1
|
de Almeida-Junior S, Ferraz MVF, de Oliveira AR, Maniglia FP, Bastos JK, Furtado RA. Advances in the phytochemical screening and biological potential of propolis. Fundam Clin Pharmacol 2023; 37:886-899. [PMID: 37038052 DOI: 10.1111/fcp.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Propolis is a natural resinous product collected from different parts of plants by bees and mixed with their salivary secretions. The occurrence of more than 180 different chemotypes has flavonoids, phenolic acids, esters, and phenolic aldehydes, as well as balsamic resins, beeswax, pollen, and essential and aromatic oils, among others. Its biological potential documented throughout the world justifies the need, from time to time, to organize reviews on the subject, with the intention of gathering and informing about the update on propolis. In this review (CRD42020212971), phytochemical advances, in vitro, in vivo, and clinical biological assays of pharmacological interest are showcased. The focus of this work is to present propolis clinical safety assays, antitumor, analgesic, antioxidant, anti-inflammatory, and antimicrobial activities. This literature review highlights propolis' promising biological activity, as it also suggests that studies associating propolis with nanotechnology should be further explored for enhanced bioprocessing applications.
Collapse
Affiliation(s)
- Silvio de Almeida-Junior
- Biosciences and Health Laboratory, State University of Minas Gerais, Belo Horizonte, Brazil
- Postgraduate Program in Health Promotion, University of Franca, Franca, Brazil
| | - Matheus Vitor Ferreira Ferraz
- Department of Fundamental Chemistry, Federal University of Pernambuco, UFPE, Recife, Brazil
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alex Roberto de Oliveira
- Postgraduate Program in Animal Science, Animal Science Laboratory, University of Franca, Franca, Brazil
| | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Andrade Furtado
- Postgraduate Program in Health Promotion, University of Franca, Franca, Brazil
- Postgraduate Program in Animal Science, Animal Science Laboratory, University of Franca, Franca, Brazil
| |
Collapse
|
2
|
Belmehdi O, El Menyiy N, Bouyahya A, El Baaboua A, El Omari N, Gallo M, Montesano D, Naviglio D, Zengin G, Skali Senhaji N, Goh BH, Abrini J. Recent Advances in the Chemical Composition and Biological Activities of Propolis. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2089164] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Omar Belmehdi
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Nadia Skali Senhaji
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jamal Abrini
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
3
|
de L Paula LA, Cândido ACBB, Santos MFC, Caffrey CR, Bastos JK, Ambrósio SR, Magalhães LG. Antiparasitic Properties of Propolis Extracts and Their Compounds. Chem Biodivers 2021; 18:e2100310. [PMID: 34231306 DOI: 10.1002/cbdv.202100310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022]
Abstract
Propolis is a bee product that has been used in medicine since ancient times. Although its anti-inflammatory, antioxidant, antimicrobial, antitumor, and immunomodulatory activities have been investigated, its anti-parasitic properties remain poorly explored, especially regarding helminths. This review surveys the results obtained with propolis around the world against human parasites. Regarding protozoa, studies carried out with the protozoa Trypanosoma spp. and Leishmania spp. have demonstrated promising results in vitro and in vivo. However, there are fewer studies for Plasmodium spp., the etiological agent of malaria and less so for helminths, particularly for Fasciola spp. and Schistosoma spp. Despite the favorable in vitro results with propolis, helminth assays need to be further investigated. However, propolis has shown itself to be an excellent natural product for parasitology, thus opening new paths and approaches in its activity against protozoa and helminths.
