1
|
Wishahi M, Hassan S, Kamal N, Badawy M, Hafiz E. Is bladder outlet obstruction rat model to induce overactive bladder (OAB) has similarity to human OAB? Research on the events in smooth muscle, collagen, interstitial cell and telocyte distribution. BMC Res Notes 2024; 17:22. [PMID: 38212840 PMCID: PMC10785408 DOI: 10.1186/s13104-023-06681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Cellular and cytoskeletal events of overactive bladder (OAB) have not been sufficiently explored in human bladder due to different limitations. Bladder outlet obstruction (BOO) had been induced in different animal models with different methods to induce (OAB). Similarity of the animal models of BOO to the human OAB is postulated but has not been confirmed. The interstitial cells of Cajal (ICCs), and telocytes (TCs) are an important players in smooth muscles conductivity, they had not been well investigated in the previous BOO models. Objectives are to investigate the morphological pattern of cellular, cytoskeleton and telocytes distribution in BOO rat model and to match the events in two time periods and compare it to the findings in real-world human OAB. METHODS Female Sprague-Dawley rats (Rattus norvegicus) were randomly divided into: sham (n = 10), BOO 6 W (n = 10), BOO 8 W (n = 10). Operative procedure to Induce BOO was done under anesthesia with intraperitoneal Ketamine administration. The Effect of induction of BOO was evaluated after 6 and 8 weeks. The rats were anesthetized, and the urinary bladder was removed, while the rat was unconscious under anaesthesia it was transferred to the inhalation anaesthesia cage for euthanasia, rats were sacrificed under light anesthesia using isoflurane. Care of animals, surgical procedure, and euthanasia adhered to Guide for the Care and Use of Laboratory Animals, and AVMA Guidelines for the Euthanasia of Animals. The retrieved bladder was processed for examination with histopathology, immunohistochemistry (IHC), and transmission electron microscopy (EM). RESULTS Histological examination of the bladder shows thinner urothelium, condensation of collagen between muscle bundles. IHC with c-kit shows the excess distribution of ICCs between smooth muscle bundles. EM shows frequent distribution of TCs that were situated between collagen fibers. Finings in BOO 6 W group and BOO 8 W group were comparable. CONCLUSION The animal model study demonstrated increased collagen/ smooth muscle ratio, high intensity of ICCs and presence of TCs. Findings show that a minimally invasive procedure to induce BOO in rats had resulted in an OAB that has morphological changes that were stable in 6 & 8 weeks. We demonstrated the distribution of TCs and ICCs in the rat animal model and defined them. The population of TCs in the BOO rat model is described for the first time, suggests that the TCs and ICCs may contribute to the pathophysiology of OAB. Similarity of animal model to human events OAB was demonstrated. These findings warrant further study to define the role of TCs in OAB. CLINICAL TRIAL REGISTRY The study does not require a clinical trial registration; it is an experimental animal study in basic science and does not include human subjects.
Collapse
Affiliation(s)
- Mohamed Wishahi
- Department of Urology, Theodor Bilharz Research Institute, P.O. 30, Warrak El-Hadar, Cairo, Imbaba, Giza, 12411, Egypt.
