1
|
Evain M, Ruiz I, Antonini T, Lassailly G, Mazzola A, Debry PH, Elkrief L, Anty R, Sebagh M, Ichai P, Cherqui D, Samuel D, Kounis I, Coilly A, GREF 2 group. Underdiagnosis of Alpha-1 Antitrypsin Deficiency in Cirrhotic Liver Transplant Candidates: Findings From a Multicenter Retrospective Study. Aliment Pharmacol Ther 2025. [PMID: 40448303 DOI: 10.1111/apt.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 04/28/2025] [Indexed: 06/02/2025]
Abstract
BACKGROUND AND AIMS Alpha-1 antitrypsin deficiency (AATD) is a prevalent genetic disorder in Europe causing hepatic fibrosis and often remains undiagnosed, even in severe cases requiring liver transplantation (LT). This study aimed to determine the frequency of pre-LT diagnosis amongst LT candidates with AATD and to describe their clinical characteristics. A secondary goal was to assess awareness and practices concerning AATD amongst LT specialists in France. METHODS This retrospective multicenter cohort study included LT candidates diagnosed with AATD based on PAS-positive staining of explanted livers (1995-2020) from nine centres in France and Canada. A 22-question survey was sent to LT specialists in France to assess AATD knowledge and practices. RESULTS Amongst 58 patients diagnosed with AATD between 1996 and 2020, 40% were diagnosed pre-LT, 15% post-LT and 45% never confirmed. Less than 25% had non-specific pulmonary symptoms. The survey revealed poor awareness of AATD; 78% of specialists rated their knowledge as very low to moderate. Consistent pre-LT screening occurred in 59.3% of cases, and 52.5% recommended familial screening upon a confirmed diagnosis. CONCLUSION AATD remains underdiagnosed in pre-LT assessments and is poorly understood amongst practitioners in France. Improved screening can enhance patient management, especially with emerging potentially curative treatments.
Collapse
Affiliation(s)
- Manon Evain
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Paris-Saclay University, Villejuif, France
| | - Isaac Ruiz
- Department of Hepatology and Liver Transplantation, Centre Hospitalier de l'Universite of Montréal, Montreal, Canada
| | - Teresa Antonini
- The Lyon liver institute, Everest IHU, Hepatology Department, Croix Rousse Hospital, Hospices Civils of Lyon, Lyon, France, Lyon, France
| | - Guillaume Lassailly
- Service des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire de Lille (CHU de Lille), Lille, France; European Genomic Institute for Diabetes (EGID), UMR 1190 Translational Research for Diabetes, Inserm, CHU Lille, University of Lille, Lille, France
| | - Alessandra Mazzola
- Service d'hépato-gastroentérologie, Hôpital La Pitié Salpêtrière, Paris, France
| | | | - Laure Elkrief
- Faculté de médecine de Tours et CHRU de Tours, service d'hépato-gastroentérologie, centre de référence constitutif Maladies Vasculaires du foie, Filfoie, ERN Rare Liver, Tours, France
| | - Rodolphe Anty
- Archet 2 University hospital, Inserm U1065 team 8, université Côte d'Azur, Nice, France
| | - Mylène Sebagh
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Paris-Saclay University, Villejuif, France
| | - Philippe Ichai
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Paris-Saclay University, Villejuif, France
| | - Daniel Cherqui
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Paris-Saclay University, Villejuif, France
| | - Didier Samuel
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Paris-Saclay University, Villejuif, France
| | - Ilias Kounis
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Paris-Saclay University, Villejuif, France
| | - Audrey Coilly
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Paris-Saclay University, Villejuif, France
| | | |
Collapse
|
2
|
Schneider CV, Decraecker M, Beaufrère A, Payancé A, Coilly A, Schneider KM, Bioulac P, Blanc JF, Le Bail B, Amintas S, Bouchecareilh M. Alpha-1 antitrypsin deficiency and primary liver cancers. Biochim Biophys Acta Rev Cancer 2025; 1880:189290. [PMID: 39999944 DOI: 10.1016/j.bbcan.2025.189290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Primary liver cancers (PLCs) remain a major challenge to global health and an escalating threat to human life, with a growing incidence worldwide. PLCs are composed of hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and mixed HCC-CCA, accounting for 85 %, 10 %, and 5 % of cases, respectively. Among the numerous identified risk factors associated with liver cancers, Alpha 1-AntiTrypsin Deficiency (AATD) genetic disease emerges as an intriguing one. AATD-related liver disease may lead to chronic hepatitis, cirrhosis, and PLCs in adulthood. Although our knowledge about the natural history of AATD-liver disease has improved recently, liver cancers associated with AATD remain poorly understood and explored, while this specific population is at a 20 to 50 times higher risk of developing PLC. Thus, we review here current knowledge about AATD-associated PLCs, describing the impact of AATD genotypes on their occurrence. We also discuss emerging hypotheses regarding the AATD PiZZ genotype-related hepatic carcinogenesis process. Finally, we perform an updated analysis of the United Kingdom Biobank database that highlights and confirms AATD PiZZ genotype as an important HCC risk factor.
Collapse
Affiliation(s)
- Carolin Victoria Schneider
- Department of Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Marie Decraecker
- University of Bordeaux, CNRS, INSERM, BRIC, U1312 Bordeaux, France; Oncology Unit, Hôpital Haut Lévêque, CIC 1401, Bordeaux University Hospital, 33604 Pessac, France
| | - Aurélie Beaufrère
- AP-HP Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Université Paris Cité, Beaujon Hospital, Clichy, France
| | - Audrey Payancé
- AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
| | - Audrey Coilly
- Centre Hépato-Biliaire, Hôpital Paul Brousse, UMR-1193, APHP, Université Paris Saclay, Villejuif, France
| | - Kai Markus Schneider
- Departement of Medicine I, Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany; Else Kroener Fresenius Center for Digital Health, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Paulette Bioulac
- University of Bordeaux, CNRS, INSERM, BRIC, U1312 Bordeaux, France
| | - Jean-Frédéric Blanc
- Oncology Unit, Hôpital Haut Lévêque, CIC 1401, Bordeaux University Hospital, 33604 Pessac, France
| | - Brigitte Le Bail
- University of Bordeaux, CNRS, INSERM, BRIC, U1312 Bordeaux, France; Pathology Department, Pellegrin University Hospital, CHU Bordeaux, France; French National and Bordeaux Local Liver Tumor Bank, France
| | - Samuel Amintas
- University of Bordeaux, CNRS, INSERM, BRIC, U1312 Bordeaux, France; Tumor Biology and Tumor Bank Laboratory, CHU Bordeaux, Pessac, France.
| | | |
Collapse
|
3
|
Spivak I, Guldiken N, Usachov V, Schaap F, Damink SWO, Bouchecareilh M, Lehmann A, Fu L, Mo F, Ensari GK, Hufnagel F, Fromme M, Preisinger C, Strnad P. Alpha-1 Antitrypsin Inclusions Sequester GRP78 in a Bile Acid-Inducible Manner. Liver Int 2025; 45:e16207. [PMID: 39665869 PMCID: PMC11636636 DOI: 10.1111/liv.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND AND AIMS The homozygous PiZ mutation (PIZZ genotype) constitutes the predominant cause of severe alpha-1 antitrypsin (AAT) deficiency and leads to liver disease via hepatocellular AAT aggregation. We systematically analysed the composition of AAT aggregates and studied the impact of bile acids. METHODS AAT inclusions were isolated from livers of PiZ overexpressing mice and PIZZ humans via fluorescence-activated and immunomagnetic sorting (FACS/MACS), while insoluble proteins were obtained via Triton-X extraction. Inclusion composition was evaluated through mass-spectrometry (MS), immunoblotting and immunostaining. Hepatocytes with versus without AAT aggregates were obtained via microdissection. Serum bile acids were assessed in 57 PIZZ subjects and 19 controls. Mice were administered 2% cholic acid (CA)-supplemented chow for 7 days. RESULTS MS identified the key endoplasmic reticulum chaperone 78 kDa glucose-regulated protein (GRP78) in FACS/MACS pulldowns. GRP78 was also enriched in insoluble fractions from PiZ mice versus wild types and detected in insoluble fractions/MACS isolates from PIZZ liver explants. In cultured cells/primary hepatocytes, PiZ overexpression was associated with increased GRP78 mRNA/protein levels. In human livers, hepatocytes with AAT aggregates had higher GRP78 levels than hepatocytes without. PIZZ subjects displayed higher serum bile acid levels than controls and the highest levels were seen in individuals with liver injury/fibrosis. In PiZ mice, CA-mediated bile acid challenge resulted in increased liver injury and translocation of GRP78 into the aggregates. CONCLUSIONS Our results demonstrate that GRP78 is sequestered within AAT inclusions. Bile acid accumulation, as seen in PIZZ subjects with liver disease, may promote GRP78 segregation and thereby augment liver damage. TRIAL REGISTRATION NCT02929940.
