1
|
Chen L, Liang Z, Mao J, Liao Z, Liu Y, Ou D, Liu C, Li Z. Discovery of Highly Potent, Selective, and Liver-Targeting HSD17B13 Inhibitor with Robust In Vivo Anti-MASH Activity. J Med Chem 2025. [PMID: 40387207 DOI: 10.1021/acs.jmedchem.5c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common chronic liver diseases, driven by diverse genetic and environmental factors. Extensive human genetics' studies have indicated that HSD17B13 is emerging as a promising therapeutic target for MASH. However, no in vivo efficacy of a HSD17B13 inhibitor has been reported. Herein, multiparameter optimization studies led to the discovery of a highly potent and selective HSD17B13 inhibitor 32 (IC50 = 2.5 nM), which demonstrated significantly better liver microsomal stability and pharmacokinetic profile compared to BI-3231. Moreover, the unique liver-targeting profile of compound 32 provided greater potential for the treatment of MASH. In multiple mouse models, compound 32 exhibited better anti-MASH effects compared to BI-3231. Further mechanistic studies indicated that compound 32 regulated hepatic lipids by inhibiting the SREBP-1c/FAS pathway. Based on these positive results, HSD17B13 inhibitor 32 is worthy of further evaluation as the first pharmacological tool with robust in vivo anti-MASH activity.
Collapse
Affiliation(s)
- Lianru Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhiling Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jianming Mao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zibin Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Die Ou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Wang JJ, Chen XY, Zhang YR, Shen Y, Zhu ML, Zhang J, Zhang JJ. Role of genetic variants and DNA methylation of lipid metabolism-related genes in metabolic dysfunction-associated steatotic liver disease. Front Physiol 2025; 16:1562848. [PMID: 40166716 PMCID: PMC11955510 DOI: 10.3389/fphys.2025.1562848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), is one of the most common chronic liver diseases, which encompasses a spectrum of diseases, from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may ultimately progress to MASH-related cirrhosis and hepatocellular carcinoma (HCC). MASLD is a complex disease that is influenced by genetic and environmental factors. Dysregulation of hepatic lipid metabolism plays a crucial role in the development and progression of MASLD. Therefore, the focus of this review is to discuss the links between the genetic variants and DNA methylation of lipid metabolism-related genes and MASLD pathogenesis. We first summarize the interplay between MASLD and the disturbance of hepatic lipid metabolism. Next, we focus on reviewing the role of hepatic lipid related gene loci in the onset and progression of MASLD. We summarize the existing literature around the single nucleotide polymorphisms (SNPs) associated with MASLD identified by genome-wide association studies (GWAS) and candidate gene analyses. Moreover, based on recent evidence from human and animal studies, we further discussed the regulatory function and associated mechanisms of changes in DNA methylation levels in the occurrence and progression of MASLD, with a particular emphasis on its regulatory role of lipid metabolism-related genes in MASLD and MASH. Furthermore, we review the alterations of hepatic DNA and blood DNA methylation levels associated with lipid metabolism-related genes in MASLD and MASH patients. Finally, we introduce potential value of the genetic variants and DNA methylation profiles of lipid metabolism-related genes in developing novel prognostic biomarkers and therapeutic targets for MASLD, intending to provide references for the future studies of MASLD.
Collapse
Affiliation(s)
- Jun-Jie Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiao-Yuan Chen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Rong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yan Shen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Meng-Lin Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun-Jie Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Caddeo A, Romeo S. Precision medicine and nucleotide-based therapeutics to treat steatotic liver disease. Clin Mol Hepatol 2025; 31:S76-S93. [PMID: 39103998 PMCID: PMC11925435 DOI: 10.3350/cmh.2024.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/07/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex multifactorial disease and becoming the leading cause of liver-related morbidity and mortality. MASLD spans from isolated steatosis to metabolic dysfunction-associated steatohepatitis (MASH), that may progress to cirrhosis and hepatocellular carcinoma (HCC). Genetic, metabolic, and environmental factors strongly contribute to the heterogeneity of MASLD. Lifestyle intervention and weight loss represent a viable treatment for MASLD. Moreover, Resmetirom, a thyroid hormone beta receptor agonist, has recently been approved for MASLD treatment. However, most individuals treated did not respond to this therapeutic, suggesting the need for a more tailored approach to treat MASLD. Oligonucleotide-based therapies, namely small-interfering RNA (siRNA) and antisense oligonucleotide (ASO), have been recently developed to tackle MASLD by reducing the expression of genes influencing MASH progression, such as PNPLA3 and HSD17B13. Here, we review the latest progress made in the synthesis and development of oligonucleotide-based agents targeting genetic determinants of MASH.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Stefano Romeo
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medicine, Endocrinology (H7) Karolinska Institute and Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
4
|
Miller KC, Geyer B, Alexopoulos AS, Moylan CA, Pagidipati N. Disparities in Metabolic Dysfunction-Associated Steatotic Liver Disease Prevalence, Diagnosis, Treatment, and Outcomes: A Narrative Review. Dig Dis Sci 2025; 70:154-167. [PMID: 39560808 DOI: 10.1007/s10620-024-08722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/26/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a leading cause of morbidity and mortality, and health disparities have been shown to influence disease burden. AIM In this review, we aim to characterize disparities in prevalence, diagnosis, treatment, and outcomes of MASLD, and to make recommendations for next steps to minimize these disparities. METHODS Literature search on PubMed and Scopus databases was conducted to identify relevant articles published before September 2, 2024. RESULTS Relative to women and White populations, MASLD is more common in men and Hispanic populations and less common in Black populations. It is also more prevalent among those with lower SES. Noninvasive clinical scores may perform differently across groups, and screening practices vary both for initial disease and for progression to metabolic dysfunctionassociated steatohepatitis (MASH), formerly called non-alcoholic steatohepatitis (NASH). Women and Black and Hispanic patients suffer worse outcomes including rates of progression to MASH and mortality. CONCLUSIONS Health disparities related to race, ethnicity, gender, and socioeconomic factors impact multiple stages of care for patients with MASLD.