Collapse
Affiliation(s)
- Lucas A de L Paula
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Ana C B B Cândido
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Mario F C Santos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14.040-903, Ribeirão Preto, SP, Brazil
| | - Sérgio R Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Lizandra G Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil.,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Nainu F, Masyita A, Bahar MA, Raihan M, Prova SR, Mitra S, Emran TB, Simal-Gandara J. Pharmaceutical Prospects of Bee Products: Special Focus on Anticancer, Antibacterial, Antiviral, and Antiparasitic Properties. Antibiotics (Basel) 2021; 10:822. [PMID: 34356743 PMCID: PMC8300842 DOI: 10.3390/antibiotics10070822] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Bee products have long been used in traditional healing practices to treat many types of disorders, including cancer and microbial-related diseases. Indeed, several chemical compounds found in bee products have been demonstrated to display anticancer, antibacterial, antiviral, and antiparasitic properties. With the improvement of research tools and in view of recent advances related to bee products, this review aims to provide broad yet detailed insight into the pharmaceutical prospects of bee products such as honey, propolis, bee pollen, royal jelly, bee bread, beeswax, and bee venom, in the domain of cancer and infectious disease management. Available literature confirms the efficacy of these bee products in the alleviation of cancer progression, inhibition of bacterial and viral proliferation, and mitigation of parasitic-related symptoms. With such potentials, bioactive components isolated from the bee products can be used as an alternative approach in the long-run effort to improve humans' health at a personal and community level.
Collapse
Affiliation(s)
- Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.M.); (M.A.B.); (M.R.)
| | - Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.M.); (M.A.B.); (M.R.)
| | - Muh. Akbar Bahar
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.M.); (M.A.B.); (M.R.)
| | - Muhammad Raihan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.M.); (M.A.B.); (M.R.)
| | - Shajuthi Rahman Prova
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.R.P.); (S.M.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.R.P.); (S.M.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
5
|
Cavalcante GM, Camara CA, Silva EMSD, Santos MS, Leite AB, Queiroz AC, Evelyn Da Silva A, Araújo MV, Alexandre-Moreira MS, Silva TMS. Leismanicidal Activity of Propolis Collected in the Semiarid Region of Brazil. Front Pharmacol 2021; 12:702032. [PMID: 34276385 PMCID: PMC8281046 DOI: 10.3389/fphar.2021.702032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Objective: The aim of the current study is to investigate the chemical composition, cytotoxic effect, and leishmanicidal activity of propolis collected in the semi-arid region of Bahia, Brazil. Methods: EtOH extract, hexane, EtOAc and MeOH fractions from propolis were analyzed by ultra-performance liquid chromatography coupled with diode array detector and quadrupole time-of-flight mass spectrometry. The identification was based on the exact mass, general fragmentation behaviors and UV absorption of the flavonoids. The in vitro cytotoxic effect and leishmanicidal activity of ethanolic extract, hexane, ethyl acetate, and methanolic fractions of propolis were evaluated. Results: Five triterpenes and twenty-four flavonoids were identified. The propolis did not present toxicity to the host cell up to the maximum concentration tested. In addition, all tested samples showed statistically significant activity against promastigotes of Leishmania chagasi and Leishmania amazonensis. Regarding the activity against amastigote forms of L. amazonensis, the hexane fraction, presented statistically significant activity with IC50 of 1.3 ± 0.1 μg/ml. Conclusion: The results support the idea that propolis can be used for future antileishmania studies.