Collapse
Affiliation(s)
- Igor Spivak
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Nurdan Guldiken
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Valentyn Usachov
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Frank Schaap
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtNetherlands
- Department of General, Visceral and Transplant SurgeryUniversity Hospital RWTH AachenAachenGermany
| | - Steven W.M. Olde Damink
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtNetherlands
- Department of General, Visceral and Transplant SurgeryUniversity Hospital RWTH AachenAachenGermany
| | | | | | - Lei Fu
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
- Department of Science and TechnologyRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Fa‐Rong Mo
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Gökce Kobazi Ensari
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Franziska Hufnagel
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Malin Fromme
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Christian Preisinger
- Interdisciplinary Center for Clinical Research (IZKF)University Hospital RWTH AachenAachenGermany
| | - Pavel Strnad
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| |
Collapse
|
4
|
Verkade HJ, Felzen A, Keitel V, Thompson R, Gonzales E, Strnad P, Kamath B, van Mil S. EASL Clinical Practice Guidelines on genetic cholestatic liver diseases. J Hepatol 2024; 81:303-325. [PMID: 38851996 DOI: 10.1016/j.jhep.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 06/10/2024]
Abstract
Genetic cholestatic liver diseases are caused by (often rare) mutations in a multitude of different genes. While these diseases differ in pathobiology, clinical presentation and prognosis, they do have several commonalities due to their cholestatic nature. These Clinical Practice Guidelines (CPGs) offer a general approach to genetic testing and management of cholestatic pruritus, while exploring diagnostic and treatment approaches for a subset of genetic cholestatic liver diseases in depth. An expert panel appointed by the European Association for the Study of the Liver has created recommendations regarding diagnosis and treatment, based on the best evidence currently available in the fields of paediatric and adult hepatology, as well as genetics. The management of these diseases generally takes place in a tertiary referral centre, in order to provide up-to-date approaches and expertise. These CPGs are intended to support hepatologists (for paediatric and adult patients), residents and other healthcare professionals involved in the management of these patients with concrete recommendations based on currently available evidence or, if not available, on expert opinion.
Collapse
|
5
|
Lemke J, Weigert A, Bagci S, Born M, Ganschow R, Katzer D. Alpha-1-Antitrypsin Deficiency in Children-Unmet Needs Concerning the Liver Manifestation. CHILDREN (BASEL, SWITZERLAND) 2024; 11:694. [PMID: 38929273 PMCID: PMC11202262 DOI: 10.3390/children11060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/13/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES This study aimed to analyse the clinical course of 45 children with severe alpha-1-antitrypsin deficiency (AATD) registered in our clinic to detect possible predictors of poor outcomes. METHODS The clinical and biological data of 45 patients with homozygous or compound heterozygous AATD were analysed. The data were collected retrospectively going back to 2005 and prospectively from May 2020 until October 2021. It was based on questionnaires, laboratory values, sonography, and biopsy findings. Liver disease was classified into four grades depending on the grade of liver disease: mild or no liver disease, moderate disease, severe disease, and liver transplantation. RESULTS Thirty-nine patients (86.7%) had a Pi*ZZ and five (11.1%) a Pi*SZ genotype. One patient showed a new, not-yet-described compound heterozygous genotype (Pi*Z + Asp95Asn). A total of 66.7% of the cohort showed mild or no liver disease, 20% moderate, and 13.3% severe. AATD was diagnosed in most cases because of liver abnormalities, such as the elevation of transaminases (42.2%). A total of 29.4% of the patients with neonatal icterus prolongatus developed severe liver disease, and 25.7% were born small for their gestational age (SGA). Diseases of the atopic type were reported in 47.4% of the cases. CONCLUSIONS The presence of neonatal icterus prolongatus in the first weeks of life was significantly more likely in severe courses of liver disease (r = 0.371, p = 0.012). A tendency toward atopic comorbidity in AAT-deficient children needs to be further evaluated.
Collapse
Affiliation(s)
- Joelle Lemke
- Department of Pediatric Gastroenterology and Hepatology, University Hospital of Bonn Children’s Hospital, 53127 Bonn, Germany (A.W.); (R.G.)
| | - Alexander Weigert
- Department of Pediatric Gastroenterology and Hepatology, University Hospital of Bonn Children’s Hospital, 53127 Bonn, Germany (A.W.); (R.G.)
| | - Soyhan Bagci
- Department of Pediatric Gastroenterology and Hepatology, University Hospital of Bonn Children’s Hospital, 53127 Bonn, Germany (A.W.); (R.G.)
- Department of Neonatology and Pediatric Intensive Care Medicine, University Hospital of Bonn Children’s Hospital, 53127 Bonn, Germany
| | - Mark Born
- Department of Pediatric Radiology, University Hospital of Bonn Children’s Hospital, 53127 Bonn, Germany
| | - Rainer Ganschow
- Department of Pediatric Gastroenterology and Hepatology, University Hospital of Bonn Children’s Hospital, 53127 Bonn, Germany (A.W.); (R.G.)
| | - David Katzer
- Department of Pediatric Gastroenterology and Hepatology, University Hospital of Bonn Children’s Hospital, 53127 Bonn, Germany (A.W.); (R.G.)
| |
Collapse
|
6
|
Costa MP, Ferreira AR, Rodrigues AT, Fagundes EDT, Queiroz TCN. CLINICAL, LABORATORIAL AND EVOLUTIONARY ASPECTS OF PEDIATRIC PATIENTS WITH LIVER DISEASE DUE TO ALPHA 1-ANTITRYPSIN DEFICIENCY. ARQUIVOS DE GASTROENTEROLOGIA 2023; 60:438-449. [PMID: 38018549 DOI: 10.1590/s0004-2803.230402023-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Alpha 1-antitrypsin deficiency (AATD) is a hereditary codominant autosomal disease. This liver disease ranges from asymptomatic cases to terminal illness, which makes early recognition and diagnosis challenging. It is the main cause of pediatric liver transplantation after biliary atresia. OBJECTIVE To describe the clinical characteristics, as well as those of histologic and laboratory tests, phenotypic and/or genetic evaluation and evolution of a cohort of pediatric patients with AATD. METHODS This is a retrospective observational study of 39 patients with confirmed or probable AATD (without phenotyping or genotyping, but with suggestive clinical features, low serum alpha 1-antitrypsin (AAT) level and liver biopsy with PAS granules, resistant diastasis). Clinical, laboratory and histological varia-bles, presence of portal hypertension (PH) and survival with native liver have been analyzed. RESULTS A total of 66.7% of 39 patients were male (26/39). The initial manifestation was cholestatic jaundice in 79.5% (31/39). Liver transplantation was performed in 28.2% (11/39) of patients. Diagnosis occurred at an average of 3.1 years old and liver transplantation at 4.1 years of age. 89.2% (25/28) of the patients with confirmed AATD were PI*ZZ or ZZ. The average AAT value on admission for PI*ZZ or ZZ patients was 41.6 mg/dL. All transplanted patients with phenotyping or genotyping were PI*ZZ (or ZZ). Those who were jaundiced on admission were earlier referred to the specialized service and had higher levels of GGT and platelets on admission. There was no significant difference in the survival curve when comparing cholestatic jaundiced to non-cholestatic jaundiced patients on admission. Comparing patients who did or did not progress to PH, higher levels of AST and APRI score at diagnosis (P=0.011 and P=0.026, respectively) were observed and in the survival curves patients with PH showed impairment, with 20.2% survival with native liver in 15 years. CONCLUSION Jaundice is an important clinical sign that motivates referral to a specialist, but it does not seem to compromise survival with native liver. Patients progressing to PH had higher AST, APRi score on admission and significantly impaired survival with native liver. It is important to pay attention to these signs in the follow-up of patients with AATD.
Collapse
Affiliation(s)
- Mariana Pena Costa
- Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | |
Collapse
|
7
|
Mornex JF, Traclet J, Guillaud O, Dechomet M, Lombard C, Ruiz M, Revel D, Reix P, Cottin V. Alpha1-antitrypsin deficiency: An updated review. Presse Med 2023; 52:104170. [PMID: 37517655 DOI: 10.1016/j.lpm.2023.104170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/07/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
Alpha1-antitrypsin deficiency (AATD) is a rare autosomal recessive disease associated with the homozygous Z variant of the SERPINA1 gene. Clinical expression of AATD, reported 60 years ago associate a severe deficiency, pulmonary emphysema and/or liver fibrosis. Pulmonary emphysema is due to the severe alpha1-antitrypsin deficiency of the ZZ homozygous status and is favored by smoking. Liver fibrosis is due to the ZZ homozygous status and is favored by obesity and excessive chronic alcohol intake, with a risk of liver cancer. Diagnosis is based on serum level and either isoelectric focusing determination of the biochemical phenotype or PCR detection of some variants. SERPINA1 gene sequencing is necessary in case of discrepancies between the results of these tests. No treatment is available for the liver disease in AATD. Although no specific trial has been performed, COPD in AATD should be treated as per COPD recommendations. Based on a randomized clinical trial, augmentation therapy is indicated in non-smoking adults less than 70 years of age with emphysema at chest CT, confirmed homozygous AATD, and FEV1 between 35% and 70% of predicted. In contrast Z heterozygosis (MZ or SZ) brings a risk of lung or liver disease only in association with further risk factors. Early detection, in all patients with COPD and chronic liver disease, is critical for the correct information of Z variant carriers. News ways of correcting the liver production of alpha1-antitrypsin will modify the care of AATD patients.
