1
|
Moës B, Krueger J, Kazanova A, Liu C, Gao Y, Ponnoor NA, Castoun-Puckett L, Lazo ACO, Huong L, Cabald AL, Tu TH, Rudd CE. GSK-3 regulates CD4-CD8 cooperation needed to generate super-armed CD8+ cytolytic T cells against tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.08.642085. [PMID: 40161618 PMCID: PMC11952298 DOI: 10.1101/2025.03.08.642085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
While immune checkpoint blockade (ICB) has revolutionized cancer treatment, the key T-cell signaling pathways responsible for its potency remain unclear. GSK-3 is an inhibitory kinase that is most active in resting T-cells. In this study, we demonstrate that GSK-3 facilitates PD-1 blockade, an effect seen by modulating CD4 T-cell help for CD8+ CTL responses against ICB resistant tumors. We show that GSK-3 controls metabolic reprogramming towards glycolysis and synergizes with PD-1 to induce a transcriptional program that reduces suppressive CD4+ Treg numbers while generating super-armed effector-memory CD8+ CTLs that express an unprecedented 7/9 granzymes from the genome. Crucially, we found that GSK-3 cooperates with PD-1 blockade to determine the dependency of CD8+ CTLs on help from CD4+ T-cells. Our study unravels a novel cooperative PD-1 blockade-dependent signaling pathway that potentiates CTL responses against tumors, offering a new strategy to overcome immunotherapy resistance by modulating CD4+ helper and CD8+ cytotoxic functions. Significance This study demonstrates for the first time that GSK-3 controls the crosstalk between CD4+ and CD8+ T cells, synergizing with anti-PD-1 therapy to overcome resistance to checkpoint blockade and to generate super-armed CD8+ effector cells in cancer immunotherapy. This newly uncovered GSK-3-dependent CD4-CD8 T-cell crosstalk mechanism presents a new approach to enhance anti-PD-1 immunotherapy.
Collapse
|
2
|
Wang Z, Dai Y, Zhou Y, Wang Y, Chen P, Li Y, Zhang Y, Wang X, Hu Y, Li H, Li G, Jing Y. Research progress of T cells in cholangiocarcinoma. Front Immunol 2025; 16:1453344. [PMID: 40070825 PMCID: PMC11893616 DOI: 10.3389/fimmu.2025.1453344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Cholangiocarcinoma (CCA), a malignant tumor, is typically challenging to detect early and often results in a poor prognosis. In recent years, research interest has grown in the potential application of immunotherapy for CCA treatment. T cells, as a crucial component of the immune system, play a significant role in immune surveillance and therapy for cholangiocarcinoma. This article provides a review of the research advancements concerning T cells in cholangiocarcinoma patients, including their distribution, functional status, and correlation with patient prognosis within the tumor microenvironment. It further discusses the potential applications and challenges of immunotherapy strategies targeting T cells in CCA treatment and anticipates future research directions. A more profound understanding of T cells' role in cholangiocarcinoma can guide the development of clinical treatment strategies, thereby enhancing patient survival rates and quality of life. Finally, we explored the potential risks and side effects of immunotherapy for T-cell cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhiming Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunyan Dai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunpeng Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pinggui Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yaoxuan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunfei Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaocui Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Ying Hu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Haonan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaopeng Li
- Department of Hepatobiliary Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yukai Jing
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
3
|
Huang CJ, Liu GT, Yeh YC, Chung SY, Chang YC, Chiang NJ, Lu ML, Huang WN, Chen MH, Wang YC. Construction of hot tumor classification models in gastrointestinal cancers. J Transl Med 2025; 23:218. [PMID: 39984938 PMCID: PMC11846462 DOI: 10.1186/s12967-025-06230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancers account for more than one-third of cancer-related mortality, and the prognosis for late-stage patients remains poor. Immunotherapy has been proven to extend the survival of patients at advanced stages; however, challenges persist in patient selection and overcoming drug resistance. Tumor-infiltrating lymphocytes (TILs) and tertiary lymphoid structures (TLS) in the tumor microenvironment (TME) have been found to be associated with anti-tumor immune responses. 'Hot tumors' with high levels of infiltration tend to respond better to immune checkpoint inhibitor (ICI) therapy, making them potential biomarkers for ICI treatment. METHODS To explore potential biomarkers for predicting immunotherapy response and prognosis in GI cancers, we downloaded the gene expression profiles of seven GI cancers from The Cancer Genome Atlas (TCGA) database and characterized their TME, classifying the samples into hot/cold tumor subgroups. Furthermore, we developed a computational framework to construct cancer-specific hot tumor classification models with only a few genes. External independent datasets and qPCR experiments were used to verify the performance of our few-gene models. RESULTS We constructed cancer-specific few-gene models to identify hot tumors for GI cancers with only two to nine genes. The results showed that B cells are important for hot tumor determination, and the identified hot tumors are significantly associated with TLS. They not only overexpress TLS marker genes but are also associated with the presence of TLS in whole-slide images. Further, a two-gene qPCR model was developed to effectively distinguish between hot and cold tumor subgroups in cholangiocarcinoma, providing an opportunity for stratifying patients with hot tumors in clinical settings. CONCLUSIONS In conclusion, our established few-gene models, which can be easily integrated into clinical practice, can distinguish hot and cold tumor subgroups, and may serve as potential biomarkers for predicting ICI response.