Collapse
|
5
|
Demirtas CO, Yilmaz Y. Decoding 17-Beta-hydroxysteroid Dehydrogenase 13: A Multifaceted Perspective on Its Role in Hepatic Steatosis and Associated Disorders. J Clin Transl Hepatol 2024; 12:857-864. [PMID: 39440221 PMCID: PMC11491501 DOI: 10.14218/jcth.2024.00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Chronic liver disease (CLD) represents a significant global health burden, with hepatic steatosis-associated disorders-such as metabolic dysfunction-associated steatohepatitis (MASH), alcoholic liver disease, and hepatitis C virus infection-being major contributors. Recent genome-wide association studies have identified the rs72613567:TA variant in the 17-beta-hydroxysteroid dehydrogenase 13 (HSD17B13) gene as a protective factor against the development and progression of these conditions. In this review, we summarized the current evidence surrounding the HSD17B13 rs72613567 variant, aiming to elucidate its impact on CLD risk and outcomes, and to explore the potential mechanisms behind its hepatoprotective effects. The rs72613567:TA variant induces a splice donor site mutation, resulting in a truncated, non-functional HSD17B13 protein. Numerous studies have demonstrated that this loss-of-function mutation confers protection against the development of cirrhosis and hepatocellular carcinoma (HCC) in patients with MASH, alcoholic liver disease, and hepatitis C virus infection. Moreover, the rs72613567:TA variant has been associated with reduced liver enzyme levels and improved survival in HCC patients. Integrating this variant into genetic risk scores has shown promise in predicting the progression of fatty liver disease to cirrhosis and HCC. Furthermore, inhibiting HSD17B13 expression through RNA interference and small molecule inhibitors has emerged as a potential therapeutic strategy for MASH. However, the precise molecular mechanisms underlying the hepatoprotective effects of the HSD17B13 rs72613567 variant remain to be fully elucidated. Future research should focus on clarifying the structure-function relationship of HSD17B13 and its role in liver pathophysiology to facilitate the development of targeted therapies for CLD associated with hepatic steatosis.
Collapse
Affiliation(s)
- Coskun Ozer Demirtas
- Department of Gastroenterology, School of Medicine, Marmara University, İstanbul, Türkiye
- Institute of Gastroenterology, Marmara University, İstanbul, Türkiye
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, İstanbul, Türkiye
- Institute of Gastroenterology, Marmara University, İstanbul, Türkiye
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, USA
| |
Collapse
|
6
|
Zhang X, Yu W, Li Y, Wang A, Cao H, Fu Y. Drug development advances in human genetics-based targets. MedComm (Beijing) 2024; 5:e481. [PMID: 38344397 PMCID: PMC10857782 DOI: 10.1002/mco2.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
| | - Haiqiang Cao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yuanlei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
7
|
Shihana F, Cholan PM, Fraser S, Oehlers SH, Seth D. Investigating the role of lipid genes in liver disease using fatty liver models of alcohol and high fat in zebrafish (Danio rerio). Liver Int 2023; 43:2455-2468. [PMID: 37650211 DOI: 10.1111/liv.15716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Accumulation of lipid in the liver is the first hallmark of both alcohol-related liver disease (ALD) and non-alcohol-related fatty liver disease (NAFLD). Recent studies indicate that specific mutations in lipid genes confer risk and might influence disease progression to irreversible liver cirrhosis. This study aimed to understand the function/s of lipid risk genes driving disease development in zebrafish genetic models of alcohol-related and non-alcohol-related fatty liver. METHODS We used zebrafish larvae to investigate the effect of alcohol and high fat to model fatty liver and tested the utility of this model to study lipid risk gene functions. CRISPR/Cas9 gene editing was used to create knockdowns in 5 days post-fertilisation zebrafish larvae for the available orthologs of human cirrhosis risk genes (pnpla3, faf2, tm6sf2). To establish fatty liver models, larvae were exposed to ethanol and a high-fat diet (HFD) consisting of chicken egg yolk. Changes in morphology (imaging), survival, liver injury (biochemical tests, histopathology), gene expression (qPCR) and lipid accumulation (dye-specific live imaging) were analysed across treatment groups to test the functions of these genes. RESULTS Exposure of 5-day post-fertilisation (dpf) WT larvae to 2% ethanol or HFD for 48 h developed measurable hepatic steatosis. CRISPR-Cas9 genome editing depleted pnpla3, faf2 and tm6sf2 gene expression in these CRISPR knockdown larvae (crispants). Depletion significantly increased the effects of ethanol and HFD toxicity by increasing hepatic steatosis and hepatic neutrophil recruitment ≥2-fold in all three crispants. Furthermore, ethanol or HFD exposure significantly altered the expression of genes associated with ethanol metabolism (cyp2y3) and lipid metabolism-related gene expression, including atgl (triglyceride hydrolysis), axox1, echs1 (fatty acid β-oxidation), fabp10a (transport), hmgcra (metabolism), notch1 (signalling) and srebp1 (lipid synthesis), in all three pnpla3, faf2 and tm6sf2 crispants. Nile Red staining in all three crispants revealed significantly increased lipid droplet size and triglyceride accumulation in the livers following exposure to ethanol or HFD. CONCLUSIONS We identified roles for pnpla3, faf2 and tm6sf2 genes in triglyceride accumulation and fatty acid oxidation pathways in a zebrafish larvae model of fatty liver.
