1
|
Cisneros L, Baillo AA, Ploper D, Valacco MP, Moreno S, Saavedra L, Minahk C, Fusco V, Yantorno O, Fadda S. Physiological, microscopic and proteomic performance of Escherichia coli O157:H7 biofilms challenged with antagonistic lactic acid bacteria as a bio-decontamination tool for the food industry. Int J Food Microbiol 2025; 435:111173. [PMID: 40157175 DOI: 10.1016/j.ijfoodmicro.2025.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) biofilms are a critical concern in food industry due to their resilience, persistence, and ability to enhance pathogen survival on processing surfaces. Controlling these biofilms is paramount to mitigating the risks associated with EHEC. This work evaluates the potential of three lactic acid bacteria (LAB) strains-Lactiplantibacillus plantarum CRL1075, L. plantarum CRL1482, and Pediococcus pentosaceus CRL2145-as biocontrol agents to inhibit EHEC biofilms through exclusion, competition, and displacement strategies under conditions mimicking meat industry environment (12 °C, stainless steel, and meat-based culture medium). EHEC biofilms showed by scanning electron microscopy and confocal laser scanning microscopy high adherence and robustness. Introducing LAB strains led to substantial reductions in EHEC biofilm formation, with the competition strategy emerging most effective, reducing biofilms by up to 6.5 log units. Exclusion and displacement strategies also decreased pathogen viability, with P. pentosaceus CRL2145 showing consistent inhibitory effects across all conditions. EHEC-CRL2145 mixed biofilms exhibited reduced biomass and covered surface area, with LAB clustered around E. coli cells, limiting their growth and adhesion. Proteomic analysis revealed repression of 85 EHEC proteins associated with essential metabolic pathways, stress responses, and biofilm maintenance, which compromised the pathogen's ability to sustain biofilm integrity and viability. Additionally, some EHEC proteins involved in adhesion and virulence were upregulated, possibly as stress response to LAB antagonism. Importantly, while the antimicrobial potential of LAB against foodborne pathogens was recently reported, this is the first study to describe the metabolic response of EHEC biofilms when challenged by LAB.
Collapse
Affiliation(s)
- Lucia Cisneros
- Laboratory of Technology and Development: Meat and Meat Products (Tecno I), Reference Center for Lactobacilli (CERELA-CONICET), Batalla de Chacabuco 145, 4000 San Miguel de Tucumán, Tucumán, Argentina.
| | - Ayelen Antonella Baillo
- Laboratory of Technology and Development: Meat and Meat Products (Tecno I), Reference Center for Lactobacilli (CERELA-CONICET), Batalla de Chacabuco 145, 4000 San Miguel de Tucumán, Tucumán, Argentina.
| | - Diego Ploper
- Institute for Research in Applied Molecular and Cellular Medicine - IMMCA (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego 1080, 4000 San Miguel de Tucumán, Tucumán, Argentina.
| | - María Pia Valacco
- CEQUIBIEM (QB-FCEN UBA/IQUIBICEN-CONICET Intendente Güiraldes), 2160 Ciudad Universitaria - Pabellón II - Piso 2 - Puerta 217, C1428EGA Capital Federal, Argentina.
| | - Silvia Moreno
- CEQUIBIEM (QB-FCEN UBA/IQUIBICEN-CONICET Intendente Güiraldes), 2160 Ciudad Universitaria - Pabellón II - Piso 2 - Puerta 217, C1428EGA Capital Federal, Argentina.
| | - Lucila Saavedra
- Laboratory of Genetics (Gene II), Reference Center for Lactobacilli (CERELA-CONICET), Batalla de Chacabuco 145, 4000 San Miguel de Tucumán, Tucumán, Argentina.
| | - Carlos Minahk
- Superior Institute of Biological Research (INSIBIO), CONICET-UNT, Batalla de Chacabuco 461, 4000 San Miguel de Tucumán, Tucumán, Argentina.
