties of Biosurfactants: A Review. Molecules 2024; 29:2544. [PMID: 38893420 PMCID: PMC11173842 DOI: 10.3390/molecules29112544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Surfactants, also known as surface-active agents, have emerged as an important class of compounds with a wide range of applications. However, the use of chemical-derived surfactants must be restricted due to their potential adverse impact on the ecosystem and the health of human and other living organisms. In the past few years, there has been a growing inclination towards natural-derived alternatives, particularly microbial surfactants, as substitutes for synthetic or chemical-based counterparts. Microbial biosurfactants are abundantly found in bacterial species, predominantly Bacillus spp. and Pseudomonas spp. The chemical structures of biosurfactants involve the complexation of lipids with carbohydrates (glycolipoproteins and glycolipids), peptides (lipopeptides), and phosphates (phospholipids). Lipopeptides, in particular, have been the subject of extensive research due to their versatile properties, including emulsifying, antimicrobial, anticancer, and anti-inflammatory properties. This review provides an update on research progress in the classification of surfactants. Furthermore, it explores various bacterial biosurfactants and their functionalities, along with their advantages over synthetic surfactants. Finally, the potential applications of these biosurfactants in many industries and insights into future research directions are discussed.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Alaa El-Din A. Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Shahin Roohinejad
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Jim M. Vale
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| |
Collapse
|
7
|
Daku AB, AL-Mhanna SB, Abu Bakar R, Nurul AA. Glycolipids isolation and characterization from natural source: A review. J LIQ CHROMATOGR R T 2023. [DOI: 10.1080/10826076.2023.2165097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Abubakar Bishir Daku
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
- Department of Human Physiology, Faculty of Basic Medical Sciences, Federal University, Dutse, Nigeria
| | - Sameer Badri AL-Mhanna
- School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Ruzilawati Abu Bakar
- School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| |
Collapse
|
8
|
Prospects on Tuning Bioactive and Antimicrobial Denture Base Resin Materials: A Narrative Review. Polymers (Basel) 2022; 15:polym15010054. [PMID: 36616404 PMCID: PMC9823688 DOI: 10.3390/polym15010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Denture base resin (DBR) materials are used in dentistry in constructing removable dentures and implant-supported prostheses. A plethora of evidence has demonstrated that DBR materials are associated with a high risk of denture stomatitis, a clinical complication where the soft oral tissues underneath the resin-based material are inflamed. The prevalence of denture stomatitis among denture wearers is high worldwide. Plaque accumulation and the infiltration of oral microbes into DBRs are among the main risk factors for denture stomatitis. The attachment of fungal species, mainly Candida albicans, to DBRs can irritate the underneath soft tissues, leading to the onset of the disease. As a result, several attempts were achieved to functionalize antimicrobial compounds and particles into DBRs to prevent microbial attachment. This review article explored the advanced approaches in designing bioactive and antimicrobial DBR materials. It was reported that using monomer mixtures, quaternary ammonium compounds (QACs), and organic and inorganic particles can suppress the growth of denture stomatitis-related pathogens. This paper also highlighted the importance of characterizing bioactive DBRs to be mechanically and physically sustainable. Future directions may implement a clinical translational model to attempt these materials inside the oral cavity.
Collapse
|
9
|
Wylie MR, Merrell DS. The Antimicrobial Potential of the Neem Tree Azadirachta indica. Front Pharmacol 2022; 13:891535. [PMID: 35712721 PMCID: PMC9195866 DOI: 10.3389/fphar.2022.891535] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
Azadirachta indica (A. Juss), also known as the neem tree, has been used for millennia as a traditional remedy for a multitude of human ailments. Also recognized around the world as a broad-spectrum pesticide and fertilizer, neem has applications in agriculture and beyond. Currently, the extensive antimicrobial activities of A. indica are being explored through research in the fields of dentistry, food safety, bacteriology, mycology, virology, and parasitology. Herein, some of the most recent studies that demonstrate the potential of neem as a previously untapped source of novel therapeutics are summarized as they relate to the aforementioned research topics. Additionally, the capacity of neem extracts and compounds to act against drug-resistant and biofilm-forming organisms, both of which represent large groups of pathogens for which there are limited treatment options, are highlighted. Updated information on the phytochemistry and safety of neem-derived products are discussed as well. Although there is a growing body of exciting evidence that supports the use of A. indica as an antimicrobial, additional studies are clearly needed to determine the specific mechanisms of action, clinical efficacy, and in vivo safety of neem as a treatment for human pathogens of interest. Moreover, the various ongoing studies and the diverse properties of neem discussed herein may serve as a guide for the discovery of new antimicrobials that may exist in other herbal panaceas across the globe.