| | - Sarah Hassan
- Department of Pathology and Electron microscopy, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Nabawya Kamal
- Department of Anesthesia, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Mohamed Badawy
- Department of Urology, Theodor Bilharz Research Institute, P.O. 30, Warrak El-Hadar, Cairo, Imbaba, Giza, 12411, Egypt
| | - Ehab Hafiz
- Department of Pathology and Electron microscopy, Theodor Bilharz Research Institute, Cairo, Egypt
| |
Collapse
|
2
|
Frara N, Giaddui D, Braverman AS, Jawawdeh K, Wu C, Ruggieri, Sr MR, Barbe MF. Mechanisms involved in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox)-derived reactive oxygen species (ROS) modulation of muscle function in human and dog bladders. PLoS One 2023; 18:e0287212. [PMID: 37352265 PMCID: PMC10289437 DOI: 10.1371/journal.pone.0287212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023] Open
Abstract
Roles of redox signaling in bladder function is still under investigation. We explored the physiological role of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) in regulating bladder function in humans and dogs. Mucosa-denuded bladder smooth muscle strips obtained from 7 human organ donors and 4 normal dogs were mounted in muscle baths, and trains of electrical field stimulation (EFS) applied for 20 minutes at 90-second intervals. Subsets of strips were incubated with hydrogen peroxide (H2O2), angiotensin II (Ang II; Nox activator), apocynin (inhibitor of Noxs and ROS scavenger), or ZD7155 (specific inhibitor of angiotensin type 1 (AT1) receptor) for 20 minutes in continued EFS trains. Subsets treated with inhibitors were then treated with H2O2 or Ang II. In human and dog bladders, the ROS, H2O2 (100μM), caused contractions and enhanced EFS-induced contractions. Apocynin (100μM) attenuated EFS-induced strip contractions in both species; subsequent treatment with H2O2 restored strip activity. In human bladders, Ang II (1μM) did not enhance EFS-induced contractions yet caused direct strip contractions. In dog bladders, Ang II enhanced both EFS-induced and direct contractions. Ang II also partially restored EFS-induced contractions attenuated by prior apocynin treatment. In both species, treatment with ZD7155 (10μM) inhibited EFS-induced activity; subsequent treatment with Ang II did not restore strip activity. Collectively, these data provide evidence that ROS can modulate bladder function without exogenous stimuli. Since inflammation is associated with oxidative damage, the effects of Ang II on bladder smooth muscle function may have pathologic implications.
Collapse
Affiliation(s)
- Nagat Frara
- Center for Translational Medicine at the Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Dania Giaddui
- Center for Translational Medicine at the Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Alan S. Braverman
- Center for Translational Medicine at the Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Kais Jawawdeh
- Center for Translational Medicine at the Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Michael R. Ruggieri, Sr
- Center for Translational Medicine at the Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Mary F. Barbe
- Center for Translational Medicine at the Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Iguchi N, Dönmez Mİ, Malykhina AP, Wilcox DT. Anti-fibrotic effect of tocotrienols for bladder dysfunction due to partial bladder outlet obstruction. Investig Clin Urol 2023; 64:189-196. [PMID: 36882179 PMCID: PMC9995959 DOI: 10.4111/icu.20220328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 02/16/2023] Open
Abstract
PURPOSE To investigate potential beneficial effects of tocotrienols which have been suggested to inhibit hypoxia-inducible factor (HIF) pathway, on partial bladder outlet obstruction (PBOO)-induced bladder pathology. MATERIALS AND METHODS PBOO was surgically created in juvenile male mice. Sham-operated mice were used as controls. Animals received daily oral administration of either tocotrienols (T3) or soybean oil (SBO, vehicle) from day 0 to 13 post-surgery. Bladder function was examined in vivo by void spot assay. At 2 weeks post-surgery, the bladders were subjected to physiological evaluation of detrusor contractility in vitro using bladder strips, histology by H&E staining and collagen imaging, and gene expression analyses by quantitative PCR. RESULTS A significant increase in the number of small voids was observed after 1 week of PBOO compared to the control groups. At 2 weeks post-surgery, PBOO+SBO mice showed a further increase in the number of small voids, which was not observed in PBOO+T3 group. PBOO-induced decrease in detrusor contractility was similar between two treatments. PBOO induced bladder hypertrophy to the same degree in both SBO and T3 treatment groups, however, fibrosis in the bladder was significantly less prominent in the T3 group than the SBO group following PBOO (1.8- vs. 3.0-fold increase in collagen content compared to the control). Enhanced levels of HIF target genes in the bladders were observed in PBOO+SBO group, but not in PBOO+T3 group compared to the control. CONCLUSIONS Oral tocotrienol treatment reduced the progression of urinary frequency and bladder fibrosis by suppressing HIF pathways triggered by PBOO.