Collapse
Affiliation(s)
- Jean-François Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, F-69007 Lyon, France; Centre de référence des maladies pulmonaires rares, Orphalung, RESPIFIL, ERN-LUNG, F-69500 Bron, France; Hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, F-69500 Bron, France; Inserm, hospices civils de Lyon, CIC 1407, F-69500 Bron, France.
| | - Julie Traclet
- Centre de référence des maladies pulmonaires rares, Orphalung, RESPIFIL, ERN-LUNG, F-69500 Bron, France; Hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, F-69500 Bron, France
| | - Olivier Guillaud
- Ramsay générale de santé, clinique de la Sauvegarde, F-69009 Lyon, France; Hospices civils de Lyon, hôpital Edouard Herriot, Fédération des spécialités digestives, F-69003 Lyon, France
| | - Magali Dechomet
- Hospices civils de Lyon, hôpital Lyon sud, service d'immunologie biologique, F-69495 Pierre Bénite, France
| | - Christine Lombard
- Hospices civils de Lyon, hôpital Lyon sud, service d'immunologie biologique, F-69495 Pierre Bénite, France
| | - Mathias Ruiz
- Centre de référence de l'atrésie des voies biliaires et des cholestases génétiques, FILFOIE, F-69500 Bron, France; Hospices civils de Lyon, hôpital femme mère enfant, service d'hépatologie, gastroentérologie et nutrition pédiatrique, F-69500 Bron, France
| | - Didier Revel
- Hospices civils de Lyon, hôpital Louis Pradel, service d'imagerie, F-69500 Bron, France
| | - Philippe Reix
- Service de pneumologie, allergologie pédiatrique. Hôpital Femme Mère Enfant. Hospices civils de Lyon, F-69500 Bron, France; Université de Lyon, université Lyon, CNRS, UMR 5558, équipe EMET, F-69100 Villeurbanne, France
| | - Vincent Cottin
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, F-69007 Lyon, France; Centre de référence des maladies pulmonaires rares, Orphalung, RESPIFIL, ERN-LUNG, F-69500 Bron, France; Hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, F-69500 Bron, France
| |
Collapse
|
8
|
Ruiz M, Lacaille F, Schrader C, Pons M, Socha P, Krag A, Sturm E, Bouchecareilh M, Strnad P. Pediatric and Adult Liver Disease in Alpha-1 Antitrypsin Deficiency. Semin Liver Dis 2023; 43:258-266. [PMID: 37402396 DOI: 10.1055/a-2122-7674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) arises due to inherited variants in SERPINA1, the AAT gene that impairs the production or secretion of this hepatocellular protein and leads to a gain-of-function liver proteotoxicity. Homozygous Pi*Z pathogenic variant (Pi*ZZ genotype) is the leading cause of severe AATD. It manifests in 2 to 10% of carriers as neonatal cholestasis and 20 to 35% of adults as significant liver fibrosis. Both children and adults may develop an end-stage liver disease requiring liver transplantation. Heterozygous Pi*Z pathogenic variant (Pi*MZ genotype) constitutes an established disease modifier. Our review summarizes the natural history and management of subjects with both pediatric and adult AATD-associated liver disease. Current findings from a phase 2 clinical trial indicate that RNA silencing may constitute a viable therapeutic approach for adult AATD. In conclusion, AATD is an increasingly appreciated pediatric and adult liver disorder that is becoming an attractive target for modern pharmacologic strategies.
Collapse
Affiliation(s)
- Mathias Ruiz
- Hépatologie, Gastroentérologie et Nutrition Pédiatriques, Hôpital Femme Mère Enfant, Hospices civils de Lyon, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Lyon, France
| | - Florence Lacaille
- Service de Gastroentérologie-Nutrition Pédiatriques et Unité d'Hépatologie Pédiatrique Hôpital Universitaire Necker-Enfants Malades, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Paris, France
| | - Christina Schrader
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Piotr Socha
- The Children's Memorial Health Institute, Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, Al. Dzieci Polskich, Warszawa, Poland
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Ekkehard Sturm
- Pediatric Gastroenterology and Hepatology, University Children's Hospital Tübingen, Member Center of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Tübingen, Germany
| | | | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| |
Collapse
|
9
|
Zeng M, Chen L, Li Y, Mi Y, Xu L. Problems and Challenges Associated with Renaming Non-alcoholic Fatty Liver Disease to Metabolic Associated Fatty Liver Disease. Medicine (Baltimore) 2023; 3:105-113. [PMCID: PMC10368226 DOI: 10.1097/id9.0000000000000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 10/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the world’s largest chronic liver disease in the 21st century, affecting 20%–30% of the world’s population. As the epidemiology, etiology, and pathogenesis of NAFLD have been studied in-depth, it has been gradually recognized that most patients with NAFLD have one or more combined metabolic abnormalities known as metabolic syndrome. In 2020, the international expert group changed the name of NAFLD to metabolic-associated fatty liver disease (MAFLD) and proposed new diagnostic criteria for MAFLD and MAFLD-related liver cirrhosis, as well as the conceptual framework of other cause-related fatty liver diseases to avoid diagnosis based on the exclusion of other causes and better reflect its pathogenesis. However, there are still many ambiguities in the term, and changing the name does not address the unmet key needs in the field. The change from NAFLD to MAFLD was not just a change of definition. The problems and challenges are summarized as follows: epidemiology, children, rationality of “metabolism,” diagnostic criteria, double/multiple causes, drug discovery, clinical trials, and awareness raising. Metabolic-associated fatty liver disease has complex disease characteristics, and there are still some problems that need to be solved.
Collapse
Affiliation(s)
- Minghui Zeng
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin 300192, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Lin Chen
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin 300192, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Yuqin Li
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin 300192, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Yuqiang Mi
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
- Tianjin Research Institute of Liver Diseases, Tianjin 300192, China
| | - Liang Xu
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300192, China
- Tianjin Research Institute of Liver Diseases, Tianjin 300192, China
| |
Collapse
|
10
|
Strnad P, San Martin J. RNAi therapeutics for diseases involving protein aggregation: fazirsiran for alpha-1 antitrypsin deficiency-associated liver disease. Expert Opin Investig Drugs 2023; 32:571-581. [PMID: 37470509 DOI: 10.1080/13543784.2023.2239707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Therapeutic agents that prevent protein misfolding or promote protein clearance are being studied to treat proteotoxic diseases. Among them, alpha-1 antitrypsin deficiency (AATD) is caused by mutations in the alpha-1 antitrypsin (SERPINA1) gene. Fazirsiran is a small interfering RNA (siRNA) that is intended to address the underlying cause of liver disease associated with AATD through the RNA interference (RNAi) mechanism. AREAS COVERED This article describes the role of misfolded proteins and protein aggregates in disease and options for therapeutic approaches. The RNAi mechanism is discussed, along with how the siRNA therapeutic fazirsiran for the treatment of AATD was developed. We also describe the implications of siRNA therapeutics in extrahepatic diseases. EXPERT OPINION Using RNAi as a therapeutic approach is well suited to treat disease in conditions where an excess of a protein or the effect of an abnormal mutated protein causes disease. The results observed for the first few siRNA therapeutics that were approved or are in development provide an important promise for the development of future drugs that can address such conditions in a specific and targeted way. Current developments should enable the use of RNAi therapeutics outside the liver, where there are many more possible diseases to address.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany
| | | |
Collapse
|
11
|
Costa JM, Pinto SM, Santos-Silva E, Moreira-Silva H. Incidental hypertransaminasemia in children-a stepwise approach in primary care. Eur J Pediatr 2023; 182:1601-1609. [PMID: 36697884 PMCID: PMC9877494 DOI: 10.1007/s00431-023-04825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
Children with elevated liver enzymes are occasionally discovered through laboratory work-up from different clinical scenarios. Although the majority will have transient and/or benign conditions, a subgroup will have underlying liver disorders. The differential diagnosis is broad and therefore, a systematic approach is of utmost importance. In this article, we reviewed the most recent and relevant literature to provide a comprehensive overview of the main disease processes that cause hypertransaminasemia in children. Ultimately, we propose a practical stepwise approach to guide primary care physicians in the evaluation of abnormal liver enzymes in asymptomatic children. The first step is to obtain a complete history along with a thorough physical examination to exclude red flags, which should dictate urgent consultation with a paediatric gastroenterologist or hepatologist. Conclusion: Hypertransaminasemia is a challenging scenario in the primary care setting. The aetiology can be broad, ranging from hepatic and extrahepatic to transient versus chronic liver disease. Timely referral to a specialised centre is of paramount importance for conducting targeted research and to not miss the chance of identifying a progressive, but still asymptomatic, treatable liver disease. What is Known: • Elevated liver enzyme is a challenging scenario in the primary care setting. • There are few studies guiding the evaluation of asymptomatic hypertransaminasemia in the paediatric population and a standardised approach is lacking. What is New: • We propose a practical stepwise approach to guide primary care physicians in the evaluation of abnormal liver enzymes.
Collapse
Affiliation(s)
- Joana Meneses Costa
- Valbom Family Health Unit, Group of Health Centers of Gondomar, Porto, Portugal
| | - Sara Martins Pinto
- Nascente Family Health Unit, Group of Health Centers of Gondomar, Porto, Portugal
| | - Ermelinda Santos-Silva
- Pediatrics Division, Gastroenterology Unit, Centro Hospitalar Universitário do Porto, Centro Materno Infantil do Norte, Largo da Maternidade No 45. 4050-651, Porto, Portugal
- Integrated Master in Medicine, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculdade de Farmácia, UCIBIO, Universidade do Porto, Porto, Portugal
| | - Helena Moreira-Silva
- Pediatrics Division, Gastroenterology Unit, Centro Hospitalar Universitário do Porto, Centro Materno Infantil do Norte, Largo da Maternidade No 45. 4050-651, Porto, Portugal.
| |
Collapse
|
12
|
Guillaud O, Dumortier J, Couchonnal-Bedoya E, Ruiz M. Wilson Disease and Alpha1-Antitrypsin Deficiency: A Review of Non-Invasive Diagnostic Tests. Diagnostics (Basel) 2023; 13:diagnostics13020256. [PMID: 36673066 PMCID: PMC9857715 DOI: 10.3390/diagnostics13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Wilson disease and alpha1-antitrypsin deficiency are two rare genetic diseases that may impact predominantly the liver and/or the brain, and the liver and/or the lung, respectively. The early diagnosis of these diseases is important in order to initiate a specific treatment, when available, ideally before irreversible organ damage, but also to initiate family screening. This review focuses on the non-invasive diagnostic tests available for clinicians in both diseases. These tests are crucial at diagnosis to reduce the potential diagnostic delay and assess organ involvement. They also play a pivotal role during follow-up to monitor disease progression and evaluate treatment efficacy of current or emerging therapies.