Collapse
Affiliation(s)
- Giani Maria Cavalcante
- Phytochemical Bioprospecting Laboratory, Chemistry Department, Rural Federal University of Pernambuco, Pernambuco, Brazil
| | - Celso Amorim Camara
- Phytochemical Bioprospecting Laboratory, Chemistry Department, Rural Federal University of Pernambuco, Pernambuco, Brazil
| | | | - Mariana Silva Santos
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Alagoas, Brazil
| | - Anderson Brandão Leite
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Alagoas, Brazil
| | - Aline Cavalcanti Queiroz
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Alagoas, Brazil.,Microbiology, Immunology and Parasitology Laboratory, Campus Arapiraca, Federal University of Alagoas, Alagoas, Brazil
| | - Amanda Evelyn Da Silva
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Alagoas, Brazil
| | - Morgana Vital Araújo
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Alagoas, Brazil
| | - Magna Suzana Alexandre-Moreira
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Alagoas, Brazil
| | - Tania Maria Sarmento Silva
- Phytochemical Bioprospecting Laboratory, Chemistry Department, Rural Federal University of Pernambuco, Pernambuco, Brazil
| |
Collapse
|
6
|
Ribeiro VP, Arruda C, Mejía JAA, Candido ACBB, Dos Santos RA, Magalhães LG, Bastos JK. Brazilian southeast brown propolis: gas chromatography method development for its volatile oil analysis, its antimicrobial and leishmanicidal activities evaluation. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:404-411. [PMID: 32901989 DOI: 10.1002/pca.2988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Propolis is widely used in folk medicine, and many factors can affect its chemical composition, including abiotic factors that can influence plants and bees. Therefore, analytical methods are powerful techniques in the quality control of such products. OBJECTIVE Develop and validate an analytical method for quantifying volatile compounds in Brazilian brown propolis, and evaluate its biological activities. METHODS A gas chromatography flame ionisation detector (GC-FID) analytical method was validated, attending the parameters of international validation guidelines as ANVISA 2017 and ICH 2005, for quantification of compounds present in volatile oils from propolis. Evaluation of cytotoxic, antimicrobial, and leishmanicidal activities of the oil. RESULTS The compounds 1,8-cineole, terpinen-4-ol, α-copaene, β-caryophyllene, γ-muurolene, nerolidol, spathulenol, and γ-palmitolactone were isolated from the volatile fraction of a Brazilian brown propolis and used in the method validation. All the validation parameters of the method were satisfactory. The volatile fraction displayed a significant leishmanicidal activity, with half maximal inhibition concentration (IC50 ) = 21.3 μg/mL against amastigote forms and IC50 = 25.1 μg/mL against promastigote forms of Leishmania amazonensis. The oil also displayed an antibacterial effect by inhibiting the growth of Streptococcus mutans and Staphylococcus aureus at 25 μg/mL and 50 μg/mL, respectively, but it was not cytotoxic against AGP-01, He-La and CHO-K1cell lines, with IC50 > 100 μg/mL. CONCLUSION The GC-FID method can be a useful tool in the quality control of propolis material. The southeast brown propolis showed a high chemical complexity in its volatile fraction, which displayed leishmanicidal activity and bactericidal activity.
Collapse
Affiliation(s)
- Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Raquel Alves Dos Santos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, SP, Brazil
| | - Lizandra Guidi Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Chemical and biological characteristics of propolis from Apis mellifera caucasica from the Ardahan and Erzurum provinces of Turkey: a comparative study. Arh Hig Rada Toksikol 2021; 72:53-69. [PMID: 33787188 PMCID: PMC8191426 DOI: 10.2478/aiht-2021-72-3492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/01/2021] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to compare the biological activities of ethanolic propolis extracts of Apis mellifera caucasica obtained from Ardahan and Erzurum provinces of Turkey. Samples were tested for antioxidant, anticytotoxic, anticarcinogenic, antibacterial, and antifungal potentials using different techniques. Propolis samples from the two provinces had different mineral and organic compositions related to their geographical origin. The ferric reducing antioxidant power (FRAP) test showed superiority of Ardahan propolis over the Erzurum. Regardless of origin and the presence of mitomycin C in the culture medium, propolis enhanced human peripheral lymphocyte viability, which depended on the duration and propolis concentration. Antiperoxidative activity on MCF-7 breast cancer cells was concentration-dependent. Erzurum propolis showed the highest anticarcinogenic activity at the concentrations of 62.5 μg/mL and 125 μg/ mL, which dropped at higher concentrations. All propolis samples also showed antibacterial activity against the tested human pathogens similar to ampicillin and penicillin controls, except for Pseudomonas aeruginosa. However, they did not exert any antifungal activity against Candida albicans and Yarrowia lipolytica. In conclusion, propolis samples from both provinces showed promising biological activities, but further research should focus on finding the right concentrations for optimal effect and include the cell necrosis pathway to get a better idea of the anticarcinogenic effects.