Collapse
Affiliation(s)
- Nao Iguchi
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - M İrfan Dönmez
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, USA.,Division of Pediatric Urology, Department of Urology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Duncan T Wilcox
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, USA.,Department of Pediatric Urology, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
4
|
Yilmaz-Oral D, Kaya-Sezginer E, Asker H, Gur S. Co-administration of sodium hydrosulfide and tadalafil modulates hypoxia and oxidative stress on bladder dysfunction in a rat model of bladder outlet obstruction. INTERNATIONAL BRAZ J UROL 2022; 48:971-980. [DOI: 10.1590/s1677-5538.ibju.2022.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022]
Affiliation(s)
| | | | - Heba Asker
- Ankara University, Turkey; Lokman Hekim University, Turkey
| | | |
Collapse
|
5
|
Oxidative Stress Biomarkers in Age-Related Lower Urinary Tract Disorders: A Systematic Review. Int Neurourol J 2022; 26:3-19. [PMID: 35368181 PMCID: PMC8984698 DOI: 10.5213/inj.2142188.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To conduct a systematic review of preclinical and clinical peer-reviewed evidence linking alterations in oxidative stress biomarkers or outcome measures that were also prevalent in specific age-related lower urinary tract (LUT) disorders. METHODS PubMed, Scopus, CINAHL, and Embase were searched for peer-reviewed studies published between January 2000 and March 2021. Animal and human studies that reported on the impact of oxidative stress in age-related LUT disorders through structural or functional changes in the LUT and changes in biomarkers were included. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol was followed. RESULTS Of 882 articles identified, 21 studies (13 animal; 8 human) met inclusion criteria. Across LUT disorders, common structural changes were increased bladder and prostate weights, ischemic damage, nerve damage and detrusor muscle hypertrophy; common functional changes included decreased bladder contraction, increased bladder sensation and excitability, decreased perfusion, and increased inflammation. The disorders were associated with increased levels of biomarkers of oxidative stress that provided evidence of either molecular damage, protective mechanisms against oxidative stress, neural changes, or inflammation. In all cases, the effect on biomarkers and enzymes was greater in aged groups compared to younger groups. CONCLUSION Increased oxidative stress, often associated with mitochondrial dysfunction, plays a significant role in the pathogenesis of age-related LUT disorders and may explain their increasing prevalence. This systematic review identifies potential markers of disease progression and treatment opportunities; further research is warranted to evaluate these markers and the mechanisms by which these changes may lead to age-related LUT disorders.
Collapse
|
6
|
Alcantara-Zapata DE, Llanos AJ, Nazzal C. High altitude exposure affects male reproductive parameters: Could it also affect the prostate?†. Biol Reprod 2021; 106:385-396. [PMID: 34725677 DOI: 10.1093/biolre/ioab205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
Living at high altitudes and living with prostatic illness are two different conditions closely related to a hypoxic environment. People at high altitudes exposed to acute, chronic, or intermittent hypobaric hypoxia turn on several mechanisms at the system, cellular and molecular level to cope with oxygen atmosphere scarcity maintaining the oxygen homeostasis. This exposure affects the whole organism and function of many systems, such as cardiovascular, respiratory, and reproductive. On the other hand, malignant prostate is related to the scarcity of oxygen in the tissue microenvironment due to its low availability and high consumption due to the swift cell proliferation rates. Based on the literature, this similarity in the oxygen scarcity suggests that hypobaric hypoxia, and other common factors between these two conditions, could be involved in the aggravation of the pathological prostatic status. However, there is still a lack of evidence in the association of this disease in males at high altitudes. This review aims to examine the possible mechanisms that hypobaric hypoxia might negatively add to the pathological prostate function in males who live and work at high altitudes. More profound investigations of hypobaric hypoxia's direct action on the prostate could help understand this exposure's effect and prevent worse prostate illness impact in males at high altitudes.