Collapse
Affiliation(s)
- Marina R Wylie
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
10
|
Khuntia BK, Sharma V, Qazi S, Das S, Sharma S, Raza K, Sharma G. Ayurvedic Medicinal Plants Against COVID-19: An In Silico Analysis. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Even after one and a half years since the outbreak of COVID-19, its complete and effective control is still far from being achieved despite vaccination drives, symptomatic management with available drugs, and wider lockdowns. This has inspired researchers to screen potential phytochemicals from medicinal plants against SARS-CoV-2, adopting a bio-informatics approach. The current study aimed to assess anti-viral activity of the phytochemicals derived from Ayurvedic medicinal plants against SARS-CoV-2 drug targets [3-chymotrypsin-like protease (3CLpro) and RNA dependent RNA polymerase (RdRp)] using validated in silico methods.3D Structures of 196 phytochemicals from three Ayurvedic plants were retrieved from PubChem and KNApSAcK databases and screened for Absorption Distribution Metabolism Excretion and Toxicity(ADMET) to predict drug-likeness. The phytochemicals were subjected to molecular docking and only three showed promise: Acetovanillonewith a binding affinity of −4.7Kcal/mol with RdRp and −4.1 Kcal/mol with 3CL pro; myrtenol with equivalent values of −4.3 Kcal/mol with RdRP and −3.2 Kcal/mol with 3CLpro; and nimbochalcin with equivalent values of −5.0Kcal/mol with RdRp and −4.9 Kcal/mol with 3CLpro. Molecular dynamics simulation (50ns) analysis was made of 3CLpro and RdRp using Autodock Vina 1.1.2 software and VMD software. After ADMET analysis, 78 phytochemicals were found suitable for molecular docking. Three, namely acetovanillone, myrtenol and nimbochalcin from Picrorhiza kurroa, Azadirachta indica and Cyperus rotundus,respectively,exhibited good binding affinity with 3CLproand RdRp of SARS-CoV-2. Interaction analysis, molecular dynamics simulations and MM-PBSA calculations were executed for two complexes, acetovanillone_RdRp and myrtenol_3CL pro.Acetovanillone_RdRpcomplex did not display any structural change after MD simulation as compared to myrtenol_3CL pro. The overall stability of acetovanillone_6NUR was 154.7 kJ/mol, and for myrtenol_1UJ1 90.5 kJ/mol. In silico analysis revealed that acetovanillone ( Picrorhiza kurroa) and myrtenol ( Cyperus rotundus) possess anti SARS-CoV-2 activity. Further studies are needed to validate their efficacy in biological models.
Collapse
Affiliation(s)
- Bharat Krushna Khuntia
- Center for Integrative Medicine & Research (CIMR), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vandna Sharma
- Center for Integrative Medicine & Research (CIMR), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sahar Qazi
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Soumi Das
- ICMR-National Institute of Pathology, New Delhi, India
| | - Shruti Sharma
- ICMR-National Institute of Pathology, New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Gautam Sharma
- Center for Integrative Medicine & Research (CIMR), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
11
|
Xie M, Song Q, Zhao H. Investigation on the surface-active and antimicrobial properties of a natural glycolipid product. Food Funct 2021; 12:11537-11546. [PMID: 34708225 DOI: 10.1039/d1fo02359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycolipids are a group of sugar-containing lipids with versatile functions. In this study, a natural glycolipid product was obtained from soy lecithin, and its emulsifying, oil-gelling, antibacterial and antiviral properties were investigated. A silica-based extraction method on a preparative scale was used to recover the glycolipid product (GLP) from soy lecithin. The GLP consisted of three different glycolipid classes: acylated sterol glucoside (64.16%), sterol glucoside (25.57%) and cerebroside (6.71%). As an emulsifier, the GLP was able to form a stable water-in-oil emulsion. The GLP exhibited a good oil-gelling property, capable of gelling rapeseed oil at a concentration of 6%. For the investigated microorganisms (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus), the GLP did not show any antibacterial effects. The GLP exerted antiviral activity against lentivirus, but not adenovirus. The results of this study help in enriching the knowledge on the properties of naturally occurring glycolipids, which may find potential applications in the food, pharmaceutical and related industries.
Collapse
Affiliation(s)
- Meizhen Xie
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hong Zhao
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
12
|
Medicinal plants used to treat infectious diseases in the central part and a northern district of Bangladesh – An ethnopharmacological perception. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Pingali U, Vuppalanchi B, Nutalapati C, Gundagani S. Aqueous Azadirachta indica (Neem) Extract Attenuates Insulin Resistance to Improve Glycemic Control and Endothelial Function in Subjects with Metabolic Syndrome. J Med Food 2021; 24:1135-1144. [PMID: 34582720 DOI: 10.1089/jmf.2020.4838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neem (Azadirachta indica) exhibits multiple therapeutic benefits in preclinical studies, but clinical studies are lacking. This clinical study investigated the efficacy and safety of an aqueous A. indica leaf and twig extract (NEEM) on metabolic parameters in subjects with metabolic syndrome (MetS). Subjects were randomized to receive (1) placebo or (2) 125 mg, (3) 250 mg, or (4) 500 mg of NEEM twice daily (n = 20/group) for 12 weeks. Fasting blood sugar (FBS) and insulin, postprandial blood sugar (PPBS), insulin resistance (IR), hemoglobin A1c (HbA1c), endothelial function, circulating markers of inflammation and oxidative stress, lipid profiles, and platelet aggregation were measured at weeks 0, 4, 8, and 12. NEEM supplementation dose dependently improved the trajectories for FBS, PPBS, IR, and HbA1c over time, as well as endothelial function and most markers of inflammation and oxidative stress. Therefore, NEEM may be considered a promising therapeutic to attenuate the hyperglycemia and associated cardiometabolic derangements in people with MetS. Clinical trial registration no.: CTRI/2019/03/018034 [registered on: March 12, 2019].