Collapse
|
8
|
Asfaram S, Fakhar M, Keighobadi M, Akhtari J. Promising Anti-Protozoan Activities of Propolis (Bee Glue) as Natural Product: A Review. Acta Parasitol 2021; 66:1-12. [PMID: 32691360 DOI: 10.1007/s11686-020-00254-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Propolis (bee glue) is a resinous mixture of different plant exudates that possesses a wide range of biological and antimicrobial activities and has been used as a food supplement and in complementary medicine for centuries. Some researchers have proposed that propolis could be a potential curative compound against microbial agents such as protozoan parasitic infections by different and occasionally unknown mechanisms due to the immunoregulatory function and antioxidant capacity of this natural product. METHODS In this review, we concentrate on in vitro and in vivo anti-protozoan activities of propolis extracts/fractions in the published literature. RESULTS In Leishmania, propolis inhibits the proliferation of promastigotes and produces an anti-inflammatory effect via the inhibition of nitric oxide (NO) production. In addition, it increases macrophage activation, TLR-2, TNF-α, IL-4, IL-17 production, and downregulation of IL-12. In Plasmodium and Trypanosoma, propolis inhibits the parasitemia, improving anemia and increasing the IFN-γ, TNF-α, and GM-CSF cytokines levels, most likely due to its strong immunomodulatory activity. Moreover, propolis extract arrests proliferation of T. cruzi, because it has aromatic acids and flavonoids. In toxoplasmosis, propolis increases the specific IgM and IgG titers via decreasing the serum IFN-γ, IL-1, and IL-6 cytokines levels in the rats infected with T. gondii. In Cryptosporidium and Giardia, it decreases oocysts shedding due to phytochemical constituents, particularly phenolic compounds, and increases the number of goblet cells. Propolis inhibits the growth of Blastocystis, possibly by apoptotic mechanisms like metronidazole. Unfortunately, the mechanism action of propolis' anti-Trichomonas and anti-Acanthamoeba is not well-known yet. CONCLUSION Reviewing the related literature could highlight promising antimicrobial activities of propolis against intracellular and extracellular protozoan parasites; this could shed light on the exploration of more effective drugs for the treatment of protozoan parasitic infections in the near future.
Collapse
Affiliation(s)
- Shabnam Asfaram
- Research Center for Zoonoses, Parasitic and Microbial Diseases, Ardabil University of Medical Sciences, Ardabil, Iran
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran.
| | - Masoud Keighobadi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran.
| | - Javad Akhtari
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Medical Nanotechnology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Ebiloma GU, Ichoron N, Siheri W, Watson DG, Igoli JO, De Koning HP. The Strong Anti-Kinetoplastid Properties of Bee Propolis: Composition and Identification of the Active Agents and Their Biochemical Targets. Molecules 2020; 25:E5155. [PMID: 33167520 PMCID: PMC7663965 DOI: 10.3390/molecules25215155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
The kinetoplastids are protozoa characterized by the presence of a distinctive organelle, called the kinetoplast, which contains a large amount of DNA (kinetoplast DNA (kDNA)) inside their single mitochondrion. Kinetoplastids of medical and veterinary importance include Trypanosoma spp. (the causative agents of human and animal African Trypanosomiasis and of Chagas disease) and Leishmania spp. (the causative agents of the various forms of leishmaniasis). These neglected diseases affect millions of people across the globe, but drug treatment is hampered by the challenges of toxicity and drug resistance, among others. Propolis (a natural product made by bees) and compounds isolated from it are now being investigated as novel treatments of kinetoplastid infections. The anti-kinetoplastid efficacy of propolis is probably a consequence of its reported activity against kinetoplastid parasites of bees. This article presents a review of the reported anti-kinetoplastid potential of propolis, highlighting its anti-kinetoplastid activity in vitro and in vivo regardless of geographical origin. The mode of action of propolis depends on the organism it is acting on and includes growth inhibition, immunomodulation, macrophage activation, perturbation of the cell membrane architecture, phospholipid disturbances, and mitochondrial targets. This gives ample scope for further investigations toward the rational development of sustainable anti-kinetoplastid drugs.
Collapse
Affiliation(s)
- Godwin U. Ebiloma
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK;
| | - Nahandoo Ichoron
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi 2373, Nigeria; (N.I.) (J.O.I.)
| | - Weam Siheri
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - John O. Igoli
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi 2373, Nigeria; (N.I.) (J.O.I.)