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, 70126 Bari, Italy.
| | - Osvaldo Yantorno
- Center for Research and Development in Industrial Fermentations (CINDEFI-CONICET), Faculty of Exact Sciences, UNLP, calle 50 e/115 y 116, 1900 La Plata, Buenos Aires, Argentina.
| | - Silvina Fadda
- Laboratory of Technology and Development: Meat and Meat Products (Tecno I), Reference Center for Lactobacilli (CERELA-CONICET), Batalla de Chacabuco 145, 4000 San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
2
|
Dawan J, Zhang S, Ahn J. Recent Advances in Biofilm Control Technologies for the Food Industry. Antibiotics (Basel) 2025; 14:254. [PMID: 40149064 PMCID: PMC11939704 DOI: 10.3390/antibiotics14030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Biofilms remain a major challenge in the food industry due to the increased resistance of foodborne pathogens to antimicrobial agents and food processing stresses, leading to food contamination and significant health risks. Their resistance to preservation techniques, antimicrobial treatments, and processing conditions increases concerns regarding food safety. This review discusses recent developments in physical, chemical, and surface modification strategies to control and remove biofilms in food processing environments. Physical methods, such as thermal treatments, electric fields, and ultrasonic systems, have demonstrated their efficacy in disrupting biofilm structure and improving disinfection processes. Chemical treatments, including the use of sanitizers, disinfectants, acidulants, and enzymes, provide targeted approaches to degrade biofilm matrices and inhibit bacterial adhesion. Furthermore, surface modifications of food contact materials provide innovative solutions for preventing biofilm formation and enhancing food safety. These cutting-edge strategies not only improve food safety but also reduce contamination risk in food processing facilities. The review highlights the mechanisms, efficacy, and applicability of these techniques, emphasizing their potential to mitigate biofilm-associated risks and ensure food quality and safety.
Collapse
Affiliation(s)
- Jirapat Dawan
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.D.); (S.Z.)
| | - Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.D.); (S.Z.)
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.D.); (S.Z.)
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| |
Collapse
|
3
|
Buonanno A, Imparato M, Maione A, Carraturo F, Galdiero E, Guida M, de Alteriis E. The Biotherapeutic Potential of a Novel Probiotic Kluyveromyces marxianus Isolated from a Sourdough Starter Against Vaginal Candida albicans Strains. J Fungi (Basel) 2025; 11:147. [PMID: 39997441 PMCID: PMC11856499 DOI: 10.3390/jof11020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
There is an increasing interest in yeasts isolated from natural sources to be used as probiotics. Saccharomyces-based probiotics have been proposed as a valid alternative to the conventional drug therapy for the prevention and treatment of vulvovaginal candidiasis, also considering the resistance of some Candida strains to many antifungals. Here, we isolated from an artisanal sourdough a new yeast strain which was identified as Kluyveromyces marxianus and assessed its probiotic and safety properties, which resulted in comparable properties to all those exhibited by the commercial probiotic Saccharomyces boulardii. Then, we checked the antagonistic activity of the new isolate against some clinical fluconazole resistant C. albicans strains, showing its ability to inhibit filamentation, biofilm formation, and the adhesion of C. albicans to vaginal epithelial A-431 cells. Also, K. marxianus reduced the cell damage provoked by C. albicans and the expression of SAP2 and SAP6 genes. On the whole, our results enlarge the spectrum of the beneficial properties of the food-grade yeast K. marxianus showing for the first time its biotherapeutic potential against C. albicans.
Collapse
Affiliation(s)
- Annalisa Buonanno
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.B.); (M.I.); (A.M.); (F.C.); (E.G.); (M.G.)
| | - Marianna Imparato
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.B.); (M.I.); (A.M.); (F.C.); (E.G.); (M.G.)
| | - Angela Maione
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.B.); (M.I.); (A.M.); (F.C.); (E.G.); (M.G.)
| | - Federica Carraturo
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.B.); (M.I.); (A.M.); (F.C.); (E.G.); (M.G.)
| | - Emilia Galdiero
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.B.); (M.I.); (A.M.); (F.C.); (E.G.); (M.G.)