Collapse
Affiliation(s)
- Fathima Shihana
- Centenary Institute of Cancer Medicine & Cell Biology, The University of Sydney, Camperdown, New South Wales, Australia
- Edith Collins Centre (Translational Research in Alcohol Drugs and Toxicology), Sydney Local Health District, Sydney, New South Wales, Australia
| | - Pradeep Manuneedhi Cholan
- Centenary Institute of Cancer Medicine & Cell Biology, The University of Sydney, Camperdown, New South Wales, Australia
| | - Stuart Fraser
- Centenary Institute of Cancer Medicine & Cell Biology, The University of Sydney, Camperdown, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Camperdown, New South Wales, Australia
| | - Stefan H Oehlers
- Centenary Institute of Cancer Medicine & Cell Biology, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney School of Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Devanshi Seth
- Centenary Institute of Cancer Medicine & Cell Biology, The University of Sydney, Camperdown, New South Wales, Australia
- Edith Collins Centre (Translational Research in Alcohol Drugs and Toxicology), Sydney Local Health District, Sydney, New South Wales, Australia
- Sydney School of Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Rutledge SM, Soper ER, Ma N, Pejaver V, Friedman SL, Branch AD, Kenny EE, Belbin GM, Abul-Husn NS. Association of HSD17B13 and PNPLA3 With Liver Enzymes and Fibrosis in Hispanic/Latino Individuals of Diverse Genetic Ancestries. Clin Gastroenterol Hepatol 2023; 21:2578-2587.e11. [PMID: 36610497 DOI: 10.1016/j.cgh.2022.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Genetic variants affecting liver disease risk vary among racial and ethnic groups. Hispanics/Latinos in the United States have a high prevalence of PNPLA3 I148M, which increases liver disease risk, and a low prevalence of HSD17B13 predicted loss-of-function (pLoF) variants, which reduce risk. Less is known about the prevalence of liver disease-associated variants among Hispanic/Latino subpopulations defined by country of origin and genetic ancestry. We evaluated the prevalence of HSD17B13 pLoF variants and PNPLA3 I148M, and their associations with quantitative liver phenotypes in Hispanic/Latino participants from an electronic health record-linked biobank in New York City. METHODS This study included 8739 adult Hispanic/Latino participants of the BioMe biobank with genotyping and exome sequencing data. We estimated the prevalence of Hispanic/Latino individuals harboring HSD17B13 and PNPLA3 variants, stratified by genetic ancestry, and performed association analyses between variants and liver enzymes and Fibrosis-4 (FIB-4) scores. RESULTS Individuals with ancestry from Ecuador and Mexico had the lowest frequency of HSD17B13 pLoF variants (10%/7%) and the highest frequency of PNPLA3 I148M (54%/65%). These ancestry groups had the highest outpatient alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and the largest proportion of individuals with a FIB-4 score greater than 2.67. HSD17B13 pLoF variants were associated with reduced ALT level (P = .002), AST level (P < .001), and FIB-4 score (P = .045). PNPLA3 I148M was associated with increased ALT level, AST level, and FIB-4 score (P < .001 for all). HSD17B13 pLoF variants mitigated the increase in ALT conferred by PNPLA3 I148M (P = .006). CONCLUSIONS Variation in HSD17B13 and PNPLA3 variants across genetic ancestry groups may contribute to differential risk for liver fibrosis among Hispanic/Latino individuals.
Collapse
Affiliation(s)
- Stephanie M Rutledge
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily R Soper
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ning Ma
- Division of Liver Medicine, Icahn School of Medicine Mount Sinai, New York, New York
| | - Vikas Pejaver
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott L Friedman
- Division of Liver Medicine, Icahn School of Medicine Mount Sinai, New York, New York
| | - Andrea D Branch
- Division of Liver Medicine, Icahn School of Medicine Mount Sinai, New York, New York
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gillian M Belbin
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York; Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Noura S Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
9
|
Zhang PP, Song JY, Li L, Xu M, Wang H, Wang HJ. Associations between genetic variants of HSD17B13 and fasting plasma glucose in Chinese children. Nutr Metab Cardiovasc Dis 2023; 33:1778-1784. [PMID: 37414661 DOI: 10.1016/j.numecd.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/09/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND AIMS Genetic variants in 17-β hydroxysteroid dehydrogenase 13 (HSD17B13) were demonstrated to protect against NAFLD, which is highly related with insulin resistance and dyslipidemia. However, the effects of NAFLD associated HSD17B13 variants on circulating glucose and lipids have not been adequately investigated in children. This study aimed to investigate associations between single nucleotide polymorphisms (SNPs) of HSD17B13 and NAFLD or its related phenotypes, such as blood glucose and serum lipids in Chinese children. METHODS AND RESULTS We studied 1027 Chinese Han children aged 7-18 years old, which included 162 NAFLD children and 865 controls without NAFLD. Three SNPs (rs13112695, rs7692397, rs6834314) in HSD17B13 were genotyped. The multivariable logistic and linear regression models were applied to detect the associations between three SNPs and NAFLD or its related phenotypes [alanine transaminase (ALT), fasting plasma glucose (FPG) and serum lipids]. The effect allele A of rs7692397 was negatively associated with FPG [β (SE) = -0.088 (0.027) mmol/L, P = 0.001], whereas the effect allele G of rs6834314 was positively associated with FPG (β (SE) = 0.060 (0.019) mmol/L, P = 0.002). After Bonferroni correction, the significant associations still remained (both P < 0.0024). No significant associations were found for NAFLD or serum lipids. CONCLUSION The study firstly revealed the association between two HSD17B13 variants and FPG in Chinese children, providing evidence for HSD17B13 variants and abnormal glucose metabolism.