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - Harry P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
10
|
3D Propolis-Sodium Alginate Scaffolds: Influence on Structural Parameters, Release Mechanisms, Cell Cytotoxicity and Antibacterial Activity. Molecules 2020; 25:molecules25215082. [PMID: 33147742 PMCID: PMC7662765 DOI: 10.3390/molecules25215082] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, the main aim was to fabricate propolis (Ps)-containing wound dressing patches using 3D printing technology. Different combinations and structures of propolis (Ps)-incorporated sodium alginate (SA) scaffolds were developed. The morphological studies showed that the porosity of developed scaffolds was optimized when 20% (v/v) of Ps was added to the solution. The pore sizes decreased by increasing Ps concentration up to a certain level due to its adhesive properties. The mechanical, swelling-degradation (weight loss) behaviors, and Ps release kinetics were highlighted for the scaffold stability. An antimicrobial assay was employed to test and screen antimicrobial behavior of Ps against Escherichia coli and Staphylococcus aureus strains. The results show that the Ps-added scaffolds have an excellent antibacterial activity because of Ps compounds. An in vitro cytotoxicity test was also applied on the scaffold by using the extract method on the human dermal fibroblasts (HFFF2) cell line. The 3D-printed SA–Ps scaffolds are very useful structures for wound dressing applications.
Collapse
|
11
|
Devequi-Nunes D, Machado BAS, Barreto GDA, Rebouças Silva J, da Silva DF, da Rocha JLC, Brandão HN, Borges VM, Umsza-Guez MA. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. PLoS One 2018; 13:e0207676. [PMID: 30513100 PMCID: PMC6279037 DOI: 10.1371/journal.pone.0207676] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/05/2018] [Indexed: 12/03/2022] Open
Abstract
Propolis is a natural product with many demonstrated biological activities and propolis extract has been used in the food, pharmaceutical and cosmetics industries. Different works have showed the variations in the chemical composition, and consequently, on the biological activity of the propolis that are associated with its type and geographic origin. Due to this study evaluated propolis extracts obtained through supercritical extraction and ethanolic extraction (conventional) in three samples of different types of propolis (red, green and brown), collected from different regions in Brazil (state of Bahia). Analyses were performed to determine the humidity, water activity, the content of total ash, proteins, lipids and fiber in raw propolis samples. The content of phenolic compounds, flavonoids, in vitro antioxidant activity (DPPH), catechin, ferulic acid and luteolin and antimicrobial activity against two bacteria (Staphylococcus aureus and Escherichia coli) were determined for all extracts. For the green and red ethanolic extracts the anti-leishmanicidal potential was also evaluated. The physicochemical profiles showed agreement in relation to the literature. The results identified significant differences among the extracts (p>0.05), which are in conformity with their extraction method, as well as with type and botanical origin of the samples. The extraction with supercritical fluid was not efficient to obtain extracts with the highest contents of antioxidants compounds, when compared with the ethanolic extracts. The best results were shown for the extracts obtained through the conventional extraction method (ethanolic) indicating a higher selectivity for the extraction of antioxidants compounds. The red variety showed the largest biological potential, which included the content of antioxidants compounds. The results found in this study confirm the influence of the type of the raw material on the composition and characteristics of the extracts. The parameters analysis were important to characterize and evaluate the quality of the different Brazilian propolis extracts based on the increased use of propolis by the natural products industry.