Collapse
Affiliation(s)
- Usharani Pingali
- Department of Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Bhavani Vuppalanchi
- Department of Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Chandrasekhar Nutalapati
- Department of Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Srinivas Gundagani
- Department of Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| |
Collapse
|
14
|
Ali E, Islam MS, Hossen MI, Khatun MM, Islam MA. Extract of neem (Azadirachta indica) leaf exhibits bactericidal effect against multidrug resistant pathogenic bacteria of poultry. Vet Med Sci 2021; 7:1921-1927. [PMID: 33955693 PMCID: PMC8464248 DOI: 10.1002/vms3.511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/12/2021] [Indexed: 11/12/2022] Open
Abstract
The aim of the study was to determine the efficacy of neem leaf extract against multidrug resistant (MDR) pathogenic bacteria. Laboratory stock culture of Pasteurella multocida, Salmonella pullorum, Salmonella gallinarum and Escherichia coli was revived. Antibiogram profiles of these bacteria were determined by disc diffusion method. Ethanolic extract of neem leaf was prepared. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of neem leaf extract (112.5, 100, 50, 25, 12.5, 6.25 and 3.12 mg/ml) against MDR pathogenic bacteria of poultry were determined by double dilution method. The MIC and MBC of the neem leaf extract were 12.5 and 25 mg/ml, respectively for P. multocida, 50 and 100 mg/ml for S. pullorum and S. gallinarum, 100 and 112.5 mg/ml for E. coli. Neem leaf extracts exhibited bactericidal effect against MDR pathogenic bacteria of poultry.
Collapse
Affiliation(s)
- Edris Ali
- Department of Microbiology and HygieneBangladesh Agricultural UniversityMymensinghBangladesh
| | - Md. Sadequl Islam
- Department of Microbiology and HygieneBangladesh Agricultural UniversityMymensinghBangladesh
| | - Md. Ismail Hossen
- Livestock DivisionBangladesh Agricultural Research CouncilDhakaBangladesh
| | - Mst. Minara Khatun
- Department of Microbiology and HygieneBangladesh Agricultural UniversityMymensinghBangladesh
| | - Md. Ariful Islam
- Department of Microbiology and HygieneBangladesh Agricultural UniversityMymensinghBangladesh
| |
Collapse
|
15
|
Mondal J, Das Mahapatra A, Mandal KC, Chattopadhyay D. An extract of Stephania hernandifolia, an ethnomedicinal plant, inhibits herpes simplex virus 1 entry. Arch Virol 2021; 166:2187-2198. [PMID: 34041610 DOI: 10.1007/s00705-021-05093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
Stephania hernandifolia (Nimukho), an ethnomedicinal herb from rural Bengal, has been used traditionally for the management of nerve, skin, urinary, and digestive ailments. Here, we attempted to confirm the antiviral potential of aqueous, methanol, and chloroform extracts of S. hernandifolia against herpes simplex virus type 1 (HSV-1), the causative agent of orolabial herpes in humans, and decipher its underlying mechanism of action. The bioactive extract was standardized and characterized by gas chromatography-mass spectroscopy, while cytotoxicity and antiviral activity were evaluated by MTT and plaque reduction assay, respectively. Two HSV strains, HSV-1F and the clinical isolate VU-09, were inhibited by the chloroform extract (CE) with a median effective concentration (EC50) of 4.32 and 4.50 µg/ml respectively, with a selectivity index (SI) of 11. Time-of-addition assays showed that pre-treatment of virus-infected cells with the CE and its removal before infection reduced the number of plaques without lasting toxicity to the cell, indicating that the CE affected the early stage in the viral life cycle. The number of plaques was also reduced by direct inactivation of virions and by the addition of CE for a short time following attachment of virions. These results together suggest that modification of either the virion surface or the cell surface by the CE inhibits virus entry into the host cell.
Collapse
Affiliation(s)
- Joy Mondal
- ICMR-NICED Virus Unit, ID and BG Hospital, GB-4, First Floor, 57 Dr. Suresh C Banerjee Road, Beliaghata, Kolkata, 700010, India
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Ananya Das Mahapatra
- ICMR-NICED Virus Unit, ID and BG Hospital, GB-4, First Floor, 57 Dr. Suresh C Banerjee Road, Beliaghata, Kolkata, 700010, India
| | - Keshab C Mandal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Debprasad Chattopadhyay
- ICMR-NICED Virus Unit, ID and BG Hospital, GB-4, First Floor, 57 Dr. Suresh C Banerjee Road, Beliaghata, Kolkata, 700010, India.
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, 590010, India.
| |
Collapse
|
16
|
Ottaviani A, Iacovelli F, Fiorani P, Desideri A. Natural Compounds as Therapeutic Agents: The Case of Human Topoisomerase IB. Int J Mol Sci 2021; 22:4138. [PMID: 33923641 PMCID: PMC8073192 DOI: 10.3390/ijms22084138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
Natural products are widely used as source for drugs development. An interesting example is represented by natural drugs developed against human topoisomerase IB, a ubiquitous enzyme involved in many cellular processes where several topological problems occur due the formation of supercoiled DNA. Human topoisomerase IB, involved in the solution of such problems relaxing the DNA cleaving and religating a single DNA strand, represents an important target in anticancer therapy. Several natural compounds inhibiting or poisoning this enzyme are under investigation as possible new drugs. This review summarizes the natural products that target human topoisomerase IB that may be used as the lead compounds to develop new anticancer drugs. Moreover, the natural compounds and their derivatives that are in clinical trial are also commented on.
