1
|
Zhong G, Yi X, Gao S, Zhao S, Mo Y, Tian L, Xu B, Wang F, Liao Y, Li T, Wu L, Wang Y, Chen Y, Xu Y, Zhu S, Yu L, Li J, Peng P, Zhang G. Polycyclic aromatics in the Chang'E 5 lunar soils. Nat Commun 2025; 16:3622. [PMID: 40240785 PMCID: PMC12003783 DOI: 10.1038/s41467-025-58865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Polycyclic aromatics are ubiquitous in the interstellar medium and meteorites, yet the search for lunar polycyclic aromatics remains a significant challenge. Here, we analyze Chang'E-5 lunar soil samples, revealing polycyclic aromatic concentrations of 5.0-9.2 µg/g (average: 7.4 ± 1.4 µg/g). Their aromatic structures are highly condensed, comparable to ~4 nm graphene sheets, and distinct from terrestrial analogs, such as wood char, soot and kerogen. While meteorite impacts are the most likely sources, the stable carbon isotope composition of polycyclic aromatics in Chang'E-5 lunar soil (δ13C: -5.0 ± 0.6‰ to +3.6 ± 1.3‰) is more enriched in 13C compared to that in meteorites. This enrichment suggests a de novo formation mechanism during meteorite impacts, involving the conversion of non-aromatic organic matter-which is more enriched in δ13C-into polycyclic aromatics. This process may play a significant role in carbon accretion in lunar regolith, as the resulting polycyclic aromatics are more stable and resistant to degradation compared to smaller organic molecules (e.g., amino acids), which are largely destroyed during impact events.
Collapse
Affiliation(s)
- Guangcai Zhong
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xin Yi
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shutao Gao
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shizhen Zhao
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yangzhi Mo
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Lele Tian
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Buqing Xu
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Fu Wang
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yuhong Liao
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Tengfei Li
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Liangliang Wu
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yunpeng Wang
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Yue Xu
- Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Sanyuan Zhu
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Linbo Yu
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Li
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Ping'an Peng
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Vollmer C, Kepaptsoglou D, Leitner J, Mosberg AB, El Hajraoui K, King AJ, Bays CL, Schofield PF, Araki T, Ramasse QM. High-spatial resolution functional chemistry of nitrogen compounds in the observed UK meteorite fall Winchcombe. Nat Commun 2024; 15:778. [PMID: 38278803 PMCID: PMC10817942 DOI: 10.1038/s41467-024-45064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Organic matter in extraterrestrial samples is a complex material that might have played an important role in the delivery of prebiotic molecules to the early Earth. We report here on the identification of nitrogen-containing compounds such as amino acids and N-heterocycles within the recent observed meteorite fall Winchcombe by high-spatial resolution spectroscopy techniques. Although nitrogen contents of Winchcombe organic matter are low (N/C ~ 1-3%), we were able to detect the presence of these compounds using a low-noise direct electron detector. These biologically relevant molecules have therefore been tentatively found within a fresh, minimally processed meteorite sample by high spatial resolution techniques conserving the overall petrographic context. Carbon functional chemistry investigations show that sizes of aromatic domains are small and that abundances of carboxylic functional groups are low. Our observations demonstrate that Winchcombe represents an important addition to the collection of carbonaceous chondrites and still preserves pristine extraterrestrial organic matter.