Collapse
Affiliation(s)
- Ping-Ping Zhang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China; Ningbo Center for Healthy Lifestyle Research, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jie-Yun Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Li Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Hui Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Hai-Jun Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
10
|
Thamm S, Willwacher MK, Aspnes GE, Bretschneider T, Brown NF, Buschbom-Helmke S, Fox T, Gargano EM, Grabowski D, Hoenke C, Matera D, Mueck K, Peters S, Reindl S, Riether D, Schmid M, Tautermann CS, Teitelbaum AM, Trünkle C, Veser T, Winter M, Wortmann L. Discovery of a Novel Potent and Selective HSD17B13 Inhibitor, BI-3231, a Well-Characterized Chemical Probe Available for Open Science. J Med Chem 2023; 66:2832-2850. [PMID: 36727857 PMCID: PMC9969402 DOI: 10.1021/acs.jmedchem.2c01884] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genome-wide association studies in patients revealed HSD17B13 as a potential new target for the treatment of nonalcoholic steatohepatitis (NASH) and other liver diseases. However, the physiological function and the disease-relevant substrate of HSD17B13 remain unknown. In addition, no suitable chemical probe for HSD17B13 has been published yet. Herein, we report the identification of the novel potent and selective HSD17B13 inhibitor BI-3231. Through high-throughput screening (HTS), using estradiol as substrate, compound 1 was identified and selected for subsequent optimization resulting in compound 45 (BI-3231). In addition to the characterization of compound 45 for its functional, physicochemical, and drug metabolism and pharmacokinetic (DMPK) properties, NAD+ dependency was investigated. To support Open Science, the chemical HSD17B13 probe BI-3231 will be available to the scientific community for free via the opnMe platform, and thus can help to elucidate the pharmacology of HSD17B13.
Collapse
Affiliation(s)
- Sven Thamm
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany,
| | | | - Gary E. Aspnes
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Tom Bretschneider
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Nicholas F. Brown
- Boehringer
Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, Connecticut 06877-0368, United States
| | | | - Thomas Fox
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Emanuele M. Gargano
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Daniel Grabowski
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Christoph Hoenke
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Damian Matera
- Boehringer
Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Katja Mueck
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Stefan Peters
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Sophia Reindl
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Doris Riether
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Matthias Schmid
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | | | - Aaron M. Teitelbaum
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Cornelius Trünkle
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Thomas Veser
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Martin Winter
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Lars Wortmann
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany,
| |
Collapse
|
11
|
Sharpton S, Shan K, Bettencourt R, Lee M, McCormick JB, Fisher-Hoch SP, Loomba R. Prevalence and factors associated with liver fibrosis among first-degree relatives of Mexican Americans with hepatocellular carcinoma. Aliment Pharmacol Ther 2023; 57:378-386. [PMID: 36628455 PMCID: PMC10792515 DOI: 10.1111/apt.17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Whether hepatocellular carcinoma (HCC) increases the familial risk for hepatic fibrosis has not been thoroughly explored, particularly in Mexican Americans who are disproportionately affected by obesity and metabolic syndrome. We evaluated the risk of significant hepatic fibrosis in first-degree relatives of Mexican American adults with HCC. METHODS We performed a cross-sectional analysis of a prospective cohort of Mexican American probands with HCC and first-degree relatives enrolled in the Hispanic Liver Cancer Cohort study. We evaluated the prevalence of hepatic fibrosis in first-degree relatives, defined by liver stiffness measurement (LSM) >= 7.0 kPa with transient elastography (TE). Secondary outcomes included the prevalence of definite hepatic steatosis, defined by controlled attenuation parameter >=288 dB/m. RESULTS We identified 70 probands diagnosed with HCC; 47% were female and the mean age was 62 years (±13 years). Among 112 first-degree relatives with a mean age of 43 years (±14 years), 19 (17%) had significant fibrosis and 47 (42%) had definite hepatic steatosis, respectively. The prevalence of significant fibrosis was 20% in first-degree relatives 40 years of age or older. Regression analysis revealed that diabetes (OR 3.2, 95% CI: 1.1-9.2, p = 0.03) and aspartate aminotransferase >=30 units/L (OR 4.0, 95% CI: 1.4-11.7, p = 0.01) were predictors of significant fibrosis in first-degree relatives. CONCLUSIONS Using a well-phenotyped familial cohort, we found that the prevalence of significant fibrosis and definite hepatic steatosis are high in first-degree relatives of Mexican Americans with HCC, particularly those with diabetes, suggesting that this population may benefit from screening for liver disease.