Collapse
Affiliation(s)
- Olivier Guillaud
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour la Maladie de Wilson, 69500 Bron, France
- Ramsay Générale de Santé, Clinique de la Sauvegarde, 69009 Lyon, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, 69003 Lyon, France
- Correspondence: ; Tel.: +33-4-72-11-95-19
| | - Jérôme Dumortier
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour la Maladie de Wilson, 69500 Bron, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, 69003 Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Eduardo Couchonnal-Bedoya
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour la Maladie de Wilson, 69500 Bron, France
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d’Hépatogastroentérologie et Nutrition Pédiatrique, 69500 Bron, France
| | - Mathias Ruiz
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d’Hépatogastroentérologie et Nutrition Pédiatrique, 69500 Bron, France
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour l’Atrésie des Voies Biliaires et les Cholestases Génétiques, 69500 Bron, France
| |
Collapse
|
13
|
Mornex JF, Balduyck M, Bouchecareilh M, Cuvelier A, Epaud R, Kerjouan M, Le Rouzic O, Pison C, Plantier L, Pujazon MC, Reynaud-Gaubert M, Toutain A, Trumbic B, Willemin MC, Zysman M, Brun O, Campana M, Chabot F, Chamouard V, Dechomet M, Fauve J, Girerd B, Gnakamene C, Lefrançois S, Lombard JN, Maitre B, Maynié-François C, Moerman A, Payancé A, Reix P, Revel D, Revel MP, Schuers M, Terrioux P, Theron D, Willersinn F, Cottin V, Mal H. [French clinical practice guidelines for the diagnosis and management of lung disease with alpha 1-antitrypsin deficiency]. Rev Mal Respir 2022; 39:633-656. [PMID: 35906149 DOI: 10.1016/j.rmr.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Affiliation(s)
- J-F Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, 69007 Lyon, France; Centre de référence coordonnateur des maladies pulmonaires rares, hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, 69500 Bron, France.
| | - M Balduyck
- CHU de Lille, centre de biologie pathologie, laboratoire de biochimie et biologie moléculaire HMNO, faculté de pharmacie, EA 7364 RADEME, université de Lille, service de biochimie et biologie moléculaire, Lille, France
| | - M Bouchecareilh
- Université de Bordeaux, CNRS, Inserm U1053 BaRITon, Bordeaux, France
| | - A Cuvelier
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, Rouen, France; Groupe de recherche sur le handicap ventilatoire et neurologique (GRHVN), université Normandie Rouen, Rouen, France
| | - R Epaud
- Centre de références des maladies respiratoires rares, site de Créteil, Créteil, France
| | - M Kerjouan
- Service de pneumologie, CHU Pontchaillou, Rennes, France
| | - O Le Rouzic
- CHU Lille, service de pneumologie et immuno-allergologie, Lille, France; Université de Lille, CNRS, Inserm, institut Pasteur de Lille, U1019, UMR 9017, CIIL, OpInfIELD team, Lille, France
| | - C Pison
- Service de pneumologie physiologie, pôle thorax et vaisseaux, CHU de Grenoble, Grenoble, France; Université Grenoble Alpes, Saint-Martin-d'Hères, France
| | - L Plantier
- Service de pneumologie et explorations fonctionnelles respiratoires, CHRU de Tours, Tours, France; Université de Tours, CEPR, Inserm UMR1100, Tours, France
| | - M-C Pujazon
- Service de pneumologie et allergologie, pôle clinique des voies respiratoires, hôpital Larrey, Toulouse, France
| | - M Reynaud-Gaubert
- Service de pneumologie, centre de compétence pour les maladies pulmonaires rares, AP-HM, CHU Nord, Marseille, France; Aix-Marseille université, IHU-Méditerranée infection, Marseille, France
| | - A Toutain
- Service de génétique, CHU de Tours, Tours, France; UMR 1253, iBrain, université de Tours, Inserm, Tours, France
| | | | - M-C Willemin
- Service de pneumologie et oncologie thoracique, CHU d'Angers, hôpital Larrey, Angers, France
| | - M Zysman
- Service de pneumologie, CHU Haut-Lévèque, Bordeaux, France; Université de Bordeaux, centre de recherche cardiothoracique, Inserm U1045, CIC 1401, Pessac, France
| | - O Brun
- Centre de pneumologie et d'allergologie respiratoire, Perpignan, France
| | - M Campana
- Service de pneumologie, CHR d'Orléans, Orléans, France
| | - F Chabot
- Département de pneumologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France; Inserm U1116, université de Lorraine, Vandœuvre-lès-Nancy, France
| | - V Chamouard
- Service pharmaceutique, hôpital cardiologique, GHE, HCL, Bron, France
| | - M Dechomet
- Service d'immunologie biologique, centre de biologie sud, centre hospitalier Lyon Sud, HCL, Pierre-Bénite, France
| | - J Fauve
- Cabinet médical, Bollène, France
| | - B Girerd
- Université Paris-Saclay, faculté de médecine, Le Kremlin-Bicêtre, France; AP-HP, centre de référence de l'hypertension pulmonaire, service de pneumologie et soins intensifs respiratoires, hôpital Bicêtre, Le Kremlin-Bicêtre, France; Inserm UMR_S 999, hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - C Gnakamene
- Service de pneumologie, CH de Montélimar, GH Portes de Provence, Montélimar, France
| | | | | | - B Maitre
- Service de pneumologie, centre hospitalier intercommunal, Créteil, France; Inserm U952, UFR de santé, université Paris-Est Créteil, Créteil, France
| | - C Maynié-François
- Université de Lyon, collège universitaire de médecine générale, Lyon, France; Université Claude-Bernard Lyon 1, laboratoire de biométrie et biologie évolutive, UMR5558, Villeurbanne, France
| | - A Moerman
- CHRU de Lille, hôpital Jeanne-de-Flandre, Lille, France; Cabinet de médecine générale, Lille, France
| | - A Payancé
- Service d'hépatologie, CHU Beaujon, AP-HP, Clichy, France; Filière de santé maladies rares du foie de l'adulte et de l'enfant (FilFoie), CHU Saint-Antoine, Paris, France
| | - P Reix
- Service de pneumologie pédiatrique, allergologie, mucoviscidose, hôpital Femme-Mère-Enfant, HCL, Bron, France; UMR 5558 CNRS équipe EMET, université Claude-Bernard Lyon 1, Villeurbanne, France
| | - D Revel
- Université Claude-Bernard Lyon 1, Lyon, France; Hospices civils de Lyon, Lyon, France
| | - M-P Revel
- Université Paris Descartes, Paris, France; Service de radiologie, hôpital Cochin, AP-HP, Paris, France
| | - M Schuers
- Université de Rouen Normandie, département de médecine générale, Rouen, France; Sorbonne université, LIMICS U1142, Paris, France
| | | | - D Theron
- Asten santé, Isneauville, France
| | | | - V Cottin
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, 69007 Lyon, France; Centre de référence coordonnateur des maladies pulmonaires rares, hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, 69500 Bron, France
| | - H Mal
- Service de pneumologie B, hôpital Bichat-Claude-Bernard, AP-HP, Paris, France; Inserm U1152, université Paris Diderot, site Xavier Bichat, Paris, France
| |
Collapse
|
14
|
Abstract
Liver disease in homozygous ZZ alpha-1 antitrypsin (AAT) deficiency occurs due to the accumulation of large quantities of AAT mutant Z protein polymers in the liver. The mutant Z protein folds improperly during biogenesis and is retained within the hepatocytes rather than appropriately secreted. These intracellular polymers trigger an injury cascade, which leads to liver injury. However, the clinical liver disease is highly variable and not all patients with this same homozygous ZZ genotype develop liver disease. Evidence suggests that genetic determinants of intracellular protein processing, among other unidentified genetic and environmental factors, likely play a role in liver disease susceptibility. Advancements made in development of new treatment strategies using siRNA technology, and other novel approaches, are promising, and multiple human liver disease trials are underway.