| | - Marco Guida
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.B.); (M.I.); (A.M.); (F.C.); (E.G.); (M.G.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples “Federico II”, 80055 Portici, Italy
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.B.); (M.I.); (A.M.); (F.C.); (E.G.); (M.G.)
| |
Collapse
|
4
|
Shi S, Ge M, Xiong Y, Zhang Y, Li W, Liu Z, Wang J, He E, Wang L, Zhou D. The novel probiotic preparation based on Lactobacillus spp. mixture on the intestinal bacterial community structure of Cherry Valley duck. World J Microbiol Biotechnol 2024; 40:194. [PMID: 38713319 DOI: 10.1007/s11274-023-03859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/27/2023] [Indexed: 05/08/2024]
Abstract
The development and utilization of probiotics have many environmental benefits when they are used to replace antibiotics in animal production. In this study, intestinal lactic acid bacteria were isolated from the intestines of Cherry Valley ducks. Probiotic lactic acid bacterial strains were screened for antibacterial activity and tolerance to produce a Lactobacillus spp. mixture. The effects of the compound on the growth performance and intestinal flora of Cherry Valley ducks were studied. Based on the results of the antibacterial activity and tolerance tests, the highly active strains Lactobacillus casei 1.2435, L. salivarius L621, and L. salivarius L4 from the intestines of Cherry Valley ducks were selected. The optimum ratio of L. casei 1.2435, L. salivarius L621, and L. salivarius L4 was 1:1:2, the amount of inoculum used was 1%, and the fermentation time was 14 h. In vivo experiments showed that compared with the control group, the relative abundances of intestinal Lactobacillus and Blautia were significantly increased in the experimental group fed the lactobacilli compound (P < 0.05); the relative abundances of Parabacteroides, [Ruminococcus]_torques_group, and Enterococcus were significantly reduced (P < 0.05), and the growth and development of the dominant intestinal flora were promoted in the Cherry Valley ducks. This study will provide more opportunities for Cherry Valley ducks to choose microecological agents for green and healthy breeding.
Collapse
Affiliation(s)
- Shuiqin Shi
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Mengrui Ge
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Yan Xiong
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Yixun Zhang
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Wenhui Li
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Zhimuzi Liu
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Jianfen Wang
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Enhui He
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China
| | - Liming Wang
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China.
| | - Duoqi Zhou
- School of Life Sciences and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui, Anqing Normal University, 1318 North Jixian Road, Anqing, 246133, People's Republic of China.
| |
Collapse
|
5
|
Pugazhendhi AS, Seal A, Hughes M, Kumar U, Kolanthai E, Wei F, Schwartzman JD, Coathup MJ. Extracellular Proteins Isolated from L. acidophilus as an Osteomicrobiological Therapeutic Agent to Reduce Pathogenic Biofilm Formation, Regulate Chronic Inflammation, and Augment Bone Formation In Vitro. Adv Healthc Mater 2024; 13:e2302835. [PMID: 38117082 DOI: 10.1002/adhm.202302835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Indexed: 12/21/2023]
Abstract
Periprosthetic joint infection (PJI) is a challenging complication that can occur following joint replacement surgery. Efficacious strategies to prevent and treat PJI and its recurrence remain elusive. Commensal bacteria within the gut convey beneficial effects through a defense strategy named "colonization resistance" thereby preventing pathogenic infection along the intestinal surface. This blueprint may be applicable to PJI. The aim is to investigate Lactobacillus acidophilus spp. and their isolated extracellular-derived proteins (LaEPs) on PJI-relevant Staphylococcus aureus, methicillin-resistant S. aureus, and Escherichia coli planktonic growth and biofilm formation in vitro. The effect of LaEPs on cultured macrophages and osteogenic, and adipogenic human bone marrow-derived mesenchymal stem cell differentiation is analyzed. Data show electrostatically-induced probiotic-pathogen species co-aggregation and pathogenic growth inhibition together with LaEP-induced biofilm prevention. LaEPs prime macrophages for enhanced microbial phagocytosis via cathepsin K, reduce lipopolysaccharide-induced DNA damage and receptor activator nuclear factor-kappa B ligand expression, and promote a reparative M2 macrophage morphology under chronic inflammatory conditions. LaEPs also significantly augment bone deposition while abating adipogenesis thus holding promise as a potential multimodal therapeutic strategy. Proteomic analyses highlight high abundance of lysyl endopeptidase, and urocanate reductase. Further, in vivo analyses are warranted to elucidate their role in the prevention and treatment of PJIs.