Collapse
Affiliation(s)
- Suzanne Sharpton
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, NAFLD Research Center, University of California, San Diego, La Jolla, California, USA
| | - Kuangda Shan
- Department of Medicine, NAFLD Research Center, University of California, San Diego, La Jolla, California, USA
| | - Ricki Bettencourt
- Department of Medicine, NAFLD Research Center, University of California, San Diego, La Jolla, California, USA
| | - Miryoung Lee
- Department of Epidemiology, Genetics and Environmental Sciences, University of Texas School of Public Health, Brownsville, Texas, USA
| | - Joseph B. McCormick
- Department of Epidemiology, Genetics and Environmental Sciences, University of Texas School of Public Health, Brownsville, Texas, USA
| | - Susan P. Fisher-Hoch
- Department of Epidemiology, Genetics and Environmental Sciences, University of Texas School of Public Health, Brownsville, Texas, USA
| | - Rohit Loomba
- Department of Medicine, NAFLD Research Center, University of California, San Diego, La Jolla, California, USA
- Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
- Department of Family Medicine and Public Health, Division of Epidemiology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Amangurbanova M, Huang DQ, Loomba R. Review article: the role of HSD17B13 on global epidemiology, natural history, pathogenesis and treatment of NAFLD. Aliment Pharmacol Ther 2023; 57:37-51. [PMID: 36349732 PMCID: PMC10047549 DOI: 10.1111/apt.17292] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) occurs in around a quarter of the global population and is one of the leading causes of chronic liver disease. The phenotypic manifestation and the severity of NAFLD are influenced by an interplay of environmental and genetic factors. Recently, several inactivating variants in the novel 17-Beta hydroxysteroid dehydrogenase 13 (HSD17B13) gene have been found to be associated with a reduced risk of chronic liver diseases, including NAFLD. AIMS To review the existing literature on the epidemiology of HSD17B13 and discuss its role in the natural history, disease pathogenesis and treatment of NAFLD. METHODS We extensively searched relevant literature in PubMed, Google Scholar, clinicaltrials.gov and the reference list of articles included in the review. RESULTS HSD17B13 is a liver-specific, lipid droplet (LD)-associated protein that has enzymatic pathways involving steroids, pro-inflammatory lipid mediators and retinol. The estimated prevalence of the best characterised HSD17B13 variant (rs72613567) ranges from 5% in Africa to 34% in East Asia. Loss-of-function variants in HSD17B13 are protective against the progression of NAFLD from simple steatosis to non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis and hepatocellular carcinoma. Emerging data from mechanistic and preclinical studies with RNA interference (RNAi) and small molecule agents indicate that inhibiting HSD17B13 activity may prevent NAFLD progression. CONCLUSIONS The loss-of-function polymorphisms of the newly identified HSD17B13 gene mitigate the progression of NAFLD. It is important to understand the exact mechanism by which these variants exert a protective effect and implement the gathered knowledge in the treatment of NAFLD.
Collapse
Affiliation(s)
- Maral Amangurbanova
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, United States
| | - Daniel Q. Huang
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, United States
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, United States
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, United States
| |
Collapse
|
13
|
Zhu X, Xia M, Gao X. Update on genetics and epigenetics in metabolic associated fatty liver disease. Ther Adv Endocrinol Metab 2022; 13:20420188221132138. [PMID: 36325500 PMCID: PMC9619279 DOI: 10.1177/20420188221132138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most frequent chronic liver disease worldwide. Metabolic (dysfunction) associated fatty liver disease (MAFLD) is suggested to replace the nomenclature of NAFLD. For individuals with metabolic dysfunction, multiple NAFLD-related factors also contribute to the development and progression of MAFLD including genetics and epigenetics. The application of genome-wide association study (GWAS) and exome-wide association study (EWAS) uncovers single-nucleotide polymorphisms (SNPs) in MAFLD. In addition to the classic SNPs in PNPLA3, TM6SF2, and GCKR, some new SNPs have been found recently to contribute to the pathogenesis of liver steatosis. Epigenetic factors involving DNA methylation, histone modifications, non-coding RNAs regulations, and RNA methylation also play a critical role in MAFLD. DNA methylation is the most reported epigenetic modification. Developing a non-invasion biomarker to distinguish metabolic steatohepatitis (MASH) or liver fibrosis is ongoing. In this review, we summarized and discussed the latest progress in genetic and epigenetic factors of NAFLD/MAFLD, in order to provide potential clues for MAFLD treatment.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Down-Regulating the High Level of 17-Beta-Hydroxysteroid Dehydrogenase 13 Plays a Therapeutic Role for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23105544. [PMID: 35628360 PMCID: PMC9146021 DOI: 10.3390/ijms23105544] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and there is no specific drug to treat it. Recent results showed that 17-beta-hydroxysteroid dehydrogenase type 13 (HSD17B13) is associated with liver diseases, but these conclusions are controversial. Here, we showed that HSD17B13 was more highly expressed in the livers of NAFLD patients, and high expression was induced in the livers of murine NAFLD models and cultural hepatocytes treated using various etiologies. The high HSD17B13 expression in the hepatocytes facilitated the progression of NAFLD by directly stabilizing the intracellular lipid drops and by indirectly activating hepatic stellate cells. When HSD17B13 was overexpressed in the liver, it aggravated liver steatosis and fibrosis in mice fed with a high-fat diet, while down-regulated the high expression of HSD17B13 by short hairpin RNAs produced a therapeutic effect in the NAFLD mice. We concluded that high HSD17B13 expression is a good target for the development of drugs to treat NAFLD.
Collapse
|
15
|
Di Sessa A, Guarino S, Passaro AP, Liguori L, Umano GR, Cirillo G, Miraglia Del Giudice E, Marzuillo P. NAFLD and renal function in children: is there a genetic link? Expert Rev Gastroenterol Hepatol 2021; 15:975-984. [PMID: 33851883 DOI: 10.1080/17474124.2021.1906649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Introduction: Over the past decades, a large amount of both adult and pediatric data has shown relationship between Nonalcoholic Fatty Liver Disease (NAFLD) and chronic kidney disease (CKD), resulting in an overall increased cardiometabolic burden. In view of the remarkable role of the genetic background in the NAFLD pathophysiology, a potential influence of the major NAFLD polymorphisms (e.g. the I148M variant of the Patatin-like phospholipase containing domain 3 (PNPLA3) gene, the E167K allele of the Transmembrane 6 superfamily member 2 (TM6SF2), the hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13), and the Membrane bound O-acyltransferase domain containing 7-transmembrane channel-like 4 (MBOAT7-TMC4) genes) on renal function has been supposed. A shared metabolic and proinflammatory pathogenesis has been hypothesized, but the exact mechanism is still unknown.Areas covered: We provide a comprehensive review of the potential genetic link between NAFLD and CKD in children. Convincing both adult and pediatric evidence supports this association, but there is some dispute especially in childhood.Expert opinion: Evidence supporting a potential genetic link between NAFLD and CKD represents an intriguing aspect with a major clinical implication because of its putative role in improving strategy programs to counteract the higher cardiometabolic risk of these patients.