Collapse
Affiliation(s)
- Danielle Devequi-Nunes
- SENAI CIMATEC University Center, Health Institute of Technologies (ITS CIMATEC), National Service of Industrial Learning–SENAI, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
- Federal University of Bahia, Salvador, Bahia, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI CIMATEC University Center, Health Institute of Technologies (ITS CIMATEC), National Service of Industrial Learning–SENAI, Salvador, Bahia, Brazil
- * E-mail:
| | - Gabriele de Abreu Barreto
- SENAI CIMATEC University Center, Health Institute of Technologies (ITS CIMATEC), National Service of Industrial Learning–SENAI, Salvador, Bahia, Brazil
| | - Jéssica Rebouças Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
- Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | - Hugo Neves Brandão
- Estadual University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Valéria M. Borges
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
- Federal University of Bahia, Salvador, Bahia, Brazil
| | | |
Collapse
|
12
|
Regueira-Neto MDS, Tintino SR, Rolón M, Coronal C, Vega MC, de Queiroz Balbino V, de Melo Coutinho HD. Antitrypanosomal, antileishmanial and cytotoxic activities of Brazilian red propolis and plant resin of Dalbergia ecastaphyllum (L) Taub. Food Chem Toxicol 2018; 119:215-221. [PMID: 29665415 DOI: 10.1016/j.fct.2018.04.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/25/2022]
Abstract
The treatment for leishmaniasis and Chagas disease can be hard and painful, such that many patients give up on the treatment. In order to find an alternative path for the treatment of these diseases, researchers are using natural products to fight these parasites. The aim of this study was to evaluate the antiprotozoan and cytotoxic activities of red propolis samples collected from different Brazilian states and seasons whilst searching for possible activity differences. We also compared the red propolis results with the ones obtained for the plant resin extract collected from Dalbergia ecastaphyllum trees. The hydroethanolic red propolis extracts from Pernambuco and Alagoas, and the D. ecastaphyllum resin were evaluated regarding their antileishmanial, antitrypanosomal and cytotoxic activity. All extracts showed antiprotozoan and cytotoxic activity. RP-PER showed to be more cytotoxic against protozoan parasites and fibroblast cells. All propolis extracts showed a higher cytotoxic activity when compared to resin extracts. The propolis sample collected in Pernambuco during the rainy season killed the parasites with lower concentrations than the sample collected in the dry season. The IC50 observed against the parasites could be used without high fibroblast cell damage.
Collapse
Affiliation(s)
| | - Saulo Relison Tintino
- Laboratório de Microbiologia e Biologia Molecular, Centro de Ciências Biológicas e Saúde, Universidade Regional do Cariri, Brazil
| | - Miriam Rolón
- Centro para el Dessarollo de la Investigación Cientifica (CEDIC), Fundacion Moisés Bertoni/Labortórios Díaz Gill, Asunción, Paraguay
| | - Cathia Coronal
- Centro para el Dessarollo de la Investigación Cientifica (CEDIC), Fundacion Moisés Bertoni/Labortórios Díaz Gill, Asunción, Paraguay
| | - Maria C Vega
- Centro para el Dessarollo de la Investigación Cientifica (CEDIC), Fundacion Moisés Bertoni/Labortórios Díaz Gill, Asunción, Paraguay
| | - Valdir de Queiroz Balbino
- Laboratório de Bioinformática e Biologia Evolutiva, Departamento de Genética, Centro de Biociências, UFPE, Brazil
| | | |
Collapse
|
13
|
Alvarez-Suarez JM. The Chemical and Biological Properties of Propolis. BEE PRODUCTS - CHEMICAL AND BIOLOGICAL PROPERTIES 2017. [PMCID: PMC7123330 DOI: 10.1007/978-3-319-59689-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
do Nascimento TG, da Silva PF, Azevedo LF, da Rocha LG, de Moraes Porto ICC, Lima E Moura TFA, Basílio-Júnior ID, Grillo LAM, Dornelas CB, Fonseca EJDS, de Jesus Oliveira E, Zhang AT, Watson DG. Polymeric Nanoparticles of Brazilian Red Propolis Extract: Preparation, Characterization, Antioxidant and Leishmanicidal Activity. NANOSCALE RESEARCH LETTERS 2016; 11:301. [PMID: 27316742 PMCID: PMC4912519 DOI: 10.1186/s11671-016-1517-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/02/2016] [Indexed: 05/30/2023]