Collapse
Affiliation(s)
- Chien-Jung Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Guan-Ting Liu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shin-Yi Chung
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nai-Jung Chiang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Meng-Lun Lu
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ning Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Huang Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yu-Chao Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Dai Y, Dong C, Wang Z, Zhou Y, Wang Y, Hao Y, Chen P, Liang C, Li G. Infiltrating T lymphocytes and tumor microenvironment within cholangiocarcinoma: immune heterogeneity, intercellular communication, immune checkpoints. Front Immunol 2025; 15:1482291. [PMID: 39845973 PMCID: PMC11750830 DOI: 10.3389/fimmu.2024.1482291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Cholangiocarcinoma is the second most common primary liver cancer, and its global incidence has increased in recent years. Radical surgical resection and systemic chemotherapy have traditionally been the standard treatment options. However, the complexity of cholangiocarcinoma subtypes often presents a challenge for early diagnosis. Additionally, high recurrence rates following radical treatment and resistance to late-stage chemotherapy limit the benefits for patients. Immunotherapy has emerged as an effective strategy for treating various types of cancer, and has shown efficacy when combined with chemotherapy for cholangiocarcinoma. Current immunotherapies targeting cholangiocarcinoma have predominantly focused on T lymphocytes within the tumor microenvironment, and new immunotherapies have yielded unsatisfactory results in clinical trials. Therefore, it is essential to achieve a comprehensive understanding of the unique tumor microenvironment of cholangiocarcinoma and the pivotal role of T lymphocytes within it. In this review, we describe the heterogeneous immune landscape and intercellular communication in cholangiocarcinoma and summarize the specific distribution of T lymphocytes. Finally, we review potential immune checkpoints in cholangiocarcinoma.
Collapse
Affiliation(s)
- Yunyan Dai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chenyang Dong
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhiming Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunpeng Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Hao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pinggui Chen
- Department of Nuclear Medicine, Nanyang First People’s Hospital, Nanyang, Henan, China
| | - Chaojie Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaopeng Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
6
|
Xie D, Lu G, Mai G, Guo Q, Xu G. Tissue-resident memory T cells in diseases and therapeutic strategies. MedComm (Beijing) 2025; 6:e70053. [PMID: 39802636 PMCID: PMC11725047 DOI: 10.1002/mco2.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Tissue-resident memory T (TRM) cells are crucial components of the immune system that provide rapid, localized responses to recurrent pathogens at mucosal and epithelial barriers. Unlike circulating memory T cells, TRM cells are located within peripheral tissues, and they play vital roles in antiviral, antibacterial, and antitumor immunity. Their unique retention and activation mechanisms, including interactions with local epithelial cells and the expression of adhesion molecules, enable their persistence and immediate functionality in diverse tissues. Recent advances have revealed their important roles in chronic inflammation, autoimmunity, and cancer, illuminating both their protective and their pathogenic potential. This review synthesizes current knowledge on TRM cells' molecular signatures, maintenance pathways, and functional dynamics across different tissues. We also explore the interactions of TRM cells with other immune cells, such as B cells, macrophages, and dendritic cells, highlighting the complex network that underpins the efficacy of TRM cells in immune surveillance and response. Understanding the nuanced regulation of TRM cells is essential for developing targeted therapeutic strategies, including vaccines and immunotherapies, to enhance their protective roles while mitigating adverse effects. Insights into TRM cells' biology hold promise for innovative treatments for infectious diseases, cancer, and autoimmune conditions.
Collapse
Affiliation(s)
- Daoyuan Xie
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Guanting Lu
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Gang Mai
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaAcademy of Chinese Medical SciencesBeijingChina
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research UnitThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
7
|
Yan H, Deng Q, Meng Y, Zhang Y, Wu J, Liu W. IL-21 and IL-33 May Be Effective Biomarkers to Predict the Efficacy of PD-1 Monoclonal Antibody for Advanced Cholangiocarcinoma. Cancer Biother Radiopharm 2025; 40:78-88. [PMID: 39835991 DOI: 10.1089/cbr.2024.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Background and Objective: Treatment options for patients with advanced biliary tract cancer (BTC) are limited. The programmed cell death protein-1 (PD-1) inhibitors may have synergistic effects with chemotherapy. Therefore, the aim of our study was to provide real-world data on treatment outcomes in BTC patients receiving chemotherapy alone versus a combination of chemotherapy and PD-1 inhibitors. Additionally, we explored potential markers predictive of PD-1 inhibitor efficacy in this combined therapy. Methods: We conducted a review of patients at Changzhou First People's Hospital who received PD-1 inhibitors in combination with chemotherapy or chemotherapy alone as first-line treatment for advanced BTC. The primary endpoints of the study were progression-free survival (PFS) and overall survival (OS). Kaplan-Meier survival curves and the log-rank test were used to analyze the data. Immunohistochemistry showed the expression of interleukin-21 (IL-21), interleukin-33 (IL-33), and Eomes in the tumor tissue of patients who received PD-1 inhibitors in combination with chemotherapy. Results: The study enrolled 61 patients receiving PD-1 inhibitors combined with chemotherapy and 65 receiving chemotherapy alone. The median OS and PFS for patients receiving PD-1 inhibitors in combination with chemotherapy were 11.7 and 6.7 months, respectively. These durations were significantly longer than those for chemotherapy alone: OS of 10.3 months (95% CI: 0.16-0.21, p = 0.031) and PFS of 5.3 months (95% Confidence interval (CI) 0.25-0.32, p = 0.018). High IL-21 expression or low IL-33 expression in tumor tissue correlated with better response rates to chemotherapy combined with PD-1 inhibitors. Conclusions: Combining PD-1 inhibitors with chemotherapy shows good antitumor activity, making it an effective way to treat BTC. The expression profiles of IL-21 and IL-33 hold promise as potential markers for guiding the chemotherapy combined with immunotherapy in BTC patients.