Collapse
Affiliation(s)
- Anna Di Sessa
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Stefano Guarino
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonio Paride Passaro
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Laura Liguori
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Giuseppina Rosaria Umano
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Grazia Cirillo
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Pierluigi Marzuillo
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
16
|
Is HSD17B13 Genetic Variant a Protector for Liver Dysfunction? Future Perspective as a Potential Therapeutic Target. J Pers Med 2021; 11:jpm11070619. [PMID: 34208839 PMCID: PMC8304981 DOI: 10.3390/jpm11070619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/20/2022] Open
Abstract
As diet and lifestyle have changed, fatty liver disease (FLD) has become more and more prevalent. Many genetic risk factors, such as variants of PNPLA3, TM6SF2, GCKR, and MBOAT7, have previously been uncovered via genome wide association studies (GWAS) to be associated with FLD. In 2018, a genetic variant (rs72613567, T > TA) of hydroxysteroid 17-β dehydrogenase family 13 (HSD17B13) was first associated with a lower risk of developing alcoholic liver disease and non-alcoholic fatty liver disease (NAFLD) in minor allele carriers. Other HSD17B13 variants were also later linked with either lower inflammation scores among NAFLD patients or protection against NAFLD (rs6834314, A > G and rs9992651, G > A) respectively. HSD17B13 is a lipid droplet-associated protein, but its function is still ambiguous. Compared to the other genetic variants that increase risk for FLD, HSD17B13 variants serve a protective role, making this gene a potential therapeutic target. However, the mechanism by which these variants reduce the risk of developing FLD is still unclear. Because studies in cell lines and mouse models have produced conflicting results, human liver tissue modeling using induced pluripotent stem cells may be the best way to move forward and solve this mystery.
Collapse
|
17
|
Sun DQ, Wang TY, Zheng KI, Zhang HY, Wang XD, Targher G, Byrne CD, Chen YP, Yuan WJ, Jin Y, Zheng MH. The HSD17B13 rs72613567 variant is associated with lower levels of albuminuria in patients with biopsy-proven nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 2021; 31:1822-1831. [PMID: 33853719 DOI: 10.1016/j.numecd.2021.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Several susceptibility gene variants predisposing to nonalcoholic fatty liver disease (NAFLD) have been identified in chronic kidney disease (CKD). Evidence supports that 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) rs72613567 plays a role in NAFLD development by affecting lipid homeostasis. Since lipid droplets may accumulate in the kidneys and contribute to renal injury, we investigated the association between the HSD17B13 rs72613567 variant and markers of renal function/injury in NAFLD. METHODS AND RESULTS We measured estimated glomerular filtration rate (eGFR), urinary/serum neutrophil gelatinase-associated lipocalin (NGAL), and urinary albumin-to-creatinine ratio (u-ACR) in individuals with biopsy-proven NAFLD. Multivariable regression analyses were undertaken to examine the associations between the HSD17B13 rs72613567 variant and markers of renal function/injury. Individuals were stratified by HSD17B13 rs72613567 genotypes into -/-, A/- and A/A groups. HSD17B13 rs72613567 genotypes were not significantly associated with eGFR and urinary/serum NGAL levels. Conversely, the prevalence of abnormal albuminuria in the A/- + A/A group was lower than in the -/- group (4.92% vs. 19.35%, p = 0.001). Additionally, the mean u-ACR levels were lower among carriers of the A/- or A/A genotypes with coexisting hypertension or diabetes, than among those with the -/- genotype. The risk of abnormal albuminuria (adjusted-odds ratio 0.16, p = 0.001) remained significantly lower in the A/- + A/A group after adjustment for established renal risk factors and histologic severity of NAFLD. CONCLUSION HSD17B13 rs72613567: A allele is associated with a lower risk of having abnormal albuminuria, but not with lower eGFR or urinary/serum NGAL levels, in patients with biopsy-proven NAFLD.
Collapse
Affiliation(s)
- Dan-Qin Sun
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China; Department of Nephrology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China; Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Ting-Yao Wang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kenneth I Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao-Yang Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Dong Wang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Yong-Ping Chen
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Wei-Jie Yuan
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Yan Jin
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China; Department of Gastroenterology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
18
|
Liu WY, Eslam M, Zheng KI, Ma HL, Rios RS, Lv MZ, Li G, Tang LJ, Zhu PW, Wang XD, Byrne CD, Targher G, George J, Zheng MH. Associations of Hydroxysteroid 17-beta Dehydrogenase 13 Variants with Liver Histology in Chinese Patients with Metabolic-associated Fatty Liver Disease. J Clin Transl Hepatol 2021; 9:194-202. [PMID: 34007801 PMCID: PMC8111109 DOI: 10.14218/jcth.2020.00151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/24/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS In Europeans, variants in the hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) gene impact liver histology in metabolic-associated fatty liver disease (MAFLD). The impact of these variants in ethnic Chinese is unknown. The aim of this study was to investigate the potential associations in Chinese patients. METHODS In total, 427 Han Chinese with biopsy-confirmed MAFLD were enrolled. Two single nucleotide polymorphisms in HSD17B13 were genotyped: rs72613567 and rs6531975. Logistic regression was used to test the association between the single nucleotide polymorphisms and liver histology. RESULTS In our cohort, the minor allele TA of the rs72613567 variant was related to an increased risk of fibrosis [odds ratio (OR): 2.93 (1.20-7.17), p=0.019 for the additive model; OR: 3.32 (1.39-7.91), p=0.007 for the recessive model], representing an inverse association as compared to the results from European cohorts. In contrast, we observed a protective effect on fibrosis for the minor A allele carriers of the HSD17B13 rs6531975 variant [OR: 0.48 (0.24-0.98), p=0.043 for the additive model; OR: 0.62 (0.40-0.94), p=0.025 for the dominant model]. HSD17B13 variants were only associated with fibrosis but no other histological features. Furthermore, HSD17B13 rs6531975 modulated the effect of PNPLA3 rs738409 on hepatic steatosis. CONCLUSIONS HSD17B13 rs72613567 is a risk variant for fibrosis in a Han Chinese MAFLD population but with a different direction for allelic association to that seen in Europeans. These data exemplify the need for studying diverse populations in genetic studies in order to fine map genome-wide association studies signals.