Collapse
Affiliation(s)
| | - Aníbal J Llanos
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro Internacional de Estudios Andinos (INCAS), Universidad de Chile, Santiago, Chile
| | - Carolina Nazzal
- Department of Epidemiology. School of Public Health. Faculty of Medicine. University of Chile
| |
Collapse
|
7
|
Wu YH, Chueh KS, Chuang SM, Long CY, Lu JH, Juan YS. Bladder Hyperactivity Induced by Oxidative Stress and Bladder Ischemia: A Review of Treatment Strategies with Antioxidants. Int J Mol Sci 2021; 22:ijms22116014. [PMID: 34199527 PMCID: PMC8199707 DOI: 10.3390/ijms22116014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Overactive bladder (OAB) syndrome, including frequency, urgency, nocturia and urgency incontinence, has a significantly negative impact on the quality-of-life scale (QoL) and can cause sufferer withdrawal from social activities. The occurrence of OAB can result from an imbalance between the production of pro-oxidants, such as free radicals and reactive species, and their elimination through protective mechanisms of antioxidant-induced oxidative stress. Several animal models, such as bladder ischemia/reperfusion (I/R), partial bladder outlet obstruction (PBOO) and ovarian hormone deficiency (OHD), have suggested that cyclic I/R during the micturition cycle induces oxidative stress, leading to bladder denervation, bladder afferent pathway sensitization and overexpression of bladder-damaging molecules, and finally resulting in bladder hyperactivity. Based on the results of previous animal experiments, the present review specifically focuses on four issues: (1) oxidative stress and antioxidant defense system; (2) oxidative stress in OAB and biomarkers of OAB; (3) OAB animal model; (4) potential nature/plant antioxidant treatment strategies for urinary dysfunction with OAB. Moreover, we organized the relationships between urinary dysfunction and oxidative stress biomarkers in urine, blood and bladder tissue. Reviewed information also revealed the summary of research findings for the effects of various antioxidants for treatment strategies for OAB.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-H.W.); (K.-S.C.)
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 80661, Taiwan
| | - Kuang-Shun Chueh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-H.W.); (K.-S.C.)
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Shu-Mien Chuang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jian-He Lu
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pintung 91201, Taiwan;
| | - Yung-Shun Juan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-H.W.); (K.-S.C.)
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101; Fax: +886-7-3506269
| |
Collapse
|
8
|
Dietary reversal reverts diet-induced alterations in obstructed bladders of Wistar rats. Nutrition 2021; 89:111346. [PMID: 34166895 DOI: 10.1016/j.nut.2021.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/26/2021] [Accepted: 05/09/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the effects of diet reversal to standard chow on diet-induced changes in structure and function of normal and obstructed bladders in male Wistar rats. METHODS Eighty animals were equally divided into sham-surgery and bladder outlet obstruction (BOO) dietary groups and fed standard chow (control), high-carbohydrate, high-fat, and high-protein diets. BOO groups had surgically induced BOO, whereas sham surgery was performed on sham groups at the end of week 8. Animals were continued on the treatment diets for 4 wk after surgery, then the diets were all changed to standard chow for the remainder of the study period. Bladder weight, detrusor contractility, Rho-associated protein kinase (Rho-kinase), and myosin light chain kinase were determined. Polymerase chain reaction was used to assay for transforming growth factor-β, connecting tissue growth factor, hypoxia-inducible factor-1α, and platelet-derived growth factor subunit A levels in the bladder. C-reactive protein, insulin-like growth factor-1, nerve growth factor, and C-X-C motif chemokine ligand 12 concentrations were determined by enzyme-linked immunosorbent assay. The collagen content of the bladder was estimated by liquid chromatography/mass spectrometry. RESULTS Reversal of diet to standard chow resulted in reversal of diet-induced changes in all variables measured in obstructed bladders. High-fat-diet-induced alterations in normal bladders were also reversed. CONCLUSION The results suggested that in obstructed bladders of animals, reversal of the diet could reverse all diet-associated changes that increase inflammation and fibrosis in obstructed bladders. This is especially important in changes related to high consumption of fatty diets and associated lower urinary tract symptoms.