Collapse
Affiliation(s)
- Haijiao Yan
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qian Deng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yu Meng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ye Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wensong Liu
- Department of Hepatobiliary Surgery, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
8
|
Dadgar N, Arunachalam AK, Hong H, Phoon YP, Arpi-Palacios JE, Uysal M, Wehrle CJ, Aucejo F, Ma WW, Melenhorst JJ. Advancing Cholangiocarcinoma Care: Insights and Innovations in T Cell Therapy. Cancers (Basel) 2024; 16:3232. [PMID: 39335203 PMCID: PMC11429565 DOI: 10.3390/cancers16183232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare and aggressive malignancy originating from the bile ducts, with poor prognosis and limited treatment options. Traditional therapies, such as surgery, chemotherapy, and radiation, have shown limited efficacy, especially in advanced cases. Recent advancements in immunotherapy, particularly T cell-based therapies like chimeric antigen receptor T (CAR T) cells, tumor-infiltrating lymphocytes (TILs), and T cell receptor (TCR)-based therapies, have opened new avenues for improving outcomes in CCA. This review provides a comprehensive overview of the current state of T cell therapies for CCA, focusing on CAR T cell therapy. It highlights key challenges, including the complex tumor microenvironment and immune evasion mechanisms, and the progress made in preclinical and clinical trials. The review also discusses ongoing clinical trials targeting specific CCA antigens, such as MUC1, EGFR, and CD133, and the evolving role of precision immunotherapy in enhancing treatment outcomes. Despite significant progress, further research is needed to optimize these therapies for solid tumors like CCA. By summarizing the most recent clinical results and future directions, this review underscores the promising potential of T cell therapies in revolutionizing CCA treatment.
Collapse
Affiliation(s)
- Neda Dadgar
- Cleveland Clinic Foundation, Enterprise Cancer Institute, Translational Hematology & Oncology Research, Cleveland, OH 44114, USA;
| | - Arun K. Arunachalam
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Hanna Hong
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Yee Peng Phoon
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Jorge E. Arpi-Palacios
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Melis Uysal
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Chase J. Wehrle
- Cleveland Clinic Foundation, Digestive Diseases & Surgery Institute, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Federico Aucejo
- Cleveland Clinic Foundation, Digestive Diseases & Surgery Institute, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Wen Wee Ma
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA;
| | - Jan Joseph Melenhorst
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| |
Collapse
|
9
|
Liu S, Wang P, Wang P, Zhao Z, Zhang X, Pan Y, Pan J. Tissue-resident memory CD103+CD8+ T cells in colorectal cancer: its implication as a prognostic and predictive liver metastasis biomarker. Cancer Immunol Immunother 2024; 73:176. [PMID: 38954030 PMCID: PMC11219596 DOI: 10.1007/s00262-024-03709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/19/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Tissue-resident memory CD103+CD8+ T cells (CD103+CD8+ TRMs) are important components of anti-tumor immunity. However, the significance of CD103+CD8+ TRMs in colorectal cancer (CRC) and their advantages remain unclear. METHODS Clinical data and specimens were used to evaluate the significance of CD103+CD8+ TRMs in CRC. A mouse subcutaneous tumorigenesis model and colony-formation assay were conducted to evaluate the anti-tumor effects of CD103+CD8+ TRMs. Finally, the infiltration density and function of CD103+CD8+ TRMs in the tumors were evaluated using flow cytometry. RESULTS In this study, we showed that highly infiltrated CD103+CD8+ TRMs were associated with earlier clinical stage and negative VEGF expression in CRC patients and predicted a favorable prognosis for CRC/CRC liver metastases patients. Interestingly, we also found that CD103+CD8+ TRMs may have predictive potential for whether CRC develops liver metastasis in CRC. In addition, we found a positive correlation between the ratio of the number of α-SMA+ vessels to the sum of the number of α-SMA+ and CD31+ vessels in CRC, and the infiltration level of CD103+CD8+ TRMs. In addition, anti-angiogenic therapy promoted infiltration of CD103+CD8+ TRMs and enhanced their ability to secrete interferon (IFN)-γ, thus further improving the anti-tumor effect. Moreover, in vivo experiments showed that compared with peripheral blood CD8+ T cells, CD103+CD8+ TRMs infused back into the body could also further promote CD8+ T cells to infiltrate the tumor, and they had a stronger ability to secrete IFN-γ, which resulted in better anti-tumor effects. CONCLUSION We demonstrated that CD103+CD8+ TRMs have the potential for clinical applications and provide new ideas for combined anti-tumor therapeutic strategies, such as anti-tumor angiogenesis therapy and CAR-T combined immunotherapy.
Collapse
Affiliation(s)
- Shijin Liu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Penglin Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Peize Wang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zhan Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xiaolin Zhang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, 510632, China.
| | - Jinghua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Chen F, Sheng J, Li X, Gao Z, Zhao S, Hu L, Chen M, Fei J, Song Z. Unveiling the promise of PD1/PD-L1: A new dawn in immunotherapy for cholangiocarcinoma. Biomed Pharmacother 2024; 175:116659. [PMID: 38692063 DOI: 10.1016/j.biopha.2024.116659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Cholangiocarcinoma (CCA), a rare yet notably aggressive cancer, has experienced a surge in incidence in recent years. Presently, surgical resection remains the most effective curative strategy for CCA. Nevertheless, a majority of patients with CCA are ineligible for surgical removal at the time of diagnosis. For advanced stages of CCA, the combination of gemcitabine and cisplatin is established as the standard chemotherapy regimen. Despite this, treatment efficacy is often hindered by the development of resistance. In recent times, immune checkpoint inhibitors, particularly those that block programmed death 1 and its ligand (PD1/PD-L1), have emerged as promising strategies against a variety of cancers and are being increasingly integrated into the therapeutic landscape of CCA. A growing body of research supports that the use of PD1/PD-L1 monoclonal antibodies in conjunction with chemotherapy may significantly improve patient outcomes. This article seeks to meticulously review the latest studies on PD1/PD-L1 involvement in CCA, delving into their expression profiles, prognostic significance, contribution to oncogenic processes, and their potential clinical utility.