Collapse
Affiliation(s)
| | - Demie Kepaptsoglou
- SuperSTEM Laboratory, Keckwick Lane, Daresbury, UK
- School of Physics, Engineering and Technology, University of York, Heslington, UK
| | - Jan Leitner
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- Max Planck Institute for Chemistry, Particle Chemistry Department, Mainz, Germany
| | | | - Khalil El Hajraoui
- SuperSTEM Laboratory, Keckwick Lane, Daresbury, UK
- School of Physics, Engineering and Technology, University of York, Heslington, UK
| | - Ashley J King
- Planetary Materials Group, Natural History Museum, London, UK
| | - Charlotte L Bays
- Planetary Materials Group, Natural History Museum, London, UK
- Department of Earth Sciences, Royal Holloway, University of London, Egham, UK
| | | | - Tohru Araki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- National Institutes of Natural Sciences, Institute for Molecular Science, UVSOR Synchrotron Facility, Okazaki, Japan
| | - Quentin M Ramasse
- SuperSTEM Laboratory, Keckwick Lane, Daresbury, UK
- School of Chemical and Process Engineering and School of Physics and Astronomy, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Diederich P, Geisberger T, Yan Y, Seitz C, Ruf A, Huber C, Hertkorn N, Schmitt-Kopplin P. Formation, stabilization and fate of acetaldehyde and higher aldehydes in an autonomously changing prebiotic system emerging from acetylene. Commun Chem 2023; 6:38. [PMID: 36813975 PMCID: PMC9947100 DOI: 10.1038/s42004-023-00833-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Many essential building blocks of life, including amino acids, sugars, and nucleosides, require aldehydes for prebiotic synthesis. Pathways for their formation under early earth conditions are therefore of great importance. We investigated the formation of aldehydes by an experimental simulation of primordial early earth conditions, in line with the metal-sulfur world theory in an acetylene-containing atmosphere. We describe a pH-driven, intrinsically autoregulatory environment that concentrates acetaldehyde and other higher molecular weight aldehydes. We demonstrate that acetaldehyde is rapidly formed from acetylene over a nickel sulfide catalyst in an aqueous solution, followed by sequential reactions progressively increasing the molecular diversity and complexity of the reaction mixture. Interestingly, through inherent pH changes, the evolution of this complex matrix leads to auto-stabilization of de novo synthesized aldehydes and alters the subsequent synthesis of relevant biomolecules rather than yielding uncontrolled polymerization products. Our results emphasize the impact of progressively generated compounds on the overall reaction conditions and strengthen the role of acetylene in forming essential building blocks that are fundamental for the emergence of terrestrial life.
Collapse
Affiliation(s)
- Philippe Diederich
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Thomas Geisberger
- grid.6936.a0000000123222966Technical University of Munich Structural Membrane Biochemistry, BNMRZ, Lichtenbergstr 4, 85748 Garching, Germany
| | - Yingfei Yan
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Christian Seitz
- grid.6936.a0000000123222966Technical University of Munich Structural Membrane Biochemistry, BNMRZ, Lichtenbergstr 4, 85748 Garching, Germany
| | - Alexander Ruf
- grid.510544.1Excellence Cluster ORIGINS, Boltzmannstraße 2, 85748 Garching, Germany ,grid.5252.00000 0004 1936 973XFaculty of Physics, LMU Munich, Schellingstraße 4, 80799 Munich, Germany
| | - Claudia Huber
- grid.6936.a0000000123222966Technical University of Munich Structural Membrane Biochemistry, BNMRZ, Lichtenbergstr 4, 85748 Garching, Germany
| | - Norbert Hertkorn
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany. .,Technical University of Munich, Analytische Lebensmittel Chemie; Maximus-von-Forum 2, 85354, Freising, Germany. .,Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Gießebachstraße 1, 85748, Garching bei München, Germany.
| |
Collapse
|
4
|
de Prinse T, Klantsataya E, Tsiminis G, Payten T, Moffatt J, Kee TW, Spooner NA. Multiphoton Phosphorescence of Simple Ketones by Visible-light Excitation and Its Consideration for Active Sensing in Space. J Fluoresc 2022; 32:1051-1057. [PMID: 35298738 PMCID: PMC9095556 DOI: 10.1007/s10895-022-02912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
Abstract
Acetone and butanone were seen to emit blue light around 450 nm when excited in the green by a high intensity pulsed laser. The pathway of this anti-Stokes emission is believed to be multiphoton absorption followed by phosphorescence, with emission being observed in the samples at cryogenic temperatures below their melting point and not seen from either ketone in their cold liquid state. Given the widespread nature of these simple ketones in off-world bodies and their potential importance as an organic resource for Space Resource Utilization, signals which enable the identification and tracing of these materials are of use in applications from remote sensing and mapping to monitoring during extraction processes. While the excitation process has a low efficiency, the ability to use visible light for sensing of these targets has advantages over UV sources, such as the wider availability of high-powered lasers which could be utilized.