Collapse
|
9
|
Jeng PH, Huang TR, Wang CC, Chen WL. Clinical Relevance of Urine Flow Rate and Exposure to Polycyclic Aromatic Hydrocarbons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105372. [PMID: 34070005 PMCID: PMC8157826 DOI: 10.3390/ijerph18105372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/06/2023]
Abstract
Background: Polycyclic aromatic hydrocarbon (PAH) metabolites have received increasing attention because several of these organic substances are highly carcinogenic or mutagenic. Exposure to PAHs is associated with many harmful health effects; however, we are not aware of any study that has explored the exposure to PAHs and urinary conditions in the general population. The present work aimed to investigate the correlation among PAH and urine flow rate (UFR). Method: Cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) 2009–2012 were used in our study. A total of 4172 participants and a total of nine PAH metabolites were examined. The UFR was measured as the amount of urine excreted in a period of time (mL/h). Several covariates were adjusted in linear regression models. Result: After adjusting for variables, the PAH metabolites in urine showed a significant correlation with UFR. Dose-dependent associations between PAH metabolites in the urine and UFR were also found. Higher quartiles of PAH metabolites in urine exhibited higher regression coefficients. Conclusion: Our study highlighted that PAH metabolites in urine had a strong association with decreased UFR in the US adult population. These findings support the possibility that PAH exposure is related to bladder dysfunction. Further prospective studies are warranted.
Collapse
Affiliation(s)
- Po-Hsuan Jeng
- Department of General Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (P.-H.J.); (T.-R.H.)
- Department of Surgery, Division of Urology, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Tien-Ru Huang
- Department of General Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (P.-H.J.); (T.-R.H.)
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Chung-Ching Wang
- Department of Family and Community Medicine, Division of Family Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Wei-Liang Chen
- Department of Family and Community Medicine, Division of Family Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Family and Community Medicine, Division of Geriatric Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-87923311 (ext. 16567)
| |
Collapse
|
10
|
Expression of Toll-Like Receptors in the Animal Model of Bladder Outlet Obstruction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6632359. [PMID: 33381567 PMCID: PMC7749780 DOI: 10.1155/2020/6632359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/18/2022]
Abstract
Introduction Bladder outlet obstruction (BOO) occurs in more than 20 percent of the adult population and may lead to changes in the structure and function of the bladder. The main objective of the study was to evaluate the expression of Toll-like receptor 4 (TLR 4) and Toll-like receptor 9 (TLR 9) in the animal model of BOO as potential triggers of the inflammation phase in the bladder. In addition, the modulating effect of alpha-1 adrenergic antagonist (tamsulosin) on TLR 4 and TLR 9 expression and inflammatory markers was assessed. Material and Methods. Thirty-two male, 9-week-old Sprague Dawley rats were randomly divided into 4 groups: SOP—sham-operated rats with a placebo (water); SOB—sham-operated rats with an alpha-1 adrenergic antagonist; BOOP—rats with BOO and a placebo; and BOOB—rats with BOO and an alpha-1 adrenergic antagonist. The rats were given a placebo or alpha-1 adrenergic antagonist for 15 days. Next, urine and the bladder were collected from the rats for histopathological and biochemical study. Results Histopathological analysis showed chronic inflammation without acute inflammation in the bladder. TLR 4 showed positive cytoplasmic reactivity in the urothelium and the smooth muscles of the bladder. TLR 9 showed positive cytoplasmic reactivity only in the urothelium. BOO caused an increase in TLR 4 and TLR 9 expression. Furthermore, treatment with an alpha-1 adrenergic antagonist had no significant effect on TLR 4 and TLR 9 expression in rats with BOO. BOO caused a significant increase in urine concentration of interleukin 6 (IL-6), while alpha-1 antagonist reduced the urine concentration of IL-6 and the concentration of interleukin 18 (IL-18). Conclusions The results suggest the participation of TLR 4 and TLR 9 receptors in the induction of inflammation in the bladder, which is the first phase in the development of pathophysiological changes in BOO.