Collapse
Affiliation(s)
- Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jian Sheng
- Department of Research and Teaching, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Siqi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Jianguo Fei
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
11
|
Fan X, Nijman HW, de Bruyn M, Elsinga PH. ImmunoPET provides a novel way to visualize the CD103 + tissue-resident memory T cell to predict the response of immune checkpoint inhibitors. EJNMMI Res 2024; 14:5. [PMID: 38182929 PMCID: PMC10769965 DOI: 10.1186/s13550-023-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have made significant progress in oncotherapy improving survival of patients. However, the benefits are limited to only a small subgroup of patients who could achieve durable responses. Early prediction of response may enable treatment optimization and patient stratification. Therefore, developing appropriate biomarkers is critical to monitoring efficacy and assessing patient response to ICIs. MAIN BODY Herein, we first introduce a new potential biomarker, CD103, expressed on tissue-resident memory T cells, and discuss the potential application of CD103 PET imaging in predicting immune checkpoint inhibitor treatment. In addition, we describe the current targets of ImmunoPET and compare these targets with CD103. To assess the benefit of PET imaging, a comparative analysis between ImmunoPET and other imaging techniques commonly employed for tumor diagnosis was performed. Additionally, we compare ImmunoPET and immunohistochemistry (IHC), a widely utilized clinical method for biomarker identification with respect to visualizing the immune targets. CONCLUSION CD103 ImmunoPET is a promising method for determining tumor-infiltrating lymphocytes (TILs) load and response to ICIs, thereby addressing the lack of reliable biomarkers in cancer immunotherapy. Compared to general T cell markers, CD103 is a specific marker for tissue-resident memory T cells, which number increases during successful ICI therapy. ImmunoPET offers noninvasive, dynamic imaging of specific markers, complemented by detailed molecular information from immunohistochemistry (IHC). Radiomics can extract quantitative features from traditional imaging methods, while near-infrared fluorescence (NIRF) imaging aids tumor detection during surgery. In the era of precision medicine, combining such methods will offer a more comprehensive approach to cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoyu Fan
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
12
|
Li C, Bie L, Chen M, Ying J. Therapeutic significance of tumor microenvironment in cholangiocarcinoma: focus on tumor-infiltrating T lymphocytes. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1310-1327. [PMID: 38213535 PMCID: PMC10776604 DOI: 10.37349/etat.2023.00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 01/13/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive type of adenocarcinoma distinguished by its invasiveness. Depending on specific anatomical positioning within the biliary tree, CCA can be categorized into intrahepatic CCA (ICCA), perihilar CCA (pCCA) and distal CCA (dCCA). In recent years, there has been a significant increase in the global prevalence of CCA. Unfortunately, many CCA patients are diagnosed at an advanced stage, which makes surgical resection impossible. Although systemic chemotherapy is frequently used as the primary treatment for advanced or recurrent CCA, its effectiveness is relatively low. Therefore, immunotherapy has emerged as a promising avenue for advancing cancer treatment research. CCA exhibits a complex immune environment within the stromal tumor microenvironment (TME), comprising a multifaceted immune landscape and a tumor-reactive stroma. A deeper understanding of this complex TME is indispensable for identifying potential therapeutic targets. Thus, targeting tumor immune microenvironment holds promise as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Chaoqun Li
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, Zhejiang, China
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
13
|
Fan X, Ważyńska MA, Kol A, Perujo Holland N, Fernandes B, van Duijnhoven SMJ, Plat A, van Eenennaam H, Elsinga PH, Nijman HW, de Bruyn M. Development of [ 89Zr]Zr-hCD103.Fab01A and [ 68Ga]Ga-hCD103.Fab01A for PET imaging to noninvasively assess cancer reactive T cell infiltration: Fab-based CD103 immunoPET. EJNMMI Res 2023; 13:100. [PMID: 37985555 PMCID: PMC10661679 DOI: 10.1186/s13550-023-01043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND CD103 is an integrin specifically expressed on the surface of cancer-reactive T cells. The number of CD103+ T cells significantly increases during successful immunotherapy and might therefore be an attractive biomarker for noninvasive PET imaging of immunotherapy response. Since the long half-life of antibodies preclude repeat imaging of CD103+ T cell dynamics early in therapy, we therefore here explored PET imaging with CD103 Fab fragments radiolabeled with a longer (89Zr) and shorter-lived radionuclide (68Ga). METHODS Antihuman CD103 Fab fragment Fab01A was radiolabeled with 89Zr or 68Ga, generating [89Zr]Zr-hCD103.Fab01A and [68Ga]Ga-hCD103.Fab01A, respectively. In vivo evaluation of these tracers was performed in male nude mice (BALB/cOlaHsd-Foxn1nu) with established CD103-expressing CHO (CHO.CD103) or CHO-wildtype (CHO.K1) xenografts, followed by serial PET imaging and ex vivo bio-distribution. RESULTS [89Zr]Zr-hCD103.Fab01A showed high tracer uptake in CD103+ xenografts as early as 3 h post-injection. However, the background signal remained high in the 3- and 6-h scans. The background was relatively low at 24 h after injection with sufficient tumor uptake. [68Ga]Ga-hCD103.Fab01Ashowed acceptable uptake and signal-to-noise ratio in CD103+ xenografts after 3 h, which decreased at subsequent time points. CONCLUSION [89Zr]Zr-hCD103.Fab01A demonstrated a relatively low background and high xenograft uptake in scans as early as 6 h post-injection and could be explored for repeat imaging during immunotherapy in clinical trials. 18F or 64Cu could be explored as alternative to 68Ga in optimizing half-life and radiation burden of the tracer.