Collapse
Affiliation(s)
- Alessio Ottaviani
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy; (F.I.); (P.F.); (A.D.)
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy; (F.I.); (P.F.); (A.D.)
| | - Paola Fiorani
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy; (F.I.); (P.F.); (A.D.)
- Institute of Translational Pharmacology, National Research Council, CNR, Via Del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Alessandro Desideri
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy; (F.I.); (P.F.); (A.D.)
| |
Collapse
|
17
|
Li G, Xu Y, Pan L, Xia X. Punicalagin Damages the Membrane of Salmonella Typhimurium. J Food Prot 2020; 83:2102-2106. [PMID: 32663262 DOI: 10.4315/jfp-20-173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023]
Abstract
Salmonella, a bacterial foodborne pathogen, can contaminate meat, milk, and vegetables. While appropriate measures are available to control Salmonella, the inhibitory phytochemicals from plants are gaining increased attention. Punicalagin, a natural antimicrobial, is one of the main active tannins isolated from Punica granatum L. To obtain a broader understanding of the effect of punicalagin on the cell membranes of Salmonella Typhimurium, the growth curves, extracellular potassium concentration, release of cell constituents, intracellular pH, membrane potential, and morphological features were characterized to elucidate the mechanisms of action. Treatment with punicalagin induced an increase in the extracellular concentrations of potassium and a release of cell constituents. A higher pH gradient, an increase in the intracellular pH, and cell membrane depolarization were observed after punicalagin treatment. Electron microscopy observations showed that the cell membrane structures of Salmonella Typhimurium were damaged by punicalagin. It is concluded that punicalagin inhibits the proliferation of Salmonella Typhimurium and destroys the integrity of the cell membrane, leading to a loss of cell homeostasis. These findings indicate that punicalagin has the potential to be developed as a future alternative to control Salmonella Typhimurium contamination in foods and reduce the risk of salmonellosis.
Collapse
Affiliation(s)
- Guanghui Li
- Food and Pharmacy College, Xuchang University, Xuchang, Henan 461000, People's Republic of China.,(ORCID: https://orcid.org/0000-0003-4459-3621 [G.L.]).,College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan xi 712100, People's Republic of China
| | - Yunfeng Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan xi 712100, People's Republic of China
| | - Liang Pan
- Food and Pharmacy College, Xuchang University, Xuchang, Henan 461000, People's Republic of China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan xi 712100, People's Republic of China
| |
Collapse
|
18
|
Antimicrobial Lipids from Plants and Marine Organisms: An Overview of the Current State-of-the-Art and Future Prospects. Antibiotics (Basel) 2020; 9:antibiotics9080441. [PMID: 32722192 PMCID: PMC7459900 DOI: 10.3390/antibiotics9080441] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
In the actual post-antibiotic era, novel ways of rethinking antimicrobial research approaches are more urgent than ever. Natural compounds with antimicrobial activity such as fatty acids and monoacylglycerols have been investigated for decades. Additionally, the interest in other lipid classes as antimicrobial agents is rising. This review provides an overview on the research about plant and marine lipids with potential antimicrobial activity, the methods for obtaining and analyzing these compounds, with emphasis on lipidomics, and future perspectives for bioprospection and applications for antimicrobial lipids. Lipid extracts or lipids isolated from higher plants, algae or marine invertebrates are promising molecules to inactivate a wide spectrum of microorganisms. These lipids include a variety of chemical structures. Present and future challenges in the research of antimicrobial lipids from natural origin are related to the investment and optimization of the analytical workflow based on lipidomics tools, complementary to the bioassay-guided fractionation, to identify the active compound(s). Also, further work is needed regarding the study of their mechanism of action, the structure-activity relationship, the synergistic effect with conventional antibiotics, and the eventual development of resistance to lipids, which, as far as is known, is unlikely.
Collapse
|
19
|
Qian W, Wang W, Zhang J, Wang T, Liu M, Yang M, Sun Z, Li X, Li Y. Antimicrobial and antibiofilm activities of ursolic acid against carbapenem-resistant Klebsiella pneumoniae. J Antibiot (Tokyo) 2020; 73:382-391. [PMID: 32051569 DOI: 10.1038/s41429-020-0285-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Previous studies demonstrated that ursolic acid (UA) present in apple pomace displays antimicrobial activity against some microorganisms, but the underlying mechanisms associated with this activity remain unexplored. Furthermore, there are no reports on the effect of UA on carbapenem-resistant Klebsiella pneumoniae (CRKP). This study examined the antimicrobial activity and mode of action of UA against CRKP was examined. Minimum inhibitory concentration (MIC) of UA against CRKP was determined by the agar dilution method. Variations in the intracellular pH (pHin), ATP concentration, and cell membrane potential were measured to assess the influence of UA on the cell membrane. Our results show that UA was effective against CRKP at an MIC of 0.8 mg ml-1. UA disrupted the cell membrane integrity of CRKP, exhibited strong inhibitory effects against biofilm formation and biofilm-related gene expression, and inactivated CRKP cells encased in biofilms. Thus, UA shows promise for use in combination with other antibiotics to treat multidrug resistant K. pneumoniae infections.