Collapse
|
11
|
Modulation of Reactive Oxygen Species in Health and Disease. Antioxidants (Basel) 2019; 8:antiox8110513. [PMID: 31717825 PMCID: PMC6912431 DOI: 10.3390/antiox8110513] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
|
12
|
Matsuo T, Miyata Y, Araki K, Mukae Y, Otsubo A, Ohba K, Sakai H. Efficacy of Tadalafil Therapy and Changes in Oxidative Stress Levels in Male Patients with Lower Urinary Tract Symptoms and Overactive Bladder. Low Urin Tract Symptoms 2019; 12:47-53. [PMID: 31407871 PMCID: PMC7004155 DOI: 10.1111/luts.12283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/30/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Objective To evaluate the effects of tadalafil monotherapy on lower urinary tract symptoms, urodynamic parameters, and oxidative stress levels in male patients. Methods This prospective study included 53 male patients with urinary symptoms, who met the criteria for overactive bladder (OAB) (≥ 2 points for Q3 [urgency] in the OAB symptom score [OABSS] assessment and ≥ 3 points for the total score). The patients received 5 mg tadalafil orally once daily, and their symptoms were assessed before and after the 12‐week treatment. The OABSS and international prostate symptom score (IPSS) were used to evaluate the subjective symptoms. The objective findings were assessed using uroflowmetry. Oxidative stress was assessed by determining urinary levels of 8‐hydroxy‐2′‐deoxyguanosine (8‐OHdG) levels with an adjustment for urinary creatinine (CR) concentration. Results After tadalafil administration, total and individual indices of the OABSS assessment showed significant improvement. In addition, total storage and voiding symptoms that contributed to the IPSS were also significantly improved. The voided volume was increased, and the maximum flow rate was improved after tadalafil treatment (P = .002 and < 0.001, respectively). Urinary 8‐OHdG/CR decreased from 12.4 ± 9.7 ng/mg CR to 7.6 ± 11.6 ng/mg CR (P < .001). In patients who showed OAB improvement and did not meet the criteria for OAB after the treatment (44 patients, 83.0%), the urinary 8‐OHdG/CR level was significantly decreased from 11.6 ± 8.4 ng/mg CR to 6.4 ± 10.3 ng/mg CR (P < .001). Conclusions Tadalafil treatment improves OAB symptoms and urodynamic parameters by decreasing oxidative stress level.
Collapse
Affiliation(s)
- Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kyohei Araki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuta Mukae
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Asato Otsubo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
13
|
Miyata Y, Matsuo T, Mitsunari K, Asai A, Ohba K, Sakai H. A Review of Oxidative Stress and Urinary Dysfunction Caused by Bladder Outlet Obstruction and Treatments Using Antioxidants. Antioxidants (Basel) 2019; 8:antiox8050132. [PMID: 31096597 PMCID: PMC6562423 DOI: 10.3390/antiox8050132] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022] Open
Abstract
Urinary dysfunction is a common pathological condition that can significantly decrease the quality of life. Bladder outlet obstruction (BOO) is a major cause of urinary dysfunction, and various lower urinary tract diseases including benign prostatic hyperplasia and urethral stricture disease cause BOO. According to the results of a variety of animal experiments on partial BOO (PBOO), there is a general agreement that ischemic conditions and repeated ischemia/reperfusion of the bladder are closely associated with BOO-induced bladder damage, and that increased oxidative stress by ischemia/reperfusion plays a crucial role in the pathological mechanisms underlying urinary dysfunction. Changes in biomarkers of oxidative stress in PBOO animal models support this association between oxidative stress and urinary dysfunction. Oxidative stress is defined as an imbalance between the production of pro-oxidants, such as free radicals and reactive species, and their elimination through protective mechanisms of antioxidants. Therefore, organizing the knowledge on the state of oxidative stress, changes in biomarkers, and biological roles of antioxidants in systemic and bladder tissues is essential to understand the detailed pathological characteristics of the urinary dysfunction caused by PBOO. Furthermore, information on drugs and supplements that have antioxidant effects is important for defining treatment strategies for urinary dysfunction with PBOO. In this review, we paid special attention to the following three issues; (1) changes in oxidative stress, including its biomarkers, (2) antioxidant status, and (3) previous reports on treatment strategies involving agents with antioxidative activity for urinary dysfunction caused by BOO. In particular, we provide systematic information on the detailed mechanisms underlying the antioxidative effects of agents used to treat PBOO. In addition, we show present research issues and research limitations, as well as suggest possible future antioxidant treatment strategies for patients with PBOO.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan.