Collapse
Affiliation(s)
- Anandini Suri
- Division of Pediatric Gastroenetrology, Hepatology and Nutrition, Department of Pediatrics, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Boulevard, St. Louis, MO 63104, USA.
| | - Dhiren Patel
- Division of Pediatric Gastroenetrology, Hepatology and Nutrition, Department of Pediatrics, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Boulevard, St. Louis, MO 63104, USA
| | - Jeffrey H Teckman
- Division of Pediatric Gastroenetrology, Hepatology and Nutrition, Department of Pediatrics, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Boulevard, St. Louis, MO 63104, USA
| |
Collapse
|
15
|
Update Alpha-1-Antitrypsin-Mangel. Monatsschr Kinderheilkd 2022. [DOI: 10.1007/s00112-022-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ZusammenfassungDer Alpha-1-Antitrypsin-Mangel (AATM) ist mit einer Prävalenz bis zu 1:2000 eine der häufigsten monogenetischen Ursachen für eine Lebertransplantation im Kindesalter. Pulmonal manifestiert sich der AATM erst im Erwachsenenalter. Er wird oft zu spät oder überhaupt nicht diagnostiziert. Die initiale Diagnostik ist mit einer Serumspiegelbestimmung einfach und günstig durchführbar. Bei Werten unter 1,1 g/l sollte eine Genotypisierung erfolgen, die im Alpha-1-Antitrypsin-Zentrum Marburg kostenfrei angeboten wird. Aufgrund des sehr heterogenen Verlaufs sollte die weiterführende Betreuung von Patienten mit AATM jedoch Spezialisten mit ausreichender Erfahrung vorbehalten bleiben. Hierfür eignen sich insbesondere die pädiatrischen Alpha-1-Center. Einen hohen Stellenwert haben die Aufklärung sowie die Aufrechterhaltung einer guten Compliance mit regelmäßigen ärztlichen Verlaufskontrollen, um eine Progredienz der Lebererkrankung zu erfassen. Neben Anamnese und körperlicher Untersuchung sind regelmäßige Blutentnahmen und Ultraschalluntersuchungen (inkl. Leberelastographie) notwendig. Therapeutisch stehen neben einer kurativen Lebertransplantation derzeit lediglich supportive Therapien zur Wahl. Sollte eine Lebertransplantation indiziert sein, ist das Langzeit-Outcome erfreulicherweise sehr gut.
Collapse
|
16
|
Mornex JF. [Alpha 1-antitrypsin deficiency]. Rev Mal Respir 2022; 39:698-707. [PMID: 35715315 DOI: 10.1016/j.rmr.2022.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Pulmonary emphysema and liver disease are the clinical expressions of alpha 1-antitrypsin deficiency, an autosomal recessive genetic disease. STATE OF THE ART Alpha 1-antitrypsin deficiency is usually associated with the homozygous Z variant of the SERPINA1 gene. Its clinical expression always consists in a substantial reduction of alpha 1-antitrypsin serum concentration and its variants are analyzed by isoelectric focalization or molecular techniques. Assessed by CO transfer alteration and CT scan, risk of pulmonary emphysema is increased by tobacco consumption. Assessed by transient elastography and liver ultrasound, risk of liver disease is increased by alcohol consumption or obesity. Treatment of COPD-associated alpha 1-antitrypsin deficiency does not differ from that of other forms of COPD. In patients presenting with severe deficiency, augmentation therapy with plasma-derived alpha 1-antitrypsin reduces the progression of emphysema, as shown in terms of CT-based lung density metrics. Patients with alpha 1-antitrypsin deficiency with a ZZ genotype should refrain from alcohol or tobacco consumption, and watch their weight; so should their close relatives. PERSPECTIVES Modulation of alpha 1-antitrypsin liver production offers an interesting new therapeutic perspective. CONCLUSION Homozygous (Z) variants of the SERPINA1 gene confer an increased risk of pulmonary emphysema and liver disease, particularly among smokers, drinkers and obese persons.
Collapse
Affiliation(s)
- J-F Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, Lyon, France; Centre de référence des maladies respiratoires rares, Orphalung, RESPIFIL, 69500 Bron, Bron, France; Service de pneumologie, hôpital Louis-Pradel, hospices civils de Lyon, 69500 Bron, France.
| |
Collapse
|
17
|
Fromme M, Schneider CV, Trautwein C, Brunetti-Pierri N, Strnad P. Alpha-1 antitrypsin deficiency: A re-surfacing adult liver disorder. J Hepatol 2022; 76:946-958. [PMID: 34848258 DOI: 10.1016/j.jhep.2021.11.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
Alpha-1 antitrypsin deficiency (AATD) arises from mutations in the SERPINA1 gene encoding alpha-1 antitrypsin (AAT) that lead to AAT retention in the endoplasmic reticulum of hepatocytes, causing proteotoxic liver injury and loss-of-function lung disease. The homozygous Pi∗Z mutation (Pi∗ZZ genotype) is responsible for the majority of severe AATD cases and can precipitate both paediatric and adult liver diseases, while the heterozygous Pi∗Z mutation (Pi∗MZ genotype) is an established genetic modifier of liver disease. We review genotype-related hepatic phenotypes/disease predispositions. We also describe the mechanisms and factors promoting the development of liver disease, as well as approaches to evaluate the extent of liver fibrosis. Finally, we discuss emerging diagnostic and therapeutic approaches for the clinical management of this often neglected disorder.
Collapse
Affiliation(s)
- Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078 Naples, Italy; Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany.
| |
Collapse
|
18
|
Suri A, Patel D, Teckman J. Alpha-1-Antitrypsin Deficiency. Clin Liver Dis (Hoboken) 2022; 19:89-92. [PMID: 35355837 PMCID: PMC8958251 DOI: 10.1002/cld.1147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 02/04/2023] Open
Abstract
Content available: Author Audio Recording.
Collapse
Affiliation(s)
- Anandini Suri
- Department of PediatricsDivision of Gastroenterology, Hepatology and NutritionSaint Louis University School of MedicineSt. LouisMOUSA
| | - Dhiren Patel
- Department of PediatricsDivision of Gastroenterology, Hepatology and NutritionSaint Louis University School of MedicineSt. LouisMOUSA
| | - Jeffery Teckman
- Department of PediatricsDivision of Gastroenterology, Hepatology and NutritionSaint Louis University School of MedicineSt. LouisMOUSA,Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMOUSA
| |
Collapse
|
19
|
Gasparetto M, Strisciuglio C, Assa A, Gerasimidis K, Giachero F, Novak J, Robinson P, Tél B, Zilbauer M, Jenke A. Making Research Flourish Through ESPGHAN: A Position Paper From the ESPGHAN Special Interest Group for Basic and Translational Research. J Pediatr Gastroenterol Nutr 2022; 74:301-312. [PMID: 34310437 DOI: 10.1097/mpg.0000000000003250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Recent research breakthroughs have emerged from applied basic research throughout all scientific areas, including adult and paediatric gastroenterology, hepatology and nutrition (PGHAN). The research landscape within the European Society of Paediatric Gastroenterology and Nutrition (ESPGHAN) is also inevitably changing from clinical research to studies involving applied laboratory research. This position paper aims to depict the current status quo of basic science and translational research within ESPGHAN, and to delineate how the society could invest in research in the present and future time. The paper also explores which research areas in the field of PGHAN represent the current and future priorities, and what type of support is needed across the ESPGHAN working groups (WGs) and special interest groups (SIGs) to fulfil their research goals.
Collapse
Affiliation(s)
- Marco Gasparetto
- Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Amit Assa
- Department of Pediatrics, Assuta Ashdod University Hospital, Ashdod, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Federica Giachero
- Clinical, Molecular, Genetics and Epigenetics Faculty of Health, Center for Biochemical Education and Research (ZBAF), Witten-Herdecke University, Witten; Evangelisches Krankenhaus Oberhausen, Children's Hospital, Paediatrics, Oberhausen, Germany
| | - Jan Novak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Philip Robinson
- Wellcome Sanger Institute, Cambridge; Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Bálint Tél
- Semmelweis University, 1st Department of Paediatrics, Budapest, Hungary
| | - Matthias Zilbauer
- University Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Andreas Jenke
- Children's Hospital Kassel, Witten/Herdecke University, Kassel, Germany
| |
Collapse
|
20
|
Fromme M, Schneider CV, Pereira V, Hamesch K, Pons M, Reichert MC, Benini F, Ellis P, H Thorhauge K, Mandorfer M, Burbaum B, Woditsch V, Chorostowska-Wynimko J, Verbeek J, Nevens F, Genesca J, Miravitlles M, Nuñez A, Schaefer B, Zoller H, Janciauskiene S, Abreu N, Jasmins L, Gaspar R, Liberal R, Macedo G, Mahadeva R, Gomes C, Schneider KM, Trauner M, Krag A, Gooptu B, Thorburn D, Marshall A, Hurst JR, Lomas DA, Lammert F, Gaisa NT, Clark V, Griffiths W, Trautwein C, Turner AM, McElvaney NG, Strnad P. Hepatobiliary phenotypes of adults with alpha-1 antitrypsin deficiency. Gut 2022; 71:415-423. [PMID: 33632708 DOI: 10.1136/gutjnl-2020-323729] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Alpha-1 antitrypsin deficiency (AATD) is a common, potentially lethal inborn disorder caused by mutations in alpha-1 antitrypsin (AAT). Homozygosity for the 'Pi*Z' variant of AAT (Pi*ZZ genotype) causes lung and liver disease, whereas heterozygous 'Pi*Z' carriage (Pi*MZ genotype) predisposes to gallstones and liver fibrosis. The clinical significance of the more common 'Pi*S' variant remains largely undefined and no robust data exist on the prevalence of liver tumours in AATD. DESIGN Baseline phenotypes of AATD individuals and non-carriers were analysed in 482 380 participants in the UK Biobank. 1104 participants of a multinational cohort (586 Pi*ZZ, 239 Pi*SZ, 279 non-carriers) underwent a comprehensive clinical assessment. Associations were adjusted for age, sex, body mass index, diabetes and alcohol consumption. RESULTS Among UK Biobank participants, Pi*ZZ individuals displayed the highest liver enzyme values, the highest occurrence of liver fibrosis/cirrhosis (adjusted OR (aOR)=21.7 (8.8-53.7)) and primary liver cancer (aOR=44.5 (10.8-183.6)). Subjects with Pi*MZ genotype had slightly elevated liver enzymes and moderately increased odds for liver fibrosis/cirrhosis (aOR=1.7 (1.2-2.2)) and cholelithiasis (aOR=1.3 (1.2-1.4)). Individuals with homozygous Pi*S mutation (Pi*SS genotype) harboured minimally elevated alanine aminotransferase values, but no other hepatobiliary abnormalities. Pi*SZ participants displayed higher liver enzymes, more frequent liver fibrosis/cirrhosis (aOR=3.1 (1.1-8.2)) and primary liver cancer (aOR=6.6 (1.6-26.9)). The higher fibrosis burden was confirmed in a multinational cohort. Male sex, age ≥50 years, obesity and the presence of diabetes were associated with significant liver fibrosis. CONCLUSION Our study defines the hepatobiliary phenotype of individuals with the most relevant AATD genotypes including their predisposition to liver tumours, thereby allowing evidence-based advice and individualised hepatological surveillance.