Collapse
Affiliation(s)
- Xiaoyu Fan
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marta A Ważyńska
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Kol
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Noemi Perujo Holland
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bruna Fernandes
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Annechien Plat
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
14
|
Kerzel T, Giacca G, Beretta S, Bresesti C, Notaro M, Scotti GM, Balestrieri C, Canu T, Redegalli M, Pedica F, Genua M, Ostuni R, Kajaste-Rudnitski A, Oshima M, Tonon G, Merelli I, Aldrighetti L, Dellabona P, Coltella N, Doglioni C, Rancoita PMV, Sanvito F, Naldini L, Squadrito ML. In vivo macrophage engineering reshapes the tumor microenvironment leading to eradication of liver metastases. Cancer Cell 2023; 41:1892-1910.e10. [PMID: 37863068 DOI: 10.1016/j.ccell.2023.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
Liver metastases are associated with poor response to current pharmacological treatments, including immunotherapy. We describe a lentiviral vector (LV) platform to selectively engineer liver macrophages, including Kupffer cells and tumor-associated macrophages (TAMs), to deliver type I interferon (IFNα) to liver metastases. Gene-based IFNα delivery delays the growth of colorectal and pancreatic ductal adenocarcinoma liver metastases in mice. Response to IFNα is associated with TAM immune activation, enhanced MHC-II-restricted antigen presentation and reduced exhaustion of CD8+ T cells. Conversely, increased IL-10 signaling, expansion of Eomes CD4+ T cells, a cell type displaying features of type I regulatory T (Tr1) cells, and CTLA-4 expression are associated with resistance to therapy. Targeting regulatory T cell functions by combinatorial CTLA-4 immune checkpoint blockade and IFNα LV delivery expands tumor-reactive T cells, attaining complete response in most mice. These findings support a promising therapeutic strategy with feasible translation to patients with unmet medical need.
Collapse
Affiliation(s)
- Thomas Kerzel
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Giovanna Giacca
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Stefano Beretta
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Bioinformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Bresesti
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Marco Notaro
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Giulia Maria Scotti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Balestrieri
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Tamara Canu
- Preclinical Imaging Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Miriam Redegalli
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Pedica
- Vita Salute San Raffaele University, 20132 Milan, Italy; Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Genua
- Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Renato Ostuni
- Vita Salute San Raffaele University, 20132 Milan, Italy; Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Anna Kajaste-Rudnitski
- Retrovirus-Host Interactions and Innate Immunity to Gene Transfer, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Giovanni Tonon
- Vita Salute San Raffaele University, 20132 Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- Bioinformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; National Research Council, Institute for Biomedical Technologies, 20054 Segrate, Italy
| | - Luca Aldrighetti
- Vita Salute San Raffaele University, 20132 Milan, Italy; Hepatobiliary Surgery Division, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paolo Dellabona
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Nadia Coltella
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Doglioni
- Vita Salute San Raffaele University, 20132 Milan, Italy; Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paola M V Rancoita
- CUSSB University Center for Statistics in the Biomedical Science, Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Francesca Sanvito
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luigi Naldini
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy.
| | - Mario Leonardo Squadrito
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
15
|
Mei J, Cai Y, Chen L, Wu Y, Liu J, Qian Z, Jiang Y, Zhang P, Xia T, Pan X, Zhang Y. The heterogeneity of tumour immune microenvironment revealing the CRABP2/CD69 signature discriminates distinct clinical outcomes in breast cancer. Br J Cancer 2023; 129:1645-1657. [PMID: 37715025 PMCID: PMC10646008 DOI: 10.1038/s41416-023-02432-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND It has been acknowledged that the tumour immune microenvironment (TIME) plays a critical role in determining therapeutic responses and clinical outcomes in breast cancer (BrCa). Thus, the identification of the TIME features is essential for guiding therapy and prognostic assessment for BrCa. METHODS The heterogeneous cellular composition of the TIME in BrCa by single-cell RNA sequencing (scRNA-seq). Two subtype-special genes upregulated in the tumour-rich subtype and the immune-infiltrating subtype were extracted, respectively. The CRABP2/CD69 signature was established based on CRABP2 and CD69 expression, and its predictive values for the clinical outcome and the neoadjuvant chemotherapy (NAT) responses were validated in multiple cohorts. Moreover, the oncogenic role of CRABP2 was explored in BrCa cells. RESULTS Based on the heterogeneous cellular composition of the TIME in BrCa, the BrCa samples could be divided into the tumour-rich subtype and the immune-infiltrating subtype, which exhibited distinct prognosis and chemotherapeutic responses. Next, we extracted CRABP2 as the biomarker for the tumour-rich subtype and CD69 as the biomarker for the immune-infiltrating subtype. Based on the CRABP2/CD69 signature, BrCa samples were re-divided into three subtypes, and the CRABP2highCD69low subtype exhibited the worst prognosis and the lowest chemotherapeutic response, while the CRABP2lowCD69high subtype showed the opposite results. Furthermore, CARBP2 functioned as a novel oncogene in BrCa, which promoted tumour cell proliferation, migration, and invasion, and CRABP2 inhibition triggered the activation of cytotoxic T lymphocytes (CTLs). CONCLUSION The CRABP2/CD69 signature is significantly associated with the TIME features and could effectively predict the clinical outcome. Also, CRABP2 is determined to be a novel oncogene, which could be a therapeutic target in BrCa.
Collapse
Affiliation(s)
- Jie Mei
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China
- The First Clinical Medical College, Nanjing Medical University, 211166, Nanjing, China
| | - Yun Cai
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China
| | - Youqing Wu
- School of Artificial Intelligence and Computer Science, Jiangnan University, 214122, Wuxi, China
| | - Jiayu Liu
- Department of Oncology, The Women's Hospital of Jiangnan University, 214023, Wuxi, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China
| | - Ying Jiang
- Department of Oncology, The Women's Hospital of Jiangnan University, 214023, Wuxi, China
| | - Ping Zhang
- Department of Breast Surgery, The Women's Hospital of Jiangnan University, 214023, Wuxi, China
| | - Tiansong Xia
- Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
| | - Xiang Pan
- School of Artificial Intelligence and Computer Science, Jiangnan University, 214122, Wuxi, China.
| | - Yan Zhang
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China.