| | - Kensuke Mitsunari
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan.
| | - Akihiro Asai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan.
| |
Collapse
|
14
|
Averbeck MA, de Lima NG, Motta GA, Beltrão L, Abboud NJ, Rigotti CP, Dos Santos WN, Dos Santos SKJ, da Silva LFB, Rhoden EL. Oxidative stress in the bladder of men with LUTS undergoing open prostatectomy: a pilot study. Int Braz J Urol 2019; 44:1182-1193. [PMID: 30325606 PMCID: PMC6442189 DOI: 10.1590/s1677-5538.ibju.2018.0127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/12/2018] [Indexed: 02/08/2023] Open
Abstract
Purpose: This study aims to evaluate the link between preoperative parameters and oxidative stress (OS) markers in the bladder wall of men undergoing open prostatectomy. Materials and Methods: From July 2014 to August 2016, men aged ≥ 50 years and presenting with LUTS were prospectively enrolled. Preoperative assessment included validated questionnaires (IPSS and OAB - V8), lower urinary tract ultrasound and urodynamics. Bladder biopsies were taken during open prostatectomy for determination of OS markers. Increased OS was defined by increased concentration of malondialdehyde (MDA) and / or decreased concentration of antioxidant enzymes (superoxide dismutase and / or catalase). P<0.05 was regarded as statistically significant. Results: Thirty - eight consecutive patients were included. Mean age was 66.36 ± 6.44 years, mean prostate volume was 77.7 ± 20.63 cm3, and mean IPSS was 11.05 ± 8.72 points. MDA concentration was increased in men with severe bladder outlet obstruction (BOO grade V - VI according to the Schaefer's nomogram) in comparison with BOO grade III - IV (p = 0.022). Patients with severe LUTS also had higher MDA concentration when compared to those with mild LUTS (p = 0.031). There was a statistically significant association between increased post - void residual urine (cut off ≥ 50 mL) and not only higher levels of MDA, but also reduced activity of SOD and catalase (p < 0.05). Conclusions: This pilot study showed that severity of LUTS and BOO were associated with increased MDA concentration in the bladder wall of men undergoing open prostatectomy. Further studies are still needed to assess the role of non - invasive biomarkers of OS in predicting bladder dysfunction in men with LUTS.
Collapse
Affiliation(s)
- Marcio Augusto Averbeck
- Departamento Pós-graduação em Ciências da Saúde da Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil.,Serviço de Urologia, Complexo Hospitalar Santa Casa, Porto Alegre, RS, Brasil.,Serviço de Urologia, Hospital Moinhos de Vento, Porto Alegre, RS, Brasil
| | | | - Gabriela Almeida Motta
- Departamento Pós-graduação em Ciências da Saúde da Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| | - Lauro Beltrão
- Serviço de Urologia, Complexo Hospitalar Santa Casa, Porto Alegre, RS, Brasil
| | - Nury Jafar Abboud
- Serviço de Urologia, Complexo Hospitalar Santa Casa, Porto Alegre, RS, Brasil
| | | | | | | | | | - Ernani Luis Rhoden
- Serviço de Urologia, Complexo Hospitalar Santa Casa, Porto Alegre, RS, Brasil.,Serviço de Urologia, Hospital Moinhos de Vento, Porto Alegre, RS, Brasil.,Disciplina de Urologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| |
Collapse
|
15
|
Hughes FM, Sexton SJ, Ledig PD, Yun CE, Jin H, Purves JT. Bladder decompensation and reduction in nerve density in a rat model of chronic bladder outlet obstruction are attenuated with the NLRP3 inhibitor glyburide. Am J Physiol Renal Physiol 2018; 316:F113-F120. [PMID: 30353742 DOI: 10.1152/ajprenal.00400.