Collapse
Affiliation(s)
- Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Vitor Pereira
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Karim Hamesch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Comunidad de Madrid, Spain
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Federica Benini
- Gastroenterology Unit, Department of Medicine, Spedali Civili and University, Brescia, Italy
| | - Paul Ellis
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Katrine H Thorhauge
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Vienna, Austria
| | - Barbara Burbaum
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Vivien Woditsch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Tuberculosis and Lung Diseases Institute, Warszawa, Poland
| | - Jef Verbeek
- Department of Gastroenterology & Hepatology, KU Leuven University Hospitals Leuven, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Leuven, Flanders, Belgium
| | - Frederik Nevens
- Department of Gastroenterology & Hepatology, KU Leuven University Hospitals Leuven, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Leuven, Flanders, Belgium
| | - Joan Genesca
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Comunidad de Madrid, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Alexa Nuñez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | | | - Nélia Abreu
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Luís Jasmins
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Rui Gaspar
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Rodrigo Liberal
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Guilherme Macedo
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Ravi Mahadeva
- Department of Respiratory Medicine, Cambridge University Hospitals, Cambridge, UK
| | - Catarina Gomes
- Gastroenterology Department, Centro Hospitalar de Vila Nova de Gaia Espinho EPE, Vila Nova de Gaia, Porto, Portugal
| | - Kai Markus Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Vienna, Austria
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Bibek Gooptu
- NIHR Leicester BRC-Respiratory and Leicester Institute of Structural & Chemical Biology, University of Leicester, Leicester, Leicestershire, UK
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK
| | - Douglas Thorburn
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK
- Sheila Sherlock Liver Unit and UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Aileen Marshall
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK
- Sheila Sherlock Liver Unit and UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - John R Hurst
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - David A Lomas
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
- Hannover Medical School (MHH), Hannover, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Virginia Clark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
| | - William Griffiths
- Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| |
Collapse
|
21
|
A Particular SORL1 Micro-haplotype May Prevent Severe Liver Disease in a French Cohort of Alpha 1-Antitrypsin-deficient Children. J Pediatr Gastroenterol Nutr 2021; 73:e68-e72. [PMID: 33720088 DOI: 10.1097/mpg.0000000000003125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The presence of modifier genes is now well recognized in severe liver disease outcome associated with alpha-1-antitrypsin deficiency (A1ATD) but their identification remains to be fully elucidated. To address this goal, we performed a candidate gene study with the SORL1 gene, already identified as risk gene in early-onset Alzheimer Disease families. A particular SORL1 micro-haplotype constituted with 3 SNPs (wild-type form TTG) was genotyped on 86 ZZ A1ATD children issued from 66 families. Interestingly, the mutated forms of this micro-haplotype (CAT most of the time) were associated with lower occurrence of severe liver disease and in cellulo studies showed that SORL1 influences Z-A1ATD cellular toxicity and biogenesis. These data suggest that the mutated CAT form of SORL1 micro-haplotype may partly prevent from severe liver disease in A1ATD children. Overall, these findings support a replication study on an independent cohort and additional in cellulo studies to confirm these promising results.
Collapse
|
22
|
Patel D, Teckman J. Liver disease with unknown etiology - have you ruled out alpha-1 antitrypsin deficiency? Ther Adv Chronic Dis 2021; 12_suppl:2040622321995684. [PMID: 34408828 PMCID: PMC8367207 DOI: 10.1177/2040622321995684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2021] [Indexed: 01/13/2023] Open
Abstract
Although a less well-known consequence of alpha-1 antitrypsin deficiency (AATD) liver disease is the second leading cause of death among patients with the condition. The alpha-1 antitrypsin (AAT) protein is produced by hepatocytes within the liver, which retain pathological variants of AAT instead of secreting the proteinase inhibitor into the systemic circulation. This intracellular retention is caused by inefficient folding and polymerization of mutant AAT and the accumulation of these AAT aggregates leads to diverse manifestations of liver disease, which can present differently in both children and adults. The progression from hepatocyte apoptosis to liver inflammation, fibrosis and cirrhosis, and liver failure is still not fully understood, but in older patients, liver disease can surpass lung disease as the principal cause of death. Liver function tests (LFTs) can measure plasma levels of liver enzymes to assess liver function but require careful interpretation. Non-invasive tests are being developed that can detect early liver disease, but liver biopsy is still the gold standard for assessing liver fibrosis once abnormal LFTs have been detected in a patient. Currently, there is no licensed treatment for AATD-related liver disease (intravenous AAT therapy is not indicated for this purpose), but liver transplantation is associated with positive outcomes and may even slow emphysema progression. Therefore, new strategies are being developed to address treatment of AATD-related liver disease, such as accelerating degradation of mutant AAT and assisting hepatocytes in the folding and secretion of mutant AAT, but these approaches remain at early stages of development.
Collapse
Affiliation(s)
- Dhiren Patel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, St Louis University School of Medicine, St Louis, MO, USA
| | - Jeffrey Teckman
- Department of Pediatrics and Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
23
|
Swed-Tobia R, Kassis I, Weiss K, Tal G, Shaoul R, Falik-Zaccai TC, Mandel H, Meir M. Concomitant congenital CMV infection and inherited liver diseases. Eur J Med Genet 2021; 64:104249. [PMID: 34023521 DOI: 10.1016/j.ejmg.2021.104249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 02/05/2023]
Abstract
Inherited liver diseases may present in infancy as cholestatic jaundice progressing to severe hepatic dysfunction. Congenital cytomegalovirus (cCMV) infection may initially involve the liver, yet in otherwise healthy hosts rarely leads to long-term hepatic disease. We report a series of three patients, diagnosed with hereditary liver diseases: progressive familial intrahepatic cholestasis (PFIC) type IV, alpha 1 anti-trypsin deficiency (A1ATD) and Alagille syndrome (ALGS), who were also diagnosed with cCMV infection. All patients were treated with valgancilovir for symptomatic cCMV infection (6-12 months), followed by suppressive dosing in the 2 patients with PFIC and A1ATD. Following 15-24 months of follow-up - the patients with PFIC and A1ATD developed severe liver failure, and the third had ongoing cholestatic disease with stable synthetic function. We propose a significant contribution of cCMV infection to the course of the inherited primary disease, possibly leading to further compromise of the liver. We recommend screening patients with inherited liver disease for cCMV, and considering anti-viral treatment with valganciclovir to delay hepatic disease progression.
Collapse
Affiliation(s)
- Rana Swed-Tobia
- Department of Pediatrics, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.
| | - Imad Kassis
- Department of Pediatrics, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel; Pediatric Infectious Diseases Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Karin Weiss
- Genetics Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Galit Tal
- Metabolic Disorders Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Ron Shaoul
- Pediatric Gastroenterology Institute, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Tzipora C Falik-Zaccai
- Institute of Human Genetics and Metabolic Disorders, Galilee Medical Center, Nahariya, Israel; The Azrieli Faculty of Medicine, Bar-Ilan, Safed, Israel
| | - Hanna Mandel
- Institute of Human Genetics and Metabolic Disorders, Galilee Medical Center, Nahariya, Israel
| | - Michal Meir
- Pediatric Infectious Diseases Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
24
|
Guillaud O, Jacquemin E, Couchonnal E, Vanlemmens C, Francoz C, Chouik Y, Conti F, Duvoux C, Hilleret MN, Kamar N, Houssel-Debry P, Neau-Cransac M, Pageaux GP, Gonzales E, Ackermann O, Gugenheim J, Lachaux A, Ruiz M, Radenne S, Debray D, Lacaille F, McLin V, Duclos-Vallée JC, Samuel D, Coilly A, Dumortier J. Long term results of liver transplantation for alpha-1 antitrypsin deficiency. Dig Liver Dis 2021; 53:606-611. [PMID: 33139195 DOI: 10.1016/j.dld.2020.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Liver transplantation (LT) is the therapeutic option for end-stage liver disease associated with alpha1 antitrypsin (A1AT) deficiency. The aim of the present retrospective study was to report on long-term outcomes following LT for A1AT deficiency. METHODS The medical records of 90 pediatric and adult patients transplanted between 1982 and 2017 in France and Geneva (Switzerland) were reviewed. RESULTS The study population consisted of 32 adults and 58 children; median age at transplant was 13.0 years (range: 0.2-65.1), and 65 were male (72.2%). Eighty-two patients (94.8% of children and 84.4% of adults) had the PI*ZZ genotype/phenotype and eight patients (8.9%) had the Pi*SZ genotype/phenotype. Eighty-four patients (93.3%) were transplanted for end-stage liver disease and six (all Pi*ZZ adults) for HCC. Median follow-up after LT was 13.6 years (0.1-31.7). The overall cumulative patient survival rates post-transplant were 97.8% at 1 year, and 95.5%, 95.5%, 92.0%, 89.1% at 5, 10, 15, 20 years respectively. The overall cumulative graft survival rates were 92.2% at 1 year, and 89.9%, 89.9%, 84.4%, 81.5% at 5, 10, 15 and 20 years, respectively. CONCLUSIONS In a representative cohort of patients having presented with end-stage-liver disease or HCC secondary to A1AT, liver transplantation offered very good patient and graft survival rates.