Abstract
The ever-increasing demand for natural products and biotechnology derived from bees and ultra-modernization of various analytical devices has facilitated the rational and planned development of biotechnology products with a focus on human health to treat chronic and neglected diseases. The aim of the present study was to prepare and characterize polymeric nanoparticles loaded with Brazilian red propolis extract and evaluate the cytotoxic activity of "multiple-constituent extract in co-delivery system" for antileishmanial therapies. The polymeric nanoparticles loaded with red propolis extract were prepared with a combination of poly-ε-caprolactone and pluronic using nanoprecipitation method and characterized by different analytical techniques, antioxidant and leishmanicidal assay. The red propolis nanoparticles in aqueous medium presented particle size (200-280 nm) in nanometric scale and zeta analysis (-20 to -26 mV) revealed stability of the nanoparticles without aggregation phenomenon during 1 month. After freeze-drying method using cryoprotectant (sodium starch glycolate), it was possible to observe particles with smooth and spherical shape and apparent size of 200 to 400 nm. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and thermal analysis revealed the encapsulation of the flavonoids from the red propolis extract into the polymeric matrix. Ultra performance liquid chromatography coupled with diode array detector (UPLC-DAD) identified the flavonoids liquiritigenin, pinobanksin, isoliquiritigenin, formononetin and biochanin A in ethanolic extract of propolis (EEP) and nanoparticles of red propolis extract (NRPE). The efficiency of encapsulation was determinate, and median values (75.0 %) were calculated using UPLC-DAD. 2,2-Diphenyl-1-picryhydrazyl method showed antioxidant activity to EEP and red propolis nanoparticles. Compared to negative control, EEP and NRPE exhibited leishmanicidal activity with an IC50 value of ≅38.0 μg/mL and 31.3 μg/mL, 47.2 μg/mL, 154.2μg/mL and 193.2 μg/mL for NRPE A1, NRPE A2, NRPE A3 and NRPE A4, respectively. Nanoparticles loaded with red propolis extract in co-delivery system and EEP presented cytotoxic activity on Leishmania (V.) braziliensis. Red propolis extract loaded in nanoparticles has shown to be potential candidates as intermediate products for preparation of various pharmaceutical dosage forms containing red propolis extract in the therapy against negligible diseases such as leishmaniasis. Graphical Abstract Some biochemical mechanisms of cellular debridement of Leishmania (V.) braziliensis species by the flavonoids of red propolis extract (EEP) or NRPE loaded with red propolis extract.
Collapse
Affiliation(s)
- Ticiano Gomes do Nascimento
- Quality Control Laboratory of Drugs and Medicines, Postgraduate Program in Pharmaceutical Sciences, School of Nursing and Pharmacy, Federal University of Alagoas, Alagoas, Avenida Lourival Melo Mota, s/n Campus A. C. Simões, University City, Tabuleiro dos Martins, 57072-900, Maceió, Alagoas, Brazil.
| | - Priscilla Fonseca da Silva
- Quality Control Laboratory of Drugs and Medicines, Postgraduate Program in Pharmaceutical Sciences, School of Nursing and Pharmacy, Federal University of Alagoas, Alagoas, Avenida Lourival Melo Mota, s/n Campus A. C. Simões, University City, Tabuleiro dos Martins, 57072-900, Maceió, Alagoas, Brazil
| | - Lais Farias Azevedo
- Quality Control Laboratory of Drugs and Medicines, Postgraduate Program in Pharmaceutical Sciences, School of Nursing and Pharmacy, Federal University of Alagoas, Alagoas, Avenida Lourival Melo Mota, s/n Campus A. C. Simões, University City, Tabuleiro dos Martins, 57072-900, Maceió, Alagoas, Brazil
| | - Louisianny Guerra da Rocha
- Quality Control of Drugs Laboratory (LCQMed), Postgraduate Program of Pharmaceutical Science, Department of Pharmacy, Federal University of Rio Grande do Norte, Rua General Cordeiro de Farias S/N, Petrópolis, Natal, RN, 59010-180, Brazil
| | - Isabel Cristina Celerino de Moraes Porto