- Department of Oncology, The Women's Hospital of Jiangnan University, 214023, Wuxi, China.
| |
Collapse
|
16
|
Li Z, Zhang H, Li Q, Feng W, Jia X, Zhou R, Huang Y, Li Y, Hu Z, Hu X, Zhu X, Huang S. GepLiver: an integrative liver expression atlas spanning developmental stages and liver disease phases. Sci Data 2023; 10:376. [PMID: 37301898 PMCID: PMC10257690 DOI: 10.1038/s41597-023-02257-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic liver diseases usually developed through stepwise pathological transitions under the persistent risk factors. The molecular changes during liver transitions are pivotal to improve liver diagnostics and therapeutics yet still remain elusive. Cumulative large-scale liver transcriptomic studies have been revealing molecular landscape of various liver conditions at bulk and single-cell resolution, however, neither single experiment nor databases enabled thorough investigations of transcriptomic dynamics along the progression of liver diseases. Here we establish GepLiver, a longitudinal and multidimensional liver expression atlas integrating expression profiles of 2469 human bulk tissues, 492 mouse samples, 409,775 single cells from 347 human samples and 27 liver cell lines spanning 16 liver phenotypes with uniformed processing and annotating methods. Using GepLiver, we have demonstrated dynamic changes of gene expression, cell abundance and crosstalk harboring meaningful biological associations. GepLiver can be applied to explore the evolving expression patterns and transcriptomic features for genes and cell types respectively among liver phenotypes, assisting the investigation of liver transcriptomic dynamics and informing biomarkers and targets for liver diseases.
Collapse
Affiliation(s)
- Ziteng Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hena Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiya Jia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Runye Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shenglin Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Du J, Lv X, Zhang Z, Huang Z, Zhang E. Revisiting targeted therapy and immunotherapy for advanced cholangiocarcinoma. Front Immunol 2023; 14:1142690. [PMID: 36936931 PMCID: PMC10014562 DOI: 10.3389/fimmu.2023.1142690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare and aggressive type of malignant tumor. In the past few years, there has been an increase in the incidence of CCA. Surgery is the only effective treatment but is only suitable for a small percentage of patients. Comprehensive treatment is the normal therapy for terminal CCA patients, depending basically on gemcitabine and cisplatin combination chemotherapy. In the past decade, the emergence of next-generation sequencing technology can be used for the identification of important molecular features of CCA, and several studies have demonstrated that different CCA subtypes have unique genetic aberrations. Targeting fibroblast growth factor receptor (FGFR), isocitrate dehydrogenase (IDH) and epidermal growth factor receptor 2 (EGFR2) are emerging targeted therapies. In addition, researches have indicated that immunotherapy has a key function in CCA. There is ongoing research on programmed cell death protein 1 inhibitors (PD-1), chimeric antigen receptor T cells (CAR-T) and tumor-infiltrating leukocyte (TILs). Researches have shown that targeted therapy, immunotherapy, and conventional chemotherapy in CCA had certain mechanistic links, and the combination of those can greatly improve the prognosis of advanced CCA patients. This study aimed to review the research progress of targeted therapy and immunotherapy for CCA.
Collapse
Affiliation(s)
| | | | | | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
18
|
Li J, Yang C, Zheng Y. Identification of a tissue resident memory CD8 T cell-related risk score signature for colorectal cancer, the association with TME landscapes and therapeutic responses. Front Genet 2023; 13:1088230. [PMID: 36685946 PMCID: PMC9845416 DOI: 10.3389/fgene.2022.1088230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Backgrounds: The tissue resident memory CD8 T cell (Trm) constitutes an important component of the local immunity. In the context of malignant tumors, mounting evidence also supports the potential anti-tumor property of this cell subset. Therefore, identification of Trm marker genes and exploration of the causative effect of Trm in shaping tumor microenvironment (TME) heterogeneity might provide novel insights for the comprehensive management of cancer patients. Methods: By dissecting a single T cell transcriptome dataset, we acquired marker genes for Trm, which were latter applied to bulk RNA sequencing profiles of two large colorectal cancer (CRC) patient cohorts downloaded from TCGA and GEO databases. First, colorectal cancer patients were divided into different Trm clusters using consensus clustering algorithm. Then, we established a Trm-related gene (TRMRG) risk score signature and tested its efficacy in predicting prognosis for colorectal cancer patients. Moreover, a sequence of rigorous and robust analyses were also carried out to investigate the potential role of Trm-related gene risk score in tumor microenvironment remodeling and therapeutic utility of it in colorectal cancer treatment. Results: A total of 49 Trm marker genes were identified by analyzing single cell RNA sequencing profiles. First, colorectal cancer patients were successfully classified into two Trm clusters with significant heterogeneity in functional enrichment patterns and tumor microenvironment landscapes. Then, we developed a Trm-related gene risk score signature and divided patients into different risk levels. High risk patients were characterized by attenuated immunogenicity, weakened sensitivity to immunotherapy, as well as adverse clinical outcomes. While low risk patients with advantages in survival exhibited increased immunogenicity, stronger metabolic activity and improved immunotherapeutic responses. Conclusion: Through combinatorial analysis of single cell and bulk RNA sequencing data, the present study identified Trm to play a non-negligible role in regulating the complexity and heterogeneity of tumor microenvironment for colorectal cancer. Moreover, the Trm-related gene risk score signature developed currently was corroborated to be tightly correlated with prognosis and therapeutic responses of colorectal cancer patients, thus exhibiting potential application value for clinical practice.