Collapse
Affiliation(s)
- Olivier Guillaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des spécialités digestives, Lyon, France; Ramsay Générale de Santé, Clinique de la Sauvegarde, Lyon, France
| | - Emmanuel Jacquemin
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Hépatologie et Transplantation Hépatique Pédiatriques, Centre National de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, Université Paris Saclay, Le Kremlin-Bicêtre, France; Inserm U1193, Hepatinov, Université Paris Saclay, Orsay, France
| | - Eduardo Couchonnal
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d'Hépato-gastroentérologie et Nutrition Pédiatrique, Bron, France
| | | | - Claire Francoz
- Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Service d'Hépatologie, Clichy, France
| | - Yasmina Chouik
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des spécialités digestives, Lyon, France
| | - Filomena Conti
- Assistance Publique-Hôpitaux de Paris, Hôpital La Pitié-Salpétrière, Service d'Hépato-gastroentérolgie, Paris, France
| | - Christophe Duvoux
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service d'Hépatologie, Créteil, France
| | - Marie-Noëlle Hilleret
- CHU de Grenoble, Hôpital Michalon, Service d'Hépato-Gastroentérologie, La Tronche, France
| | - Nassim Kamar
- CHU de Toulouse, Hôpital Rangueil, Service de Néphrologie-Hypertension artérielle-Dialyse-Transplantation, Toulouse, France
| | | | - Martine Neau-Cransac
- CHU de Bordeaux, Hôpital Haut Lévêque, Service de Chirurgie Hépatobiliaire et de Transplantation Hépatique, Bordeaux, France
| | - Georges-Philippe Pageaux
- CHU de Montpellier, Hôpital Saint-Eloi, Fédération Médico-Chirurgicale des Maladies de l'Appareil Digestif, Montpellier, France
| | - Emmanuel Gonzales
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Hépatologie et Transplantation Hépatique Pédiatriques, Centre National de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, Université Paris Saclay, Le Kremlin-Bicêtre, France; Inserm U1193, Hepatinov, Université Paris Saclay, Orsay, France
| | - Oanez Ackermann
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Hépatologie et Transplantation Hépatique Pédiatriques, Centre National de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, Université Paris Saclay, Le Kremlin-Bicêtre, France; Inserm U1193, Hepatinov, Université Paris Saclay, Orsay, France
| | - Jean Gugenheim
- CHU de Nice, Hôpital L'Archet 2, Service de Chirurgie Digestive, Nice, France
| | - Alain Lachaux
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d'Hépato-gastroentérologie et Nutrition Pédiatrique, Bron, France; Université de Lyon, Lyon, France
| | - Mathias Ruiz
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d'Hépato-gastroentérologie et Nutrition Pédiatrique, Bron, France
| | - Sylvie Radenne
- Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Service d'Hépatologie, Lyon, France
| | - Dominique Debray
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants malades, Unité d'Hépatologie pédiatrique, Centre de référence de l'Atrèsie des voies biliaires et cholestases génétiques, filière de santé Filfoie, Paris, France
| | - Florence Lacaille
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants malades, Unité d'Hépatologie pédiatrique, Centre de référence de l'Atrèsie des voies biliaires et cholestases génétiques, filière de santé Filfoie, Paris, France
| | - Valérie McLin
- Centre Suisse du Foie de l'Enfant, Hôpitaux Universitaires de Genève, Département de Pédiatrie, Gynécologie et Obstétrique, Genève, Suisse
| | - Jean-Charles Duclos-Vallée
- Inserm U1193, Hepatinov, Université Paris Saclay, Orsay, France; Assistance Publique-Hôpitaux de Paris, Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Didier Samuel
- Inserm U1193, Hepatinov, Université Paris Saclay, Orsay, France; Assistance Publique-Hôpitaux de Paris, Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Audrey Coilly
- Inserm U1193, Hepatinov, Université Paris Saclay, Orsay, France; Assistance Publique-Hôpitaux de Paris, Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Jérôme Dumortier
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des spécialités digestives, Lyon, France; Université de Lyon, Lyon, France.
| |
Collapse
|
25
|
Karatas E, Raymond AA, Leon C, Dupuy JW, Di-Tommaso S, Senant N, Collardeau-Frachon S, Ruiz M, Lachaux A, Saltel F, Bouchecareilh M. Hepatocyte proteomes reveal the role of protein disulfide isomerase 4 in alpha 1-antitrypsin deficiency. JHEP Rep 2021; 3:100297. [PMID: 34151245 PMCID: PMC8192868 DOI: 10.1016/j.jhepr.2021.100297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background & Aims A single point mutation in the Z-variant of alpha 1-antitrypsin (Z-AAT) alone can lead to both a protein folding and trafficking defect, preventing its exit from the endoplasmic reticulum (ER), and the formation of aggregates that are retained as inclusions within the ER of hepatocytes. These defects result in a systemic AAT deficiency (AATD) that causes lung disease, whereas the ER-retained aggregates can induce severe liver injury in patients with ZZ-AATD. Unfortunately, therapeutic approaches are still limited and liver transplantation represents the only curative treatment option. To overcome this limitation, a better understanding of the molecular basis of ER aggregate formation could provide new strategies for therapeutic intervention. Methods Our functional and omics approaches here based on human hepatocytes from patients with ZZ-AATD have enabled the identification and characterisation of the role of the protein disulfide isomerase (PDI) A4/ERP72 in features of AATD-mediated liver disease. Results We report that 4 members of the PDI family (PDIA4, PDIA3, P4HB, and TXNDC5) are specifically upregulated in ZZ-AATD liver samples from adult patients. Furthermore, we show that only PDIA4 knockdown or alteration of its activity by cysteamine treatment can promote Z-AAT secretion and lead to a marked decrease in Z aggregates. Finally, detailed analysis of the Z-AAT interactome shows that PDIA4 silencing provides a more conducive environment for folding of the Z mutant, accompanied by reduction of Z-AAT-mediated oxidative stress, a feature of AATD-mediated liver disease. Conclusions PDIA4 is involved in AATD-mediated liver disease and thus represents a therapeutic target for inhibition by drugs such as cysteamine. PDI inhibition therefore represents a potential therapeutic approach for treatment of AATD. Lay summary Protein disulfide isomerase (PDI) family members, and particularly PDIA4, are upregulated and involved in alpha 1-antitrypsin deficiency (AATD)-mediated liver disease in adults. PDI inhibition upon cysteamine treatment leads to improvements in features of AATD and hence represents a therapeutic approach for treatment of AATD-mediated liver disease. PDIA4 is upregulated and involved in alpha 1-antitrypsin deficiency (AATD)-mediated liver disease in adults. Knockdown of PDIA4 by siRNA or inhibition upon cysteamine treatment leads to improvements in features of AATD. RNA interference against PDIA4 or cysteamine represent approaches for treatment of AATD-mediated liver disease.
Collapse
Key Words
- AAT, alpha 1-antitrypsin
- AATD, alpha 1-antitrypsin deficiency
- Alpha 1-antitrypsin deficiency
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Cysteamine
- ER, endoplasmic reticulum
- FFPE, formalin-fixed paraffin-embedded
- FKBP10, FK506-binding protein (FKBP) isoform 10
- HCC, hepatocellular carcinoma
- IHC, immunohistochemistry
- IP, immunoprecipitation
- Liver damage
- NHK, null Hong Kong variant of AAT
- P4HB, prolyl 4-hydroxylase subunit beta/PDIA1
- PDI, protein disulfide isomerase
- PDIA3, protein disulfide isomerase family A member 3/ERP57
- PDIA4
- PDIA4, protein disulfide isomerase family A member 4/ERP70/ERP72
- PDIi, PDI inhibitors
- Protein disulfide isomerase
- ROS, reactive oxygen species
- SURF4, proteins Surfeit 4
- Scr, scramble
- TRX, thioredoxin
- TXNDC5, thioredoxin domain containing 5/PDIA15
- Treatment
- WT, wild-type
- Z-AAT, alpha 1-antitrypsin Z variant
- ZZ, homozygosis for the Z mutant allele
- siRNA, small RNA interference
- ΔF508-CFTR, most common mutation of CFTR, which deletes phenylalanine508
Collapse
Affiliation(s)
- Esra Karatas
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France
| | - Anne-Aurélie Raymond
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | - Céline Leon
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France
| | | | - Sylvaine Di-Tommaso
- Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | - Nathalie Senant
- Plateforme d'histopathologie, TBM-Core US 005, Bordeaux, France
| | - Sophie Collardeau-Frachon
- Department of Pathology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Mathias Ruiz
- Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Lachaux
- Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Frédéric Saltel
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | | |
Collapse
|
26
|
From Nonalcoholic Fatty Liver Disease (NAFLD) to Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD)-New Terminology in Pediatric Patients as a Step in Good Scientific Direction? J Clin Med 2021; 10:jcm10050924. [PMID: 33804296 PMCID: PMC7957610 DOI: 10.3390/jcm10050924] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, which predispose to more serious hepatic conditions. It ranges from simple liver steatosis to nonalcoholic steatohepatitis (NASH), which may progress to cirrhosis, and even end-stage liver disease. Since obesity became one of the most important health concerns wordwide, a considerable increase in the prevalance of NAFLD and other metabolic implications has been observed, both in adults and children. Due to the coexistence of visceral obesity, insulin resistance, dyslipidemia, NAFLD is considered to be the hepatic manifestation of metabolic syndrome (MetS). These relationships between NAFLD and MetS led to the set up in adults of a new term combining both of these conditions, called metabolic dysfunction-associated fatty liver disease (MAFLD). Based on these findings, we propose a set of criteria, which may be useful to diagnose MAFLD in children and adolescents.