- Quality Control Laboratory of Drugs and Medicines, Postgraduate Program in Pharmaceutical Sciences, School of Nursing and Pharmacy, Federal University of Alagoas, Alagoas, Avenida Lourival Melo Mota, s/n Campus A. C. Simões, University City, Tabuleiro dos Martins, 57072-900, Maceió, Alagoas, Brazil
| | - Túlio Flávio Accioly Lima E Moura
- Quality Control of Drugs Laboratory (LCQMed), Postgraduate Program of Pharmaceutical Science, Department of Pharmacy, Federal University of Rio Grande do Norte, Rua General Cordeiro de Farias S/N, Petrópolis, Natal, RN, 59010-180, Brazil
| | - Irinaldo Diniz Basílio-Júnior
- Quality Control Laboratory of Drugs and Medicines, Postgraduate Program in Pharmaceutical Sciences, School of Nursing and Pharmacy, Federal University of Alagoas, Alagoas, Avenida Lourival Melo Mota, s/n Campus A. C. Simões, University City, Tabuleiro dos Martins, 57072-900, Maceió, Alagoas, Brazil
| | - Luciano Aparecido Meireles Grillo
- Quality Control Laboratory of Drugs and Medicines, Postgraduate Program in Pharmaceutical Sciences, School of Nursing and Pharmacy, Federal University of Alagoas, Alagoas, Avenida Lourival Melo Mota, s/n Campus A. C. Simões, University City, Tabuleiro dos Martins, 57072-900, Maceió, Alagoas, Brazil
| | - Camila Braga Dornelas
- Quality Control Laboratory of Drugs and Medicines, Postgraduate Program in Pharmaceutical Sciences, School of Nursing and Pharmacy, Federal University of Alagoas, Alagoas, Avenida Lourival Melo Mota, s/n Campus A. C. Simões, University City, Tabuleiro dos Martins, 57072-900, Maceió, Alagoas, Brazil
| | - Eduardo Jorge da Silva Fonseca
- Quality Control Laboratory of Drugs and Medicines, Postgraduate Program in Pharmaceutical Sciences, School of Nursing and Pharmacy, Federal University of Alagoas, Alagoas, Avenida Lourival Melo Mota, s/n Campus A. C. Simões, University City, Tabuleiro dos Martins, 57072-900, Maceió, Alagoas, Brazil
| | - Eduardo de Jesus Oliveira
- Laboratory of Pharmaceutical analysis, Postgraduate Program of Pharmaceutical Science, Pharmacy College, Federal University of Vales do Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 Km 583, n° 5000, Alto da Jacuba, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Alex Tong Zhang
- Department of Pharmaceutical Science, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR, UK
| | - David G Watson
- Department of Pharmaceutical Science, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR, UK
| |
Collapse
|
15
|
Tobaldini-Valerio FK, Bonfim-Mendonça PS, Rosseto HC, Bruschi ML, Henriques M, Negri M, Silva S, Svidzinski TI. Propolis: a potential natural product to fight Candida species infections. Future Microbiol 2016; 11:1035-46. [PMID: 27501739 DOI: 10.2217/fmb-2015-0016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the effect of propolis against Candida species planktonic cells and its counterpart's biofilms. MATERIALS & METHODS The MIC values, time-kill curves and filamentation form inhibition were determined in Candida planktonic cells. The effect of propolis on Candida biofilms was assessed through quantification of CFUs. RESULTS MIC values, ranging from 220 to 880 µg/ml, demonstrated higher efficiency on C. albicans and C. parapsilosis than on C. tropicalis cells. In addition, propolis was able to prevent Candida species biofilm's formation and eradicate their mature biofilms, coupled with a significant reduction on C. tropicalis and C. albicans filamentation. CONCLUSION Propolis is an inhibitor of Candida virulence factors and represents an innovative alternative to fight candidiasis.
Collapse
Affiliation(s)
- Flávia K Tobaldini-Valerio
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Patricia S Bonfim-Mendonça
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Helen C Rosseto
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Marcos L Bruschi
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Mariana Henriques
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Melyssa Negri
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Sonia Silva
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Terezinha Ie Svidzinski
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| |
Collapse
|