Collapse
Affiliation(s)
- Thomas de Prinse
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, Australia.
| | - Elizaveta Klantsataya
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, Australia
| | - Georgios Tsiminis
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, Australia
| | - Thomas Payten
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, Australia
| | - Jillian Moffatt
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, Australia
| | - Tak W Kee
- Department of Chemistry, The University of Adelaide, Adelaide, Australia
| | - Nigel A Spooner
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, Australia
- Defence Science and Technology Group (DSTG), Edinburgh, Australia
| |
Collapse
|
5
|
Kaiser K, Schulz F, Maillard JF, Hermann F, Pozo I, Peña D, Cleaves HJ, Burton AS, Danger G, Afonso C, Sandford S, Gross L. Visualization and identification of single meteoritic organic molecules by atomic force microscopy. METEORITICS & PLANETARY SCIENCE 2022; 57:644-656. [PMID: 35912284 PMCID: PMC9305854 DOI: 10.1111/maps.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/16/2021] [Indexed: 06/15/2023]
Abstract
Using high-resolution atomic force microscopy (AFM) with CO-functionalized tips, we atomically resolved individual molecules from Murchison meteorite samples. We analyzed powdered Murchison meteorite material directly, as well as processed extracts that we prepared to facilitate characterization by AFM. From the untreated Murchison sample, we resolved very few molecules, as the sample contained mostly small molecules that could not be identified by AFM. By contrast, using a procedure based on several trituration and extraction steps with organic solvents, we isolated a fraction enriched in larger organic compounds. The treatment increased the fraction of molecules that could be resolved by AFM, allowing us to identify organic constituents and molecular moieties, such as polycyclic aromatic hydrocarbons and aliphatic chains. The AFM measurements are complemented by high-resolution mass spectrometry analysis of Murchison fractions. We provide a proof of principle that AFM can be used to image and identify individual organic molecules from meteorites and propose a method for extracting and preparing meteorite samples for their investigation by AFM. We discuss the challenges and prospects of this approach to study extraterrestrial samples based on single-molecule identification.
Collapse
Affiliation(s)
| | - Fabian Schulz
- IBM Research—ZurichRüschlikon8003Switzerland
- Present address:
Fritz Haber Institute of the Max Planck SocietyBerlin14195Germany
| | - Julien F. Maillard
- Normandie UnivCOBRAUMR 6014 et FR 3038 Univ RouenINSA RouenCNRS IRCOF1 Rue TesnièreMont‐Saint‐Aignan Cedex76821France
| | | | - Iago Pozo
- Departamento de Química OrgánicaCentro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Diego Peña
- Departamento de Química OrgánicaCentro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - H. James Cleaves
- Earth‐Life Science InstituteTokyo Institute of Technology2‑12‑1‑IE‑1 Ookayama, Meguro‑kuTokyo152‑8550Japan
- Blue Marble Space Institute for Science1001 4th Ave, Suite 3201SeattleWashington98154USA
| | - Aaron S. Burton
- Astromaterials Research and Exploration Science DivisionNASA Johnson Space CenterMS XI‐3HoustonTexas77058USA
| | - Gregoire Danger
- Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM)CNRSAix‐Marseille UniversitéMarseilleFrance
- CNRSCNESLAMAix‐Marseille UniversitéMarseilleFrance
- Institut Universitaire de FranceParisFrance
| | - Carlos Afonso
- Normandie UnivCOBRAUMR 6014 et FR 3038 Univ RouenINSA RouenCNRS IRCOF1 Rue TesnièreMont‐Saint‐Aignan Cedex76821France
| | - Scott Sandford
- Space Science DivisionNASA Ames Research CenterMS 245‐6Moffett FieldCalifornia94035USA
| | - Leo Gross
- IBM Research—ZurichRüschlikon8003Switzerland
| |
Collapse
|
6
|
Nano-FTIR spectroscopic identification of prebiotic carbonyl compounds in Dominion Range 08006 carbonaceous chondrite. Sci Rep 2021; 11:11656. [PMID: 34079034 PMCID: PMC8172632 DOI: 10.1038/s41598-021-91200-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
Meteorites contain organic matter that may have contributed to the origin of life on Earth. Carbonyl compounds such as aldehydes and carboxylic acids, which occur in meteorites, may be precursors of biologically necessary organic materials in the solar system. Therefore, such organic matter is of astrobiological importance and their detection and characterization can contribute to the understanding of the early solar system as well as the origin of life. Most organic matter is typically sub-micrometer in size, and organic nanoglobules are even smaller (50–300 nm). Novel analytical techniques with nanoscale spatial resolution are required to detect and characterize organic matter within extraterrestrial materials. Most techniques require powdered samples, consume the material, and lose petrographic context of organics. Here, we report the detection of nanoglobular aldehyde and carboxylic acids in a highly primitive carbonaceous chondrite (DOM 08006) with ~ 20 nm spatial resolution using nano-FTIR spectroscopy. Such organic matter is found within the matrix of DOM 08006 and is typically 50–300 nm in size. We also show petrographic context and nanoscale morphologic/topographic features of the organic matter. Our results indicate that prebiotic carbonyl nanoglobules can form in a less aqueous and relatively elevated temperature-environment (220–230 °C) in a carbonaceous parent body.