Collapse
Affiliation(s)
- Wen-Yue Liu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Sydney, Australia
| | - Kenneth I. Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Lei Ma
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rafael S. Rios
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min-Zhi Lv
- Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Li
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Dong Wang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Christopher D. Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Sydney, Australia
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|
19
|
Chen H, Zhang Y, Guo T, Yang F, Mao Y, Li L, Liu C, Gao H, Jin Y, Che Y, Li Y, Huang J. Genetic variant rs72613567 of HSD17B13 gene reduces alcohol-related liver disease risk in Chinese Han population. Liver Int 2020; 40:2194-2202. [PMID: 33151633 PMCID: PMC7496237 DOI: 10.1111/liv.14616] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Recently, the variant rs72613567:TA in the 17-beta-hydroxysteroid dehydrogenase 13 (HSD17B13) has been associated with reduced levels of ALT and AST and a reduced risk of alcohol-related liver disease (ALD) in the European population. Therefore, the aim of this study was to investigate the association between the polymorphisms of HSD17B13 and ALD, liver serum markers and patatin-like phospholipase domain-containing protein 3 (PNPLA3) p.I148M in the Chinese Han population. METHODS A case-control study was performed from five centres and included 769 ALD patients and 767 healthy controls. Two SNPs (rs72613567 and rs6834314) in HSD17B13 were genotyped using the Sequenom MassArray system and allele association analysis was performed using PLINK 1.90 software. RESULTS HSD17B13 rs72613567:TA allele was associated with a reduced risk of ALD by 19% (95% confidence interval [CI]: 0.05-0.31, P = .01), uniformly, the G allele in the rs6834314 reduced the risk of ALD by 19% (95% CI: 0.05-0.31, P = 8.28 × 10-3). And the genotypes of two SNPs were associated with reducing the risk of ALD in three genetic model analysis. In addition, we found that TA allele was associated with lower levels of serum ALT, AST and GGT (P = .005, .007 and .02, respectively), higher level of serum ALB (P = .02), but not associated with ALP. In this cohort, the interaction between HSD17B13 rs72613567 and the steatogenic allele PNPLA3 rs738409 was not validated. CONCLUSION The present study revealed that HSD17B13 rs72613567 was significantly associated with a reduced risk of ALD in Chinese Han population.
Collapse
Affiliation(s)
- Haizhen Chen
- Department of Clinical LaboratoryThe First Hospital of Jilin UniversityJilinChina,Department of Clinical LaboratoryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yanfang Zhang
- Department of Clinical LaboratoryThe First Hospital of Jilin UniversityJilinChina,Department of Clinical LaboratoryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Tongsheng Guo
- Department of Clinical LaboratoryBeijing Mentougou District HospitalBeijingChina,Department of Center of Clinical Laboratory MedicineThe Fifth Medical Center of the General Hospital of the Chinese People's Liberation ArmyBeijingChina
| | - Funing Yang
- Department of Pediatrics Outpatient ServiceThe First Hospital of Jilin UniversityJilinChina
| | - Yuanli Mao
- Department of Center of Clinical Laboratory MedicineThe Fifth Medical Center of the General Hospital of the Chinese People's Liberation ArmyBeijingChina
| | - Liubing Li
- Department of Clinical LaboratoryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Chenxi Liu
- Department of Clinical LaboratoryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Haidi Gao
- Department of Clinical LaboratoryThe First Hospital of Jilin UniversityJilinChina
| | - Yuting Jin
- Department of Clinical LaboratoryThe First Hospital of Jilin UniversityJilinChina
| | - Yuanyuan Che
- Department of Clinical LaboratoryThe First Hospital of Jilin UniversityJilinChina
| | - Yongzhe Li
- Department of Clinical LaboratoryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jing Huang
- Department of Clinical LaboratoryThe First Hospital of Jilin UniversityJilinChina
| |
Collapse
|
20
|
Seko Y, Yamaguchi K, Tochiki N, Yano K, Takahashi A, Okishio S, Kataoka S, Okuda K, Umemura A, Moriguchi M, Tanaka S, Mori K, Okanoue T, Itoh Y. Attenuated effect of PNPLA3 on hepatic fibrosis by HSD17B13 in Japanese patients with non-alcoholic fatty liver disease. Liver Int 2020; 40:1686-1692. [PMID: 32342668 DOI: 10.1111/liv.14495] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS PNPLA3 rs738409 has been associated with increased risks of fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). Recently, carriage of the rs6834314 G allele, which is in high linkage with rs72613567 of 17-beta-hydroxysteroid dehydrogenase 13 (HSD17B13), was reported to be associated with a reduced risk of liver injury in NAFLD patients. We estimated the impact of these genetic variants on hepatic fibrosis in Japanese patients with NAFLD. METHODS We analysed the associations of these genetic variants with liver histology in 290 Japanese patients with biopsy-proven NAFLD diagnosed during 2002-2019. During follow-up, 14 patients (4.8%) developed hepatocellular carcinoma. RESULTS Prevalences of the PNPLA3 rs738409 genotypes were 0.17 for CC, 0.41 for CG, 0.42 for GG, and those for HSD17B13 rs6834314 were 0.54 for AA, 0.39 for AG and 0.07 for GG. There was no significant interaction between the PNPLA3 and HSD17B13 genotypes. Prevalences of advanced fibrosis according to PNPLA3/HSD17B13 genotypes were 0.16 for CC,CG/AG,GG, 0.20 for CC,CG/AA, 0.30 for GG/AG,GG and 0.37 for GG/AA. Multivariate analysis identified PNPLA3 GG as a predictor of advanced fibrosis (stage 3/4) in carriers of HSD17B13 AA (odds ratio 2.4, P = .041), but not HSD17B13 AG/GG (P = .776). The HSD17B13 genotype G was significantly associated with lower prevalences of severe inflammation and ballooning and tended to be associated with a higher prevalence of advanced steatosis. CONCLUSIONS In Japanese patients with NAFLD, carriage of the HSD17B13 rs6834314 G allele attenuated the effect of the PNPLA3 rs738409 GG genotype on advanced hepatic fibrosis.