Collapse
Affiliation(s)
- Weidong Qian
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, 710021, Xi'an, PR China.
| | - Wenjing Wang
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, 710021, Xi'an, PR China
| | - Jianing Zhang
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, 710021, Xi'an, PR China
| | - Ting Wang
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, 710021, Xi'an, PR China
| | - Miao Liu
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, 710021, Xi'an, PR China
| | - Min Yang
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, 710021, Xi'an, PR China
| | - Zhaohuan Sun
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, 710021, Xi'an, PR China
| | - Xiang Li
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, 710021, Xi'an, PR China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, 315010, Ningbo, PR China.
| |
Collapse
|
20
|
Pingali U, Ali MA, Gundagani S, Nutalapati C. Evaluation of the Effect of an Aqueous Extract of Azadirachta indica (Neem) Leaves and Twigs on Glycemic Control, Endothelial Dysfunction and Systemic Inflammation in Subjects with Type 2 Diabetes Mellitus - A Randomized, Double-Blind, Placebo-Controlled Clinical Study. Diabetes Metab Syndr Obes 2020; 13:4401-4412. [PMID: 33244247 PMCID: PMC7683773 DOI: 10.2147/dmso.s274378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Neem tree (Azadirachta indica) offers different bioactives ranging from pesticides to therapeutic molecules, depending on which part of the plant is used and the extraction methodology and the solvent used. This study was aimed at evaluating the safety and efficacy of a standardized aqueous extract of Azadirachta indica leaves and twigs (NEEM) on glycemic control, endothelial dysfunction, and systemic inflammation in patients with type 2 diabetes mellitus (T2DM). METHODS In this randomized, double-blind, placebo-controlled clinical study (RCT), 80 T2DM subjects, who have already been on standard metformin therapy, received either 125 mg, 250 mg, 500 mg of NEEM or placebo twice daily for 12 weeks. Postprandial blood sugar level (PPBS), fasting blood sugar level (FBS), glycosylated hemoglobin (HbA1c), insulin resistance (IR), endothelial function, oxidative stress, systemic inflammation, IL-6 and TNF-α, platelet aggregation and lipid profile were assessed. Adverse drug reactions, if any, were noted. GraphPad Prism 8 was used to perform statistical analysis. RESULTS NEEM at the doses of 125, 250, and 500 mg BID significantly reduced PPBS (from 194.4±14 to 173.1±12.8mg/dL, 192.3±17.1 to 161.8±9.7mg/dL, and 205.9±7.2 to 159.3±7.1mg/dL, respectively), FBS (from 119.2±5.0 to 109.2±5.7mg/dL, 115.5±4.4 to 103.7±4.2mg/dL, and 120.7±4.2 to 97.3±3.7mg/dL, respectively), HbA1c (from 6.87 ± 0.4% to 6.64 ± 0.4%, 7.52 ± 0.4% to 6.86 ± 0.3%, and 7.78 ± 0.2% to 6.26 ± 0.4%, respectively), and IR (from 4.5 ± 1.2 to 3.4 ± 0.9, 3.8 ± 1.1 to 2.5 ± 0.6, and 4.6 ± 1.3 to 2.0 ± 0.6, respectively) compared to placebo. Also, NEEM significantly improved endothelial function, decreased oxidative stress and systemic inflammation compared to placebo. The efficacy was significant with all the doses, but no effect on platelet aggregation or lipid profile was observed. CONCLUSION NEEM may significantly ameliorate hyperglycemia, endothelial dysfunction, and systemic inflammation, on top of what metformin could do, in subjects with T2DM.
Collapse
Affiliation(s)
- Usharani Pingali
- Department of Pharmacology and Therapeutics, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana500073, India
- Correspondence: Usharani Pingali Email
| | - Mohammed Abid Ali
- Department of Pharmacology and Therapeutics, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana500073, India
| | - Srinivas Gundagani
- Department of Pharmacology and Therapeutics, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana500073, India
| | - Chandrasekhar Nutalapati
- Department of Pharmacology and Therapeutics, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana500073, India
| |
Collapse
|
21
|
Guo L, Sun Q, Gong S, Bi X, Jiang W, Xue W, Fei P. Antimicrobial Activity and Action Approach of the Olive Oil Polyphenol Extract Against Listeria monocytogenes. Front Microbiol 2019; 10:1586. [PMID: 31396167 PMCID: PMC6663969 DOI: 10.3389/fmicb.2019.01586] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
Olive oil polyphenol extract (OOPE) has been reported to have antibacterial activity; however, its effect on Listeria monocytogenes is less studied so far. This study, thus, aimed to reveal its antimicrobial activity and action approach against L. monocytogenes via evaluating the minimum inhibitory concentration (MIC) as well as the changes of intracellular adenosine 5′-triphosphate (ATP) concentration, cell membrane potential, bacterial protein, DNA, and cell morphology. The results showed that OOPE could inhibit the growth of L. monocytogenes with a measured MIC of 1.25 mg/ml. L. monocytogenes cells treated by OOPE showed significant reduction in intracellular ATP concentrations, bacterial protein, or DNA (p < 0.05), in comparison with those without any treatment. In addition, OOPE was observed to depolarize strain cells and alter cell morphology, resulting in damaged cell membrane and, thereby, leakage of cell fluid. These findings demonstrated that OOPE had inhibition on L. monocytogenes via its action on cells, suggesting its potential as a natural preservative.