Collapse
Affiliation(s)
| | - Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Udit Kumar
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Melanie J Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
6
|
Roldán-Pérez S, Gómez Rodríguez SL, Sepúlveda-Valencia JU, Ruiz Villadiego OS, Márquez Fernández ME, Montoya Campuzano OI, Durango-Zuleta MM. Assessment of probiotic properties of lactic acid bacteria isolated from an artisanal Colombian cheese. Heliyon 2023; 9:e21558. [PMID: 38027952 PMCID: PMC10658276 DOI: 10.1016/j.heliyon.2023.e21558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Lactic Acid Bacteria play an important role in the milk fermentation processes of traditional cheeses and have become an important target for the development of novel cheese cultures because of their ability to confer health benefits. This study aimed to evaluate the probiotic potential of 12 Lactic Acid Bacteria (LAB) strains previously isolated and molecularly identified from an artisanal Colombian Double-Cream Cheese. Probiotic properties, including safety (hemolysis and sensibility to antibiotics), pH and bile salt tolerance, auto-aggregation, cell surface hydrophobicity, antibacterial activity, and exopolysaccharide production, were examined. None of the strains were hemolytic, and Pediococcus (16, 18) and Lactobacillus (28, 29) were found to be sensitive to all antibiotics. Moreover, all the strains tolerated pH (3.0, 6.5 and 8.0) and bile salt conditions (0.3, 0.6 and 1.0 % w/v). Pediococcus pentosaceus (16), Leuconostoc citreum (17), Pediococcus acidilactici (18), Enterococcus faecium (21,22), Enterococcus faecalis (24) and Limosilactobacillus fermentum (29) exhibited medium autoaggregation and affinity to chloroform. Six of the strains exhibited a ropy exopolysaccharide phenotype. Antibacterial activity against foodborne pathogens, Salmonella Typhimurium ATCC 14028, Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, was found to be strain dependent, with the strains 16, 18, 21, 26, 28 and 29 presenting a higher inhibition (>4 mm) against all of them. According to Principal Component Analysis, P. pentosaceus (16), Leu. mesenteroides (26), L. casei (28), L. fermentum (29), and E. faecium (21) showed strong probiotic properties. Our findings suggest that five strains out of the 12 sampled strains are potential probiotics that could be used in the processing of traditional dairy products on an industrial scale to improve their quality.
Collapse
Affiliation(s)
- Samantha Roldán-Pérez
- Universidad Nacional de Colombia sede Medellín, Faculty of Agricultural Sciences, Medellín, Colombia
| | | | | | | | | | - Olga I. Montoya Campuzano
- Universidad Nacional de Colombia sede Medellín, Faculty of Agricultural Sciences, Medellín, Colombia
| | | |
Collapse
|
7
|
Tarifa MC, Agustín MDR, Brugnoni LI. Biological control of foodborne pathogens by lactic acid bacteria: A focus on juice processing industries. Rev Argent Microbiol 2023; 55:378-386. [PMID: 37302907 DOI: 10.1016/j.ram.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
The use of lactic acid bacteria (LAB) in foods as biocontrol agents against foodborne pathogens has become increasingly known. Under the premise that controlling the adhesion of microorganisms to food contact surfaces is an essential step for meeting the goals of food processing, the aim of this work was to investigate the inhibitory and anti-biofilm effectiveness of Lactobacillus rhamnosus GG (ATCC 53103) and Lactobacillus casei (ATCC 393) against Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes. Lactobacillus strains (108CFU/ml) and pathogens (104CFU/ml) were evaluated to monitor LAB anti-adhesive and antibiofilm effect, in two main scenarios: (i) co-adhesion and (ii) pathogen incorporation to stainless steel surfaces with a protective biofilm of Lactobacillus cells. In (i) the predominant effect was observed in L. rhamnosus against S. enterica and L. monocytogenes, whereas in (ii) both LAB significantly reduced the number of pathogenic adherent cells. The effect of pre-established LAB biofilms was more successful in displacing the three pathogens than when they were evaluated under co-adhesion. These findings show that both LAB can be considered good candidates to prevent or inhibit the adhesion and colonization of L. monocytogenes, S. enterica and E. coli O157:H7 on surfaces and conditions of relevance for juice processing industries, offering alternatives for improving the safety and quality of fruit-based products.