Collapse
|
27
|
Le Fevre ER, McGrath KH, Fitzgerald DA. Pulmonary Manifestations of Gastrointestinal, Pancreatic, and Liver Diseases in Children. Pediatr Clin North Am 2021; 68:41-60. [PMID: 33228942 DOI: 10.1016/j.pcl.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulmonary manifestations of gastrointestinal (GI) diseases are often subtle, and underlying disease may precede overt symptoms. A high index of suspicion and a low threshold for consultation with a pediatric pulmonologist is warranted in common GI conditions. This article outlines the pulmonary manifestations of different GI, pancreatic, and liver diseases in children, including gastroesophageal reflux disease, inflammatory bowel disease, pancreatitis, alpha1-antitrypsin deficiency, nonalcoholic fatty liver disease, and complications of chronic liver disease (hepatopulmonary syndrome and portopulmonary hypertension).
Collapse
Affiliation(s)
- Emily R Le Fevre
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | - Kathleen H McGrath
- Department of Gastroenterology and Clinical Nutrition, The Royal Children's Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Dominic A Fitzgerald
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia; Faculty Health Sciences, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
28
|
Pye A, Khan S, Whitehouse T, Turner AM. Personalizing liver targeted treatments and transplantation for patients with alpha-1 antitrypsin deficiency. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2021.1862648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Anita Pye
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sheeba Khan
- University Hospital Birmingham NHS FT, Birmingham, UK
| | | | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
Shneider BL, Goodrich NP, Ye W, Sawyers C, Molleston JP, Merion RM, Leung DH, Karpen SJ, Kamath BM, Cavallo L, Wang K, Teckman JH, Squires JE, Sundaram SS, Rosenthal P, Romero R, Murray KF, Loomes KM, Jensen MK, Bezerra JA, Bass LM, Sokol RJ, Magee JC, For the Childhood Liver Disease Research Network (ChiLDReN). Nonfasted Liver Stiffness Correlates with Liver Disease Parameters and Portal Hypertension in Pediatric Cholestatic Liver Disease. Hepatol Commun 2020; 4:1694-1707. [PMID: 33163838 PMCID: PMC7603532 DOI: 10.1002/hep4.1574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 12/12/2022] Open
Abstract
Elastographic measurement of liver stiffness is of growing importance in the assessment of liver disease. Pediatric experiences with this technique are primarily single center and limited in scope. The Childhood Liver Disease Research Network provided a unique opportunity to assess elastography in a well-characterized multi-institutional cohort. Children with biliary atresia (BA), alpha-1 antitrypsin deficiency (A1ATD), or Alagille syndrome (ALGS) followed in a prospective longitudinal network study were eligible for enrollment in a prospective investigation of transient elastography (FibroScan). Studies were performed in participants who were nonfasted and nonsedated. Liver stiffness measurements (LSMs) were correlated with standard clinical and biochemical parameters of liver disease along with a research definition of clinically evident portal hypertension (CEPH) graded as absent, possible, or definite. Between November 2016 and August 2019, 550 participants with a mean age of 8.8 years were enrolled, 458 of whom had valid LSMs (BA, n = 254; A1ATD, n = 104; ALGS, n = 100). Invalid scans were more common in participants <2 years old. There was a positive correlation between LSM and total bilirubin, international normalized ratio (INR), aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transpeptidase (GGT), GGT to platelet ratio (GPR), pediatric end-stage liver disease score, AST to platelet ratio index, and spleen size, and a negative correlation with albumin and platelet count in BA, with similar correlations for A1ATD (except AST, ALT, and albumin) and ALGS (except for INR, GGT, GPR, and ALT). Possible or definite CEPH was more common in BA compared to ALGS and A1ATD. LSM was greater in definite versus absent CEPH in all three diseases. Disease-specific clinical and biochemical characteristics of the different CEPH grades were observed. Conclusion: It is feasible to obtain LSMs in children, especially over the age of 2 years. LSM correlates with liver parameters and portal hypertension, although disease-specific patterns exist.
Collapse
Affiliation(s)
| | | | - Wen Ye
- University of MichiganAnn ArborMIUSA
| | - Cindy Sawyers
- Riley Hospital for ChildrenIndiana UniversityIndianapolisINUSA
| | | | - Robert M. Merion
- Arbor Research Collaborative for HealthAnn ArborMIUSA
- University of MichiganAnn ArborMIUSA
| | - Daniel H. Leung
- Baylor College of Medicine and Texas Children’s HospitalHoustonTXUSA
| | - Saul J. Karpen
- Children’s Healthcare of Atlanta and Emory University School of MedicineAtlantaGAUSA
| | - Binita M. Kamath
- The Hospital for Sick Children and the University of TorontoTorontoCanada
| | - Laurel Cavallo
- Baylor College of Medicine and Texas Children’s HospitalHoustonTXUSA
| | - Kasper Wang
- Children’s Hospital Los AngelesTorontoCanada
| | | | | | - Shikha S. Sundaram
- University of Colorado School of MedicineChildren’s Hospital ColoradoPittsburghPAUSA
| | | | - Rene Romero
- Children’s Healthcare of Atlanta and Emory University School of MedicineAtlantaGAUSA
| | - Karen F. Murray
- Seattle Children’s Hospital and the University of Washington School of MedicineSeattleWAUSA
| | - Kathleen M. Loomes
- The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - M. Kyle Jensen
- Primary Children’s Hospital and University of UtahSalt Lake CityUTUSA
| | | | - Lee M. Bass
- Ann and Robert H. Lurie Children's Hospital and Northwestern UniversityChicagoILUSA
| | - Ronald J. Sokol
- University of Colorado School of MedicineChildren’s Hospital ColoradoPittsburghPAUSA
| | | | | |
Collapse
|
30
|
Bouchecareilh M. Alpha-1 Antitrypsin Deficiency-Mediated Liver Toxicity: Why Do Some Patients Do Poorly? What Do We Know So Far? CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2020; 7:172-181. [PMID: 32558486 PMCID: PMC7857713 DOI: 10.15326/jcopdf.7.3.2019.0148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 02/08/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disease caused by mutations in the SERPINA1 gene and is associated with a decreased level of circulating alpha-1 antitrypsin (AAT). Among all the known mutations in the SERPINA1 gene, homozygous for the Z allele is well-known to result in both lung and liver disease. Unlike the lung injury that occurs in adulthood with the environment (notably, tobacco) as a co-factor, the hepatic damage is more complicated. Despite a common underlying gene mutation, the liver disease associated with AATD presents a considerable variability in the age-of-onset and severity, ranging from transient neonatal cholestasis (in early childhood) to cirrhosis and liver cancer (in childhood and adulthood). Given that all the cofactors- genetics and/or environmental- have not been fully identified, it is still impossible to predict which individuals with AATD may develop severe liver disease. The discovery of these modifiers represents the major challenge for the detection, diagnosis, and development of new therapies to provide alternative options to liver transplantation. The aim of this current review is to provide an updated overview of our knowledge on why some AATD patients associated with liver damage progress poorly.
Collapse
Affiliation(s)
- Marion Bouchecareilh
- National Institute of Health and Medical Research (INSERM), National Center for Scientific Research (CNRS), University Bordeaux, Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France
| |
Collapse
|
31
|
Affiliation(s)
- Pavel Strnad
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| | - Noel G McElvaney
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| | - David A Lomas
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| |
Collapse
|
32
|
Alpha 1-Antitrypsin Deficiency: A Disorder of Proteostasis-Mediated Protein Folding and Trafficking Pathways. Int J Mol Sci 2020; 21:ijms21041493. [PMID: 32098273 PMCID: PMC7073043 DOI: 10.3390/ijms21041493] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
Human cells express large amounts of different proteins continuously that must fold into well-defined structures that need to remain correctly folded and assemble in order to ensure their cellular and biological functions. The integrity of this protein balance/homeostasis, also named proteostasis, is maintained by the proteostasis network (PN). This integrated biological system, which comprises about 2000 proteins (chaperones, folding enzymes, degradation components), control and coordinate protein synthesis folding and localization, conformational maintenance, and degradation. This network is particularly challenged by mutations such as those found in genetic diseases, because of the inability of an altered peptide sequence to properly engage PN components that trigger misfolding and loss of function. Thus, deletions found in the ΔF508 variant of the Cystic Fibrosis (CF) transmembrane regulator (CFTR) triggering CF or missense mutations found in the Z variant of Alpha 1-Antitrypsin deficiency (AATD), leading to lung and liver diseases, can accelerate misfolding and/or generate aggregates. Conversely to CF variants, for which three correctors are already approved (ivacaftor, lumacaftor/ivacaftor, and most recently tezacaftor/ivacaftor), there are limited therapeutic options for AATD. Therefore, a more detailed understanding of the PN components governing AAT variant biogenesis and their manipulation by pharmacological intervention could delay, or even better, avoid the onset of AATD-related pathologies.
Collapse
|