Collapse
Affiliation(s)
- Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qi Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shaoying Gong
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xue Bi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wen Jiang
- National Agricultural Standardization Monitoring and Research Center (Heilongjiang), Harbin, China
| | - Wei Xue
- Metrology Institute of Measurement and Verification (Heilongjiang), Harbin, China
| | - Peng Fei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
22
|
Hamid SK, Al-Dubayan AH, Al-Awami H, Khan SQ, Gad MM. In vitro assessment of the antifungal effects of neem powder added to polymethyl methacrylate denture base material. J Clin Exp Dent 2019; 11:e170-e178. [PMID: 30805122 PMCID: PMC6383901 DOI: 10.4317/jced.55458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Background Denture with antimicrobial activities is desirable to prevent Candida albican adhesion subsequently decreasing the susceptibility of denture stomatitis incidence. Azadirachta Indica, commonly known as Neem powder has antimicrobial effect but the effect of its addition to acrylic denture base on C. albicans adhesion has not been investigated. The aim of this study was determine whether adding neem powder to acrylic denture base materials could reduce Candida albicansadhesion. Material and Methods One hundred and twenty acrylic resin denture specimens were fabricated and divided into heat-polymerized (n=60) and auto-polymerized (n=60) groups. Each group was further divided into 6 groups (n=10) based on the neem concentration: 0, 0.5, 1, 1.5, 2 and 2.5 wt% of the polymer. After polymerization, the specimens were polished, stored in distilled water, sonicated, sterilized, submerged in artificial saliva containing C. albicans, and finally, placed in an incubator at 37°C. Slide counting and direct culture methods were used to assess the antifungal effects of the neem addition. An analysis of variance and post hoc Tukey’s test were performed for the data analysis (p≤0.05 was statistically significant). Results Based on the results, the neem addition significantly decreased the C. albicans count when compared to the control group (p≤0.05). Moreover, the count decreased as the neem concentration increased (lowest count with 2.5 wt%). Conclusions The results suggest that adding neem powder to acrylic resin denture base materials reduces the adhesion of C. albicans; therefore, the incorporation of neem could be a possible denture stomatitis prevention method. Key words:Denture stomatitis, Candida albicans, Azadirachta indica, neem powder, denture base.
Collapse
Affiliation(s)
- Shorouq-Khalid Hamid
- Undergraduate student, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia
| | - AlAnoud-Hamad Al-Dubayan
- Undergraduate student, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia
| | - Heba Al-Awami
- Undergraduate student, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia
| | - Soban-Qadir Khan
- MSC, Lecturer of Biostatistics, Department of Clinical Affairs, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia
| | - Mohammed-Moustafa Gad
- BDS, MSc, Lecturer, Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia
| |
Collapse
|
23
|
Patra C, Sen C, Mahapatra AD, Chattopadhyay D, Mahapatra A, Sinha C. Pyridylthioether-hydroxycoumarin Schiff base as selective Zn 2+ fluorescence sensor, application in life cell imaging and uses of resulting complex as secondary probe for ATP sensing. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Xu Y, Shi C, Wu Q, Zheng Z, Liu P, Li G, Peng X, Xia X. Antimicrobial Activity of Punicalagin Against Staphylococcus aureus and Its Effect on Biofilm Formation. Foodborne Pathog Dis 2017; 14:282-287. [DOI: 10.1089/fpd.2016.2226] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yunfeng Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qian Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhiwei Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Peifeng Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Guanghui Li
- Food and Bioengineering College, Xuchang University, Xuchang, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Sino-US Joint Research Center for Food Safety, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Jain CK, Majumder HK, Roychoudhury S. Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases. Curr Genomics 2017; 18:75-92. [PMID: 28503091 PMCID: PMC5321768 DOI: 10.2174/1389202917666160808125213] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022] Open
Abstract
DNA topoisomerases are important cellular enzymes found in almost all types of living cells (eukaryotic and prokaryotic). These enzymes are essential for various DNA metabolic processes e.g. replication, transcription, recombination, chromosomal decatenation etc. These enzymes are important molecular drug targets and inhibitors of these enzymes are widely used as effective anticancer and antibacterial drugs. However, topoisomerase inhibitors have some therapeutic limitations and they exert serious side effects during cancer chemotherapy. Thus, development of novel anticancer topoisomerase inhibitors is necessary for improving cancer chemotherapy. Nature serves as a repertoire of structurally and chemically diverse molecules and in the recent years many DNA topoisomerase inhibitors have been identified from natural sources. The present review discusses anticancer properties and therapeutic importance of eighteen recently identified natural topoisomerase inhibitors (from the year 2009 to 2015). Structural characteristics of these novel inhibitors provide backbones for designing and developing new anticancer drugs.
Collapse
Affiliation(s)
- Chetan Kumar Jain
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre & Research Institute, M G Road, Thakurpukur, Kolkata-700 063, India
| |
Collapse
|
26
|
Anand S, Rajan M, Venkateshbabu N, Kandaswamy D, Shravya Y, Rajeswari K. Evaluation of the Antibacterial Efficacy of Azadirachta Indica, Commiphora Myrrha, Glycyrrhiza Glabra Against Enterococcus Faecalis using Real Time PCR. Open Dent J 2016; 10:160-5. [PMID: 27386000 PMCID: PMC4911734 DOI: 10.2174/1874210601610010160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/10/2016] [Accepted: 01/28/2016] [Indexed: 11/22/2022] Open
Abstract
AIM To compare the antibacterial efficacy of Azadirachta indica (Neem), Commiphora myrrha (Myrrh), Glycyrrhiza glabra (Liquorice) with 2% Chlorhexidine (CHX) against E. faecalis by using Real Time PCR. MATERIALS AND METHODS A total of fifty teeth specimens (n=50) were inoculated with E. faecalis for 21 days. Specimens were divided into five groups (Group 1: Myrrh, Group 2: Neem, Group 3: Liquorice, Group 4: 2% CHX and Group 5: Saline (negative control)). The intracanal medicaments were packed inside the tooth. After 5 days, the remaining microbial load was determined by using real time PCR. RESULTS Threshold cycle (Ct) values of Myrrh extract, Neem extract, Liquorice Extract, 2% CHX and saline were found to be 30.94, 23.85, 21.38, 30.93 and 17.8 respectively. CONCLUSION Myrrh extract showed inhibition of E.faecalis equal to that of 2% CHX followed by Neem, Liquorice and Saline.