Collapse
Affiliation(s)
- María Clara Tarifa
- Universidad Nacional de Río Negro, CIT Río Negro, Río Negro, Argentina; Centro de Investigaciones y Transferencia de Río Negro, CIT Río Negro (UNRN-CONICET), 8336 Villa Regina, Argentina
| | - María Del Rosario Agustín
- Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (CONICET-UNS), 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentina
| | - Lorena Inés Brugnoni
- Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (CONICET-UNS), 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentina.
| |
Collapse
|
8
|
Neidhöfer C, Rathore K, Parčina M, Sieber MA. ESKAPEE Pathogen Biofilm Control on Surfaces with Probiotic Lactobacillaceae and Bacillus species. Antibiotics (Basel) 2023; 12:871. [PMID: 37237774 PMCID: PMC10215598 DOI: 10.3390/antibiotics12050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of which is displacing these pathogens using beneficial microorganisms. Our review comprehensively examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 21 December 2021, and 143 studies were identified examining the effects of Lactobacillaceae and Bacillus spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While the diversity of study methods limits evidence analysis, results presented by narrative synthesis demonstrate that several species have the potential as cells or their products or supernatants to displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our review aims to aid the development of new promising approaches to control pathogen biofilms in medical settings by informing researchers and policymakers about the potential of probiotics to combat nosocomial infections. More targeted studies are needed to assess safety and efficacy of different probiotic formulations, followed by large-scale studies to assess utility in infection control and medical practice.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kamni Rathore
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| |
Collapse
|
9
|
Tomé AR, Carvalho FM, Teixeira-Santos R, Burmølle M, Mergulhão FJM, Gomes LC. Use of Probiotics to Control Biofilm Formation in Food Industries. Antibiotics (Basel) 2023; 12:antibiotics12040754. [PMID: 37107116 PMCID: PMC10135146 DOI: 10.3390/antibiotics12040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Microorganisms tend to adhere to food contact surfaces and form biofilms, which serve as reservoirs for bacteria that can contaminate food. As part of a biofilm, bacteria are protected from the stressful conditions found during food processing and become tolerant to antimicrobials, including traditional chemical sanitisers and disinfectants. Several studies in the food industry have shown that probiotics can prevent attachment and the consequent biofilm formation by spoilage and pathogenic microorganisms. This review discusses the most recent and relevant studies on the effects of probiotics and their metabolites on pre-established biofilms in the food industry. It shows that the use of probiotics is a promising approach to disrupt biofilms formed by a large spectrum of foodborne microorganisms, with Lactiplantibacillus and Lacticaseibacillus being the most tested genera, both in the form of probiotic cells and as sources of cell-free supernatant. The standardisation of anti-biofilm assays for evaluating the potential of probiotics in biofilm control is of extreme importance, enabling more reliable, comparable, and predictable results, thus promoting significant advances in this field.