Collapse
|
7
|
Furukawa Y, Iwasa Y, Chikaraishi Y. Synthesis of 13C-enriched amino acids with 13C-depleted insoluble organic matter in a formose-type reaction in the early solar system. SCIENCE ADVANCES 2021; 7:7/18/eabd3575. [PMID: 33910902 PMCID: PMC8081361 DOI: 10.1126/sciadv.abd3575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/10/2021] [Indexed: 05/10/2023]
Abstract
Solvent-soluble organic matter (SOM) in meteorites, which includes life's building molecules, is suspected to originate from the cold region of the early solar system, on the basis of 13C enrichment in the molecules. Here, we demonstrate that the isotopic characteristics are reproducible in amino acid synthesis associated with a formose-type reaction in a heated aqueous solution. Both thermochemically driven formose-type reaction and photochemically driven formose-type reaction likely occurred in asteroids and ice-dust grains in the early solar system. Thus, the present results suggest that the formation of 13C-enriched SOM was not specific to the cold outer protosolar disk or the molecular cloud but occurred more widely in the early solar system.
Collapse
Affiliation(s)
- Yoshihiro Furukawa
- Department of Earth Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Yoshinari Iwasa
- Department of Earth Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshito Chikaraishi
- Institute of Low-temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
- Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
8
|
Kleimeier NF, Turner AM, Fortenberry RC, Kaiser RI. On the Formation of the Popcorn Flavorant 2,3-Butanedione (CH 3 COCOCH 3 ) in Acetaldehyde-Containing Interstellar Ices. Chemphyschem 2020; 21:1531-1540. [PMID: 32458552 DOI: 10.1002/cphc.202000116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/25/2020] [Indexed: 11/06/2022]
Abstract
Acetaldehyde (CH3 CHO) is ubiquitous throughout the interstellar medium and has been observed in cold molecular clouds, star forming regions, and in meteorites such as Murchison. As the simplest methyl-bearing aldehyde, acetaldehyde constitutes a critical precursor to prebiotic molecules such as the sugar deoxyribose and amino acids via the Strecker synthesis. In this study, we reveal the first laboratory detection of 2,3-butanedione (diacetyl, CH3 COCOCH3 ) - a butter and popcorn flavorant - synthesized within acetaldehyde-based interstellar analog ices exposed to ionizing radiation at 5 K. Detailed isotopic substitution experiments combined with tunable vacuum ultraviolet (VUV) photoionization of the subliming molecules demonstrate that 2,3-butanedione is formed predominantly via the barrier-less radical-radical reaction of two acetyl radicals (CH3 ĊO). These processes are of fundamental importance for a detailed understanding of how complex organic molecules (COMs) are synthesized in deep space thus constraining the molecular structures and complexity of molecules forming in extraterrestrial ices containing acetaldehyde through a vigorous galactic cosmic ray driven non-equilibrium chemistry.