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bladder outlet obstruction (BOO) leads to progressive voiding dysfunction. Acutely, obstruction triggers inflammation that drives bladder dysfunction. Over time, inflammation leads to decreased bladder nerve density and increased fibrosis, responsible for eventual decompensation and irreversibility. We have previously shown that BOO triggers inflammation, reduced bladder nerve density and increased fibrosis via activation of the NLRP3 inflammasome in an acutely obstructed (12-day) rat model. However, as BOO progresses, the bladder may become decompensated with an increase in postvoid residual volume and decreased voiding efficiency. Currently, we have examined rat bladder function and nerve densities after chronic BOO to determine whether NLRP3 plays a role in the decompensation at this stage. Four groups were examined: control, sham-operated, BOO, or BOO+gly (glyburide; an NLRP3 inhibitor). After 42 days, bladder weight, inflammation (Evans blue), urodynamics, and nerve density were measured. BOO greatly enhanced bladder weights and inflammation, while inflammation was prevented by glyburide. Voiding pressures were increased, and flow rates decreased in BOO and BOO+gly groups, demonstrating physical obstruction. No difference in frequency or voided volume was detected. However, postvoid residual volumes were greatly increased in BOO rats while BOO+gly rats were not different than controls. Moreover, there was a dramatic decrease in voiding efficiency in the chronic BOO rats, which was prevented with glyburide treatment. Finally, a reduction in nerve density was apparent with BOO and attenuated with glyburide. Together the results suggest a critical role for NLRP3 in mediating bladder decompensation and nerve density during chronic BOO.
Collapse
Affiliation(s)
- Francis M Hughes
- Department of Surgery, Division of Urology, Duke University Medical Center , Durham, North Carolina.,Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Stephanie J Sexton
- Department of Surgery, Division of Urology, Duke University Medical Center , Durham, North Carolina
| | - Patrick D Ledig
- Department of Surgery, Division of Urology, Duke University Medical Center , Durham, North Carolina
| | - Chloe E Yun
- Department of Surgery, Division of Urology, Duke University Medical Center , Durham, North Carolina
| | - Huixia Jin
- Department of Surgery, Division of Urology, Duke University Medical Center , Durham, North Carolina
| | - J Todd Purves
- Department of Surgery, Division of Urology, Duke University Medical Center , Durham, North Carolina.,Department of Bioengineering, Clemson University , Clemson, South Carolina.,Department of Pediatrics, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
16
|
Rhodobacter sphaeroides Extract Lycogen™ Attenuates Testosterone-Induced Benign Prostate Hyperplasia in Rats. Int J Mol Sci 2018; 19:ijms19041137. [PMID: 29642620 PMCID: PMC5979474 DOI: 10.3390/ijms19041137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/25/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
Benign prostate hyperplasia (BPH) is one of the most common urological problems in mid-aged to elderly men. Risk factors of BPH include family history, obesity, type 2 diabetes, and high oxidative stress. The main medication classes for BPH management are alpha blockers and 5α-reductase inhibitors. However, these conventional medicines cause adverse effects. Lycogen™, extracted from Rhodobacter sphaeroides WL-APD911, is an anti-oxidant and anti-inflammatory compound. In this study, the effect of Lycogen™ was evaluated in rats with testosterone-induced benign prostate hyperplasia (BPH). Testosterone injections and Lycogen™ administration were carried out for 28 days, and body weights were recorded twice per week. The testosterone injection successfully induced a prostate enlargement. BPH-induced rats treated with different doses of Lycogen™ exhibited a significantly decreased prostate index (PI). Moreover, the Lycogen™ administration recovered the histological abnormalities observed in the prostate of BPH rats. In conclusion, these findings support a dose-dependent preventing effect of Lycogen™ on testosterone-induced BPH in rats and suggest that Lycogen™ may be favorable to the prevention and management of benign prostate hyperplasia.
Collapse
|