Collapse
Affiliation(s)
- Andreia R Tomé
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fábio M Carvalho
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita Teixeira-Santos
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Filipe J M Mergulhão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C Gomes
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Gu Y, Zhang B, Tian J, Li L, He Y. Physiology, quorum sensing, and proteomics of lactic acid bacteria were affected by Saccharomyces cerevisiae YE4. Food Res Int 2023; 166:112612. [PMID: 36914328 DOI: 10.1016/j.foodres.2023.112612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
The interaction mode between lactic acid bacteria (LAB) and yeast in a fermentation system directly determines the quality of the products, thus understanding their mode of interaction can improve product quality. The present study investigated the effects of Saccharomyces cerevisiae YE4 on LAB from the perspectives of physiology, quorum sensing (QS), and proteomics. The presence of S. cerevisiae YE4 slowed down the growth of Enterococcus faecium 8-3 but had no significant effect on acid production or biofilm formation. S. cerevisiae YE4 significantly reduced the activity of autoinducer-2 at 19 h in E. faecium 8-3 and at 7-13 h in Lactobacillus fermentum 2-1. Expression of the QS-related genes luxS and pfs was also inhibited at 7 h. Moreover, a total of 107 E. faecium 8-3 proteins differed significantly in coculture with S. cerevisiae YE4-these proteins are involved in metabolic pathways including biosynthesis of secondary metabolites; biosynthesis of amino acids; alanine, aspartate, and glutamate metabolism; fatty acid metabolism; and fatty acid biosynthesis. Among them, proteins involved in cell adhesion, cell wall formation, two-component systems, and ABC transporters were detected. Therefore, S. cerevisiae YE4 might affect the physiological metabolism of E. faecium 8-3 by affecting cell adhesion, cell wall formation, and cell-cell interactions.
Collapse
Affiliation(s)
- Yue Gu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Baojun Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Lijie Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China.
| | - Yinfeng He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
11
|
Beneficial features of pediococcus: from starter cultures and inhibitory activities to probiotic benefits. World J Microbiol Biotechnol 2023; 39:4. [PMID: 36344843 PMCID: PMC9640849 DOI: 10.1007/s11274-022-03419-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022]
Abstract
Pediococci are lactic acid bacteria (LAB) which have been used for centuries in the production of traditional fermented foods. There fermentative abilities were explored by the modern food processing industry in use of pediococci as starter cultures, enabling the production of fermented foods with distinct characteristics. Furthermore, some pediococci strains can produce bacteriocins and other antimicrobial metabolites (AMM), such as pediocins, which are increasingly being explored as bio-preservatives in various food matrices. Due to their versatility and inhibitory spectrum, pediococci bacteriocins and AMM are being extensively researched not only in the food industry, but also in veterinary and human medicine. Some of the pediococci were evaluated as potential probiotics with different beneficial areas of application associated with human and other animals' health. The main taxonomic characteristics of pediococci species are presented here, as well as and their potential roles and applications as starter cultures, as bio-preservatives and as probiotic candidates.
Collapse
|
12
|
Biocontrol Approaches against Escherichia coli O157:H7 in Foods. Foods 2022; 11:foods11050756. [PMID: 35267389 PMCID: PMC8909014 DOI: 10.3390/foods11050756] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Shiga-toxin-producing Escherichia coli O157:H7 is a well-known water- and food-borne zoonotic pathogen that can cause gastroenteritis in humans. It threatens the health of millions of people each year; several outbreaks of E. coli O157:H7 infections have been linked to the consumption of contaminated plant foods (e.g., lettuce, spinach, tomato, and fresh fruits) and beef-based products. To control E. coli O157:H7 in foods, several physical (e.g., irradiation, pasteurization, pulsed electric field, and high-pressure processing) and chemical (e.g., using peroxyacetic acid; chlorine dioxide; sodium hypochlorite; and organic acids, such as acetic, lactic, and citric) methods have been widely used. Although the methods are quite effective, they are not applicable to all foods and carry intrinsic disadvantages (alteration of sensory properties, toxicity, etc.). Therefore, the development of safe and effective alternative methods has gained increased attention recently. Biocontrol agents, including bacteriophages, probiotics, antagonistic bacteria, plant-derived natural compounds, bacteriocins, endolysins, and enzymes, are rapidly emerging as effective, selective, relatively safe for human consumption, and environmentally friendly alternatives. This paper summarizes advances in the application of biocontrol agents for E. coli O157:H7 control in foods.
Collapse
|