Collapse
Affiliation(s)
- Yuya Seko
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nozomi Tochiki
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kota Yano
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aya Takahashi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinya Okishio
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seita Kataoka
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichiroh Okuda
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Umemura
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Saiyu Tanaka
- Center for Digestive and Liver Diseases, Nara City Hospital, Nara, Japan
| | - Kojiroh Mori
- Center for Digestive and Liver Diseases, Nara City Hospital, Nara, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
21
|
Raja AM, Ciociola E, Ahmad IN, Dar FS, Naqvi SMS, Moaeen-ud-Din M, Raja GK, Romeo S, Mancina RM. Genetic Susceptibility to Chronic Liver Disease in Individuals from Pakistan. Int J Mol Sci 2020; 21:ijms21103558. [PMID: 32443539 PMCID: PMC7278956 DOI: 10.3390/ijms21103558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease, with viral or non-viral etiology, is endemic in many countries and is a growing burden in Asia. Among the Asian countries, Pakistan has the highest prevalence of chronic liver disease. Despite this, the genetic susceptibility to chronic liver disease in this country has not been investigated. We performed a comprehensive analysis of the most robustly associated common genetic variants influencing chronic liver disease in a cohort of individuals from Pakistan. A total of 587 subjects with chronic liver disease and 68 healthy control individuals were genotyped for the HSD17B13 rs7261356, MBOAT7 rs641738, GCKR rs1260326, PNPLA3 rs738409, TM6SF2 rs58542926 and PPP1R3B rs4841132 variants. The variants distribution between case and control group and their association with chronic liver disease were tested by chi-square and binary logistic analysis, respectively. We report for the first time that HSD17B13 variant results in a 50% reduced risk for chronic liver disease; while MBOAT7; GCKR and PNPLA3 variants increase this risk by more than 35% in Pakistani individuals. Our genetic analysis extends the protective role of the HSD17B13 variant against chronic liver disease and disease risk conferred by the MBOAT7; GCKR and PNPLA3 variants in the Pakistani population.
Collapse
Affiliation(s)
- Asad Mehmood Raja
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.M.R.); (S.M.S.N.); (G.K.R.)
| | - Ester Ciociola
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Wallenberg Laboratory, 413 45 Gothenburg, Sweden;
| | - Imran Nazir Ahmad
- Department of Pathology and Laboratory Medicine, Shifa International Hospitals Ltd., Islamabad 44790, Pakistan;
| | - Faisal Saud Dar
- Liver Transplantation, Hepatobiliary and Pancreatic Services Unit, Shifa International Hospitals Ltd., Islamabad 44790, Pakistan;
| | - Syed Muhammad Saqlan Naqvi
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.M.R.); (S.M.S.N.); (G.K.R.)
| | - Muhammad Moaeen-ud-Din
- Department of Animal Breeding and Genetics/National Center for Livestock Breeding, Genetics & Genomics, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan;
| | - Ghazala Kaukab Raja
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.M.R.); (S.M.S.N.); (G.K.R.)
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Wallenberg Laboratory, 413 45 Gothenburg, Sweden;
- Department of Cardiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
- Correspondence: (S.R.); (R.M.M.); Tel.: +46-(0)313-426-735 (S.R.); +46-(0)31342186 (R.M.M.)
| | - Rosellina Margherita Mancina
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Wallenberg Laboratory, 413 45 Gothenburg, Sweden;
- Correspondence: (S.R.); (R.M.M.); Tel.: +46-(0)313-426-735 (S.R.); +46-(0)31342186 (R.M.M.)
| |
Collapse
|
22
|
Stender S, Romeo S. HSD17B13 as a promising therapeutic target against chronic liver disease. Liver Int 2020; 40:756-757. [PMID: 32255570 DOI: 10.1111/liv.14411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen.,Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen
| | - Stefano Romeo
- Sahlgrenska Academy, Department of Clinical and Molecular Medicine, University of Gothenburg, Gothenburg.,Department of Cardiology, Sahlgrenska University Hospital, Gothenburg.,Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro
| |
Collapse
|