Collapse
|
19
|
Huang B, Lyu Z, Qian Q, Chen Y, Zhang J, Li B, Li Y, Liang J, Liu Q, Li Y, Chen R, Lian M, Xiao X, Miao Q, Wang Q, Fang J, Lian Z, Li Y, Tang R, Helleday T, Gershwin ME, You Z, Ma X. NUDT1 promotes the accumulation and longevity of CD103 + T RM cells in primary biliary cholangitis. J Hepatol 2022; 77:1311-1324. [PMID: 35753523 DOI: 10.1016/j.jhep.2022.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/21/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Pyruvate dehydrogenase (PDC)-E2 specific CD8+ T cells play a leading role in biliary destruction in PBC. However, there are limited data on the characterization of these autoantigen-specific CD8+ T cells, particularly in the liver. Herein, we aimed to identify pathogenic intrahepatic CD8+ T-cell subpopulations and investigate their immunobiology in PBC. METHODS Phenotypic and functional analysis of intrahepatic T-cell subsets were performed by flow cytometry. CD103+ TRM cell frequency was evaluated by histological staining. The transcriptome and metabolome were analyzed by RNA-seq and liquid chromatography-mass spectrometry, respectively. Cytotoxicity of TRM cells against cholangiocytes was assayed in a 3D organoid co-culture system. Moreover, the longevity (long-term survival) of TRM cells in vivo was studied by 2-octynoic acid-BSA (2OA-BSA) immunization, Nudt1 conditional knock-out and adoptive co-transfer in a murine model. RESULTS Intrahepatic CD103+ TRM (CD69+CD103+CD8+) cells were significantly expanded, hyperactivated, and potentially specifically reactive to PDC-E2 in patients with PBC. CD103+ TRM cell frequencies correlated with clinical and histological indices of PBC and predicted poor ursodeoxycholic acid response. NUDT1 blockade suppressed the cytotoxic effector functions of CD103+ TRM cells upon PDC-E2 re-stimulation. NUDT1 overexpression in CD8+ T cells promoted tissue-residence programming in vitro; inhibition or knockdown of NUDT1 had the opposite effect. Pharmacological blockade or genetic deletion of NUDT1 eliminated CD103+ TRM cells and alleviated cholangitis in mice immunized with 2OA-BSA. Significantly, NUDT1-dependent DNA damage resistance potentiates CD8+ T-cell tissue-residency via the PARP1-TGFβR axis in vitro. Consistently, PARP1 inhibition restored NUDT1-deficient CD103+ TRM cell durable survival and TGFβ-Smad signaling. CONCLUSIONS CD103+ TRM cells are the dominant population of PDC-E2-specific CD8+ T lymphocytes in the livers of patients with PBC. The role of NUDT1 in promoting pathogenic CD103+ TRM cell accumulation and longevity represents a novel therapeutic target in PBC. LAY SUMMARY Primary biliary cholangitis (PBC) is a rare inflammatory condition of the bile ducts. It can be treated with ursodeoxycholic acid, but a large percentage of patients respond poorly to this treatment. Liver-infiltrating memory CD8+ T cells recognizing the PDC-E2 immunodominant epitope are critical in the pathogenesis of PBC. We identifed the key pathogenic CD8+ T cell subset, and worked out the mechanisms of its hyperactivation and longevity, which could be exploited therapeutically.
Collapse
Affiliation(s)
- Bingyuan Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhuwan Lyu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yong Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jubo Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Qiaoyan Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhexiong Lian
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yanmei Li
- Department of Clinical Immunology and Rheumatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden; Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China.
| |
Collapse
|
20
|
Yenyuwadee S, Sanchez-Trincado Lopez JL, Shah R, Rosato PC, Boussiotis VA. The evolving role of tissue-resident memory T cells in infections and cancer. SCIENCE ADVANCES 2022; 8:eabo5871. [PMID: 35977028 PMCID: PMC9385156 DOI: 10.1126/sciadv.abo5871] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/05/2022] [Indexed: 06/12/2023]
Abstract
Resident memory T cells (TRM) form a distinct type of T memory cells that stably resides in tissues. TRM form an integral part of the immune sensing network and have the ability to control local immune homeostasis and participate in immune responses mediated by pathogens, cancer, and possibly autoantigens during autoimmunity. TRM express residence gene signatures, functional properties of both memory and effector cells, and remarkable plasticity. TRM have a well-established role in pathogen immunity, whereas their role in antitumor immune responses and immunotherapy is currently evolving. As TRM form the most abundant T memory cell population in nonlymphoid tissues, they are attractive targets for therapeutic exploitation. Here, we provide a concise review of the development and physiological role of CD8+ TRM, their involvement in diseases, and their potential therapeutic exploitation.
Collapse
Affiliation(s)
- Sasitorn Yenyuwadee
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jose Luis Sanchez-Trincado Lopez
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Laboratory of Immunomedicine, School of Medicine, Complutense University of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cornell University, Ithaca, NY 14850 , USA
| | - Pamela C Rosato
- The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
21
|
Faccani C, Rotta G, Clemente F, Fedeli M, Abbati D, Manfredi F, Potenza A, Anselmo A, Pedica F, Fiorentini G, Villa C, Protti MP, Doglioni C, Aldrighetti L, Bonini C, Casorati G, Dellabona P, de Lalla C. Workflow for high-dimensional flow cytometry analysis of T cells from tumor metastases. Life Sci Alliance 2022; 5:5/10/e202101316. [PMID: 35724271 PMCID: PMC9166301 DOI: 10.26508/lsa.202101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
We describe a multi-step high-dimensional (HD) flow cytometry workflow for the deep phenotypic characterization of T cells infiltrating metastatic tumor lesions in the liver, particularly derived from colorectal cancer (CRC-LM). First, we applied a novel flow cytometer setting approach based on single positive cells rather than fluorescent beads, resulting in optimal sensitivity when compared with previously published protocols. Second, we set up a 26-color based antibody panel designed to assess the functional state of both conventional T-cell subsets and unconventional invariant natural killer T, mucosal associated invariant T, and gamma delta T (γδT)-cell populations, which are abundant in the liver. Third, the dissociation of the CRC-LM samples was accurately tuned to preserve both the viability and antigenic integrity of the stained cells. This combined procedure permitted the optimal capturing of the phenotypic complexity of T cells infiltrating CRC-LM. Hence, this study provides a robust tool for high-dimensional flow cytometry analysis of complex T-cell populations, which could be adapted to characterize other relevant pathological tissues.