Collapse
Affiliation(s)
- Suresh Anand
- Department of Conservative Dentistry and Endodontics,
Penang International Dental College, Jalan Bagan Laur,12000, Butterworth,
Penang, Malaysia
| | - Mathan Rajan
- Department of Conservative Dentistry and Endodontics,
Faculty of Dental Sciences,
Sri Ramachandra University,
Chennai, 600 116,
India
| | - Nagendrababu Venkateshbabu
- Department of Restorative Dentistry,
School of Dentistry,
International Medical University,
Kuala Lumpur, Malaysia
| | - Deivanayagam Kandaswamy
- Department of Conservative Dentistry and Endodontics,
Faculty of Dental Sciences,
Sri Ramachandra University,
Chennai, 600 116,
India
| | - Yarramreddy Shravya
- Department of Conservative Dentistry and Endodontics,
Faculty of Dental Sciences,
Sri Ramachandra University,
Chennai, 600 116,
India
| | - Kalaiselvam Rajeswari
- Department of Conservative Dentistry and Endodontics,
Faculty of Dental Sciences,
Sri Ramachandra University,
Chennai, 600 116,
India
| |
Collapse
|
27
|
Silva-Mares D, Torres-López E, Rivas-Galindo VM. Antiherpetic Plants: A Review of Active Extracts, Isolated Compounds, and Bioassays. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Herpes simplex is a disease that is widely distributed throughout the world. It is caused by herpes simplex virus type 1 (HSV-1) and simplex virus type 2 (HSV-2). The drugs of choice for treatment are acyclovir (ACV), Penciclovir (PCV) and other guanine analogues, which have the same mechanism of action. However, due to the constant increase of ACV-resistant strains in immunocompromised patients, it is necessary to find new treatment alternatives. It has been shown that natural products are a good alternative for the treatment of these diseases as well as being an excellent source of compounds with anti-herpetic activity, which may be useful for the development of new drugs and act through a mechanism of action different from ACV and PCV. This paper compiles reports on extracts and compounds isolated from plants that have anti-herpetic activity. We present an analysis of the solvents most widely used for extraction from plants as well as cells and commonly used methods for evaluating cytotoxic and anti-herpetic activity. Families that have a higher number of plants with anti-herpetic activity are evaluated, and we also highlight the importance of studies of mechanisms of action of extracts and compounds with anti-herpetic activity.
Collapse
Affiliation(s)
- David Silva-Mares
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey Nuevo León, México. C.P. 64460
| | - Ernesto Torres-López
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey Nuevo León, México. C.P. 64460
| | - Verónica M. Rivas-Galindo
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey Nuevo León, México. C.P. 64460
| |
Collapse
|
28
|
Pires de Mello CP, Sardoux NS, Terra L, Amorim LC, Vargas MD, da Silva GB, Castro HC, Giongo VA, Madeira LF, Paixão IC. Aminomethylnaphthoquinones and HSV-1: in vitro and in silico evaluations of potential antivirals. Antivir Ther 2016; 21:507-515. [PMID: 26913545 DOI: 10.3851/imp3039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Herpes simplex viruses (HSV) are leading causes of human infections which result in severe manifestations, especially in neonates, immunocompromised and/or transplanted individuals. Current HSV type-1 (HSV-1) resistance to standard antiviral agents is a therapeutic challenge, especially for treating immunocompromised patients. METHODS Herein we describe the promising antiviral profile of three 2-aminomethyl-3-hydroxy-1,4-naphthoquinones against HSV-1 using Vero cells. RESULTS The in silico theoretical analysis indicated that the lowest unoccupied molecular orbital (LUMO) and the conformational features of these molecules are important structural features for modulating their biological activity. Our in vitro results showed that these compounds have significant anti-HSV-1 activity comparable to acyclovir, the antiviral currently used clinically. Importantly two of them showed a lower cytotoxicity profile against Vero cells than acyclovir. The inhibitory mechanism analysis using a time-of-addition assay revealed that all compounds inhibit the late phase of lytic replication. Finally, the highest selectivity index of the first tested compound was almost twice as high as that of acyclovir. CONCLUSIONS Since resistance is still a problem for treating HSV infections, these compounds present a promising profile toward the development of new strategies for anti-HSV-1 therapy.