Collapse
Affiliation(s)
- N Fabian Kleimeier
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa 2545 McCarthy Mall, Honolulu, HI, 96822, USA
| | - Andrew M Turner
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa 2545 McCarthy Mall, Honolulu, HI, 96822, USA
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, 322 Coulter Hall, University, MS, 38677-1848, USA
| | - Ralf I Kaiser
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa 2545 McCarthy Mall, Honolulu, HI, 96822, USA
| |
Collapse
|
9
|
Geisberger T, Diederich P, Steiner T, Eisenreich W, Schmitt-Kopplin P, Huber C. Evolutionary Steps in the Analytics of Primordial Metabolic Evolution. Life (Basel) 2019; 9:E50. [PMID: 31216665 PMCID: PMC6616974 DOI: 10.3390/life9020050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
Experimental studies of primordial metabolic evolution are based on multi-component reactions which typically result in highly complex product mixtures. The detection and structural assignment of these products crucially depends on sensitive and selective analytical procedures. Progress in the instrumentation of these methods steadily lowered the detection limits to concentrations in the pico molar range. At the same time, conceptual improvements in chromatography, nuclear magnetic resonance (NMR) and mass spectrometry dramatically increased the resolution power as well as throughput, now, allowing the simultaneous detection and structural determination of hundreds to thousands of compounds in complex mixtures. In retrospective, the development of these analytical methods occurred stepwise in a kind of evolutionary process that is reminiscent of steps occurring in the evolution of metabolism under chemoautotrophic conditions. This can be nicely exemplified in the analytical procedures used in our own studies that are based on Wächtershäuser's theory for metabolic evolution under Fe/Ni-catalyzed volcanic aqueous conditions. At the onset of these studies, gas chromatography (GC) and GC-MS (mass spectrometry) was optimized to detect specific low molecular weight products (<200 Da) in a targeted approach, e.g., methyl thioacetate, amino acids, hydroxy acids, and closely related molecules. Liquid chromatography mass spectrometry (LC-MS) was utilized for the detection of larger molecules including peptides exceeding a molecular weight of 200 Da. Although being less sensitive than GC-MS or LC-MS, NMR spectroscopy benefitted the structural determination of relevant products, such as intermediates involved in a putative primordial peptide cycle. In future, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) seems to develop as a complementary method to analyze the compositional space of the products and reaction clusters in a non-targeted approach at unprecedented sensitivity and mass resolution (700,000 for m/z 250). Stable isotope labeling was important to differentiate between reaction products and artifacts but also to reveal the mechanisms of product formation. In this review; we summarize some of the developmental steps and key improvements in analytical procedures mainly used in own studies of metabolic evolution.
Collapse
Affiliation(s)
- Thomas Geisberger
- Department of Biochemistry, Technical University of Munich, 80333 Munich, Germany.
| | - Philippe Diederich
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| | - Thomas Steiner
- Department of Biochemistry, Technical University of Munich, 80333 Munich, Germany.
| | - Wolfgang Eisenreich
- Department of Biochemistry, Technical University of Munich, 80333 Munich, Germany.
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| | - Claudia Huber
- Department of Biochemistry, Technical University of Munich, 80333 Munich, Germany.
| |
Collapse
|
10
|
Simkus DN, Aponte JC, Elsila JE, Parker ET, Glavin DP, Dworkin JP. Methodologies for Analyzing Soluble Organic Compounds in Extraterrestrial Samples: Amino Acids, Amines, Monocarboxylic Acids, Aldehydes, and Ketones. Life (Basel) 2019; 9:E47. [PMID: 31174308 PMCID: PMC6617175 DOI: 10.3390/life9020047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/18/2019] [Accepted: 05/27/2019] [Indexed: 11/19/2022] Open
Abstract
Soluble organic compositions of extraterrestrial samples offer valuable insights into the prebiotic organic chemistry of the solar system. This review provides a summary of the techniques commonly used for analyzing amino acids, amines, monocarboxylic acids, aldehydes, and ketones in extraterrestrial samples. Here, we discuss possible effects of various experimental factors (e.g., extraction protocols, derivatization methods, and chromatographic techniques) in order to highlight potential influences on the results obtained from different methodologies. This detailed summary and assessment of current techniques is intended to serve as a basic guide for selecting methodologies for soluble organic analyses and to emphasize some key considerations for future method development.