Collapse
Affiliation(s)
- Cristina Faccani
- Experimental Immunology Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Francesca Clemente
- Tumor Immunology Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Maya Fedeli
- Experimental Immunology Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Achille Anselmo
- Flow Cytometry Resource, Advanced Cytometry Technical Applications Laboratory (FRACTAL) Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pedica
- Department of Experimental Oncology, Pathology Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Guido Fiorentini
- Hepatobiliary Surgery, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Villa
- Flow Cytometry Resource, Advanced Cytometry Technical Applications Laboratory (FRACTAL) Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Maria P Protti
- Tumor Immunology Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Department of Experimental Oncology, Pathology Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Luca Aldrighetti
- Hepatobiliary Surgery, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Claudia de Lalla
- Experimental Immunology Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Liu D, Heij LR, Czigany Z, Dahl E, Lang SA, Ulmer TF, Luedde T, Neumann UP, Bednarsch J. The role of tumor-infiltrating lymphocytes in cholangiocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:127. [PMID: 35392957 PMCID: PMC8988317 DOI: 10.1186/s13046-022-02340-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022]
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer and associated with a dismal prognosis due to the lack of an efficient systemic therapy. In contrast to other cancers, new immunotherapies have demonstrated unsatisfactory results in clinical trials, underlining the importance of a deeper understanding of the special tumor microenvironment of CCA and the role of immune cells interacting with the tumor. Tumor-infiltrating lymphocytes (TILs) are an important component of the adaptive immune system and the foundation of current immunotherapy. Therefore, the aim of this systemic review is to summarize the current literature focusing on the proportions and distribution, molecular pathogenesis, prognostic significance of TILs and their role in immunotherapy for CCA patients. In CCA, CD8+ and CD4+ T lymphocytes represent the majority of TILs and are mostly sequestered around the cancer cells. CD20+ B lymphocytes and Natural Killer (NK) cells are less frequent. In contrast, Foxp3+ cells (regulatory T cells, Tregs) are observed to infiltrate into the tumor. In the immune microenvironment of CCA, cancer cells and stromal cells such as TAMs, TANs, MSDCs and CAFs inhibit the immune protection function of TILs by secreting factors like IL-10 and TGF-β. With respect to molecular pathogenesis, the Wnt/-catenin, TGF-signaling routes, aPKC-i/P-Sp1/Snail Signaling, B7-H1/PD-1Pathway and Fas/FasL signaling pathways are connected to the malignant potential and contributed to tumor immune evasion by increasing TIL apoptosis. Distinct subtypes of TILs show different prognostic implications for the long-term outcome in CCA. Although there are occasionally conflicting results, CD8+ and CD4+ T cells, and CD20+ B cells are positively correlated with the oncological prognosis of CCA, while a high number of Tregs is very likely associated with worse overall survival. TILs also play a major role in immunotherapy for CCA. In summary, the presence of TILs may represent an important marker for the prognosis and a potential target for novel therapy, but more clinical and translational data is needed to fully unravel the importance of TILs in the treatment of CCA.
Collapse
Affiliation(s)
- Dong Liu
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Lara Rosaline Heij
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.,Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Zoltan Czigany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sven Arke Lang
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Tom Florian Ulmer
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Ulf Peter Neumann
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany. .,Department of Surgery, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands.
| | - Jan Bednarsch
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
23
|
Wei W, Ding Y, He J, Wu J. Association of CD103+ T cell infiltration with overall survival in solid tumors of the digestive duct and its potential in anti-PD-1 treatment: A review and meta-analysis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2022; 166:127-135. [PMID: 35352706 DOI: 10.5507/bp.2022.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
We looked into the most recent studies of digestive tumor patients and performed a meta-analysis to explore the association of CD103+ T cell infiltration with overall survival (OS) in solid tumors of the digestive duct. Major databases were searched. The hazard ratios (HR) and 95% confidence intervals (CI) for overall survival were extracted and pooled. A total of 1915 patients from 11 cohorts were included into the present meta-analysis. The pooled HR was 0.64 (95% CI: 0.42-0.96, P=0.03), suggesting that high CD103+ T cell infiltration is associated with better prognosis. Yet significant heterogeneity was revealed and located in the subgroup of CD4+CD103+ T cells. The pooled result indicated that CD103+ T cell infiltration in solid tumors of the digestive duct may possess predictive value for prognosis. Preclinical studies suggested that CD103+ T cell infiltration could predict response to anti-PD-1/PD-L1 treatment.
Collapse
Affiliation(s)
- Wei Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yun Ding
- Department of Radiotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiajia He
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
24
|
CD39 Regulation and Functions in T Cells. Int J Mol Sci 2021; 22:ijms22158068. [PMID: 34360833 PMCID: PMC8348030 DOI: 10.3390/ijms22158068] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
CD39 is an enzyme which is responsible, together with CD73, for a cascade converting adenosine triphosphate into adenosine diphosphate and cyclic adenosine monophosphate, ultimately leading to the release of an immunosuppressive form of adenosine in the tumor microenvironment. Here, we first review the environmental and genetic factors shaping CD39 expression. Second, we report CD39 functions in the T cell compartment, highlighting its role in regulatory T cells, conventional CD4+ T cells and CD8+ T cells. Finally, we compile a list of studies, from preclinical models to clinical trials, which have made essential contributions to the discovery of novel combinatorial approaches in the treatment of cancer.
Collapse
|