Collapse
Affiliation(s)
- Camilly P Pires de Mello
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Nathália S Sardoux
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Luciana Terra
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Leonardo C Amorim
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil.,Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro, Brazil
| | - Maria D Vargas
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Gustavo B da Silva
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Helena C Castro
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Viveca A Giongo
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Lucianne F Madeira
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Izabel Cnp Paixão
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| |
Collapse
|
29
|
Sulfonoquinovosyl diacylglyceride selectively targets acute lymphoblastic leukemia cells and exerts potent anti-leukemic effects in vivo. Sci Rep 2015; 5:12082. [PMID: 26189912 PMCID: PMC4507174 DOI: 10.1038/srep12082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 06/08/2015] [Indexed: 11/22/2022] Open
Abstract
DNA topoisomerase II inhibitors e.g. doxorubicin and etoposide are currently
used in the chemotherapy for acute lymphoblastic leukemia (ALL). These inhibitors
have serious side effects during the chemotherapy e.g. cardiotoxicity and
secondary malignancies. In this study we show that sulfonoquinovosyl diacylglyceride
(SQDG) isolated from Azadirachta indica exerts potent anti-ALL activity both
in vitro and in vivo in nude mice and it synergizes with
doxorubicin and etoposide. SQDG selectively targets ALL MOLT-4 cells by inhibiting
catalytic activity of topoisomerase I enzyme and inducing p53 dependent apoptotic
pathway. SQDG treatment induces recruitment of ATR at chromatin and arrests the
cells in S-phase. Down-regulation of topoisomerase I or p53 renders the cells less
sensitive for SQDG, while ectopic expression of wild type p53 protein in p53
deficient K562 cells results in chemosensitization of the cells for SQDG. We also
show that constant ratio combinations of SQDG and etoposide or SDQG and doxorubicin
exert synergistic effects on MOLT-4 cell killing. This study suggests that doses of
etoposide/doxorubicin can be substantially reduced by combining SQDG with these
agents during ALL chemotherapy and side effects caused can be minimized. Thus dual
targeting of topoisomerase I and II enzymes is a promising strategy for improving
ALL chemotherapy.
Collapse
|
30
|
Effect of Neem (Azadirachta indica) on the Survival of Escherichia coli O157:H7 in Dairy Manure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:7794-803. [PMID: 26184255 PMCID: PMC4515691 DOI: 10.3390/ijerph120707794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 01/09/2023]
Abstract
Escherichia coli O157:H7 (EcO157) shed in cattle manure can survive for extended periods of time and intervention strategies to control this pathogen at the source are critical as produce crops are often grown in proximity to animal raising operations. This study evaluated whether neem (Azadirachta indica), known for its antimicrobial and insecticidal properties, can be used to amend manure to control EcO157. The influence of neem materials (leaf, bark, and oil) on the survival of an apple juice outbreak strain of EcO157 in dairy manure was monitored. Neem leaf and bark supplements eliminated the pathogen in less than 10 d with a D-value (days for 90% elimination) of 1.3 d. In contrast, nearly 4 log CFU EcO157/g remained after 10 d in neem-free manure control. The ethyl acetate extractable fraction of neem leaves was inhibitory to the growth of EcO157 in LB broth. Azadirachtin, a neem product with insect antifeedant properties, failed to inhibit EcO157. Application of inexpensive neem supplements to control pathogens in manure and possibly in produce fields may be an option for controlling the transfer of foodborne pathogens from farm to fork.
Collapse
|
31
|
Chattopadhyay D, Ojha D, Mondal S, Goswami D. Validation of Antiviral Potential of Herbal Ethnomedicine. EVIDENCE-BASED VALIDATION OF HERBAL MEDICINE 2015. [PMCID: PMC7150199 DOI: 10.1016/b978-0-12-800874-4.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Natural products are the basis of treatment since the dawn of human civilization, and modern medicine has gradually developed, over the years, by scientific and observational efforts from traditional medicine. Today most of the synthetic drugs showed adverse and unacceptable side effects, however, impressive bioactivities with reduced toxicities were reported for many botanicals against several chronic or difficult-to-treat diseases. A whole range of viral diseases including human immunodeficiency virus/acquired immunodeficiency syndrome, severe acute respiratory syndrome, Rabies, Dengue, and Herpes need effective drugs. Considerable research has been carried out on the pharmacognosy, chemistry, pharmacology, and therapeutics of traditional medicines of diverse cultures, and many pharmaceutical companies have renewed their strategies for antiviral drug development where no effective drugs or vaccine exist. Thus, phytochemicals with antiviral potentials need to be studied in depth with standardization, chemical isolation, effectivity, molecular mechanism, along with in vivo toxicity and efficacy to reduce cost and time. This review will portray the scientific approaches and methodologies used for the development of antiviral leads from traditional medicines against selected genetically and functionally diverse viral infections.
Collapse
|
32
|
Bharitkar YP, Hazra A, Apoorva Poduri N, Ash A, Maulik PR, Mondal NB. Isolation, structural elucidation and cytotoxicity evaluation of a new pentahydroxy-pimarane diterpenoid along with other chemical constituents from Aerva lanata. Nat Prod Res 2014; 29:253-61. [DOI: 10.1080/14786419.2014.971794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yogesh P. Bharitkar
- Department of Chemistry, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (CSIR), 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Abhijit Hazra
- Department of Chemistry, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (CSIR), 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - N.S. Apoorva Poduri
- Department of Chemistry, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (CSIR), 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Anirban Ash
- Department of Chemistry, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (CSIR), 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Prakas R. Maulik
- Department of Chemistry, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (CSIR), 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Nirup B. Mondal
- Department of Chemistry, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (CSIR), 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|