Collapse
Affiliation(s)
- Danielle N Simkus
- NASA Postdoctoral Program at NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
| | - José C Aponte
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
- Department of Chemistry, Catholic University of America, Washington, D.C. 20064, USA.
| | - Jamie E Elsila
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
| | - Eric T Parker
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
| | - Daniel P Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
| |
Collapse
|
11
|
Aponte JC, Whitaker D, Powner MW, Elsila JE, Dworkin JP. Analyses of Aliphatic Aldehydes and Ketones in Carbonaceous Chondrites. ACS EARTH & SPACE CHEMISTRY 2019; 3:463-472. [PMID: 32617450 PMCID: PMC7330996 DOI: 10.1021/acsearthspacechem.9b00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aliphatic aldehydes and ketones are essential building blocks for the synthesis of more complex organic compounds. Despite their potentially key role as precursors of astrobiologically important molecules, such as amino acids and carboxylic acids, this family of compounds has scarcely been evaluated in carbonaceous chondrites. The paucity of such analyses likely derives from the low concentration of aldehydes and ketones in the meteorites and from the currently used chromatographic methodologies that have not been optimized for meteorite analysis. In this work, we report the development of a novel analytical method to quantify the molecular distribution and compound-specific isotopic analysis of 29 aliphatic aldehydes and ketones. Using this method, we have investigated the molecular distribution and 13C-isotopic composition of aldehydes and ketones in 10 carbonaceous chondrites from the CI, CM, CR, and CV groups. The total concentration of carbonyl compounds ranged from 130 to 1000 nmol g-1 of meteorite with formaldehyde, acetaldehyde, and acetone being the most abundant species in all investigated samples. The 13C-isotopic values ranged from -67 to +64‰ and we did not observe clear relationships between 13C-content and molecular weight. Accurately measuring the relative abundances, determining the molecular distribution, and isotopic composition of chondritic organic compounds is central in assessing both their formation chemistry and synthetic relationships.
Collapse
Affiliation(s)
- José C. Aponte
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
- Department of Chemistry, Catholic University of America, Washington, DC 20064, United States
| | - Daniel Whitaker
- Department of Chemistry, University College London, Gordon Street, London WC1H 0AJ, United Kingdom
| | - Matthew W. Powner
- Department of Chemistry, University College London, Gordon Street, London WC1H 0AJ, United Kingdom
| | - Jamie E. Elsila
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Jason P. Dworkin
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| |
Collapse
|
12
|
Garcia AD, Meinert C, Sugahara H, Jones NC, Hoffmann SV, Meierhenrich UJ. The Astrophysical Formation of Asymmetric Molecules and the Emergence of a Chiral Bias. Life (Basel) 2019; 9:E29. [PMID: 30884807 PMCID: PMC6463258 DOI: 10.3390/life9010029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/17/2022] Open
Abstract
The biomolecular homochirality in living organisms has been investigated for decades, but its origin remains poorly understood. It has been shown that circular polarized light (CPL) and other energy sources are capable of inducing small enantiomeric excesses (ees) in some primary biomolecules, such as amino acids or sugars. Since the first findings of amino acids in carbonaceous meteorites, a scenario in which essential chiral biomolecules originate in space and are delivered by celestial bodies has arisen. Numerous studies have thus focused on their detection, identification, and enantiomeric excess calculations in extraterrestrial matrices. In this review we summarize the discoveries in amino acids, sugars, and organophosphorus compounds in meteorites, comets, and laboratory-simulated interstellar ices. Based on available analytical data, we also discuss their interactions with CPL in the ultraviolet (UV) and vacuum ultraviolet (VUV) regions, their abiotic chiral or achiral synthesis, and their enantiomeric distribution. Without doubt, further laboratory investigations and upcoming space missions are required to shed more light on our potential extraterrestrial molecular origins.
Collapse
Affiliation(s)
- Adrien D Garcia
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| | - Cornelia Meinert
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| | - Haruna Sugahara
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
- Japan Aerospace Exploration Agency⁻Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Chuo Sagamihara, Kanagawa 252-5210, Japan.
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Uwe J Meierhenrich
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| |
Collapse
|