1
|
Dash M, Thiyageshwari S, Selvi D, Johnson HKV, Ariyan M, Rajan K, Anandham R. Unveiling microbial diversity in slightly and moderately magnesium deficient acidic soils. Sci Rep 2025; 15:3696. [PMID: 39881163 PMCID: PMC11779885 DOI: 10.1038/s41598-025-87943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Magnesium (Mg) an essential plant nutrient is widespread deficient in the acidic soils of Nilgiris of Tamil nadu, India. The vegetable yield and quality is especially affected due to deficiency of nutrients like Mg. This study investigates soil characteristics and bacterial diversity in the Nilgiris district of Tamil Nadu, India, with respect to Mg deficiency. The soil samples were collected from different vegetable growing regions of the Nilgiris to assess soil physiocochemical parameters, soil enzymes and soil Mg status. 16S rRNA gene-based metagenomic analysis used to investigate the functional potential and structural diversity of the bacterial communities in high Mg and low Mg deficiency soil. Results indicated mildly acidic soils with a sandy loam texture and high organic carbon content. While nitrogen (N), phosphorus (P), and potassium (K) levels were adequate, Mg deficiency was consistent. Soil enzymes such as dehydrogenase, acid phosphatase, urease and aryl sulfatase, varied across the soil samples. Additionally, 16S rRNA gene-based metagenomics analysis revealed the bacterial diversity and functional pathways in soils with high and low Mg deficiency. Low Mg levels were associated with increased bacterial richness, dominated by Proteobacteria, Gemmatimonadetes, Actinobacteria, Bacteroidetes, and Acidobacteria. Functional pathways related to carbon metabolism, amino acid biosynthesis, and various metabolic processes were more abundant in low Mg deficient soils. This research highlights the significant influence of Mg levels on bacterial diversity and functional potentials in acidic soils, providing insights into soil management strategies in Mg-deficient regions.
Collapse
Affiliation(s)
- Munmun Dash
- Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Tamil Nadu, Coimbatore, 641003, India
| | - Subramaniam Thiyageshwari
- Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Tamil Nadu, Coimbatore, 641003, India.
| | - Duraisamy Selvi
- Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Tamil Nadu, Coimbatore, 641003, India
| | - Haina K V Johnson
- Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Tamil Nadu, Coimbatore, 641003, India
| | - Manikandan Ariyan
- Institute of Ecology and Earth Science, University of Tartu, Tartu, Estonia
| | - Karuppusamy Rajan
- Division of Soil Science, ICAR-Indian Institute of Soil and Water Conservation Research Centre, Datia, 475661, Madhya Pradesh, India
| | - Rangasamy Anandham
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
| |
Collapse
|
2
|
Duran C, Bouchard A, Agogué H, Dupuy C, Duran R, Cravo-Laureau C. Importance of eukaryotes in shaping microbial benthic communities in Charente-maritime marshes, France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177523. [PMID: 39551202 DOI: 10.1016/j.scitotenv.2024.177523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/02/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Marshes are wetlands known for providing major ecosystem services in terms of water quality and human activities. These ecosystem services are mainly provided by marshes' benthic community, composed of prokaryotes (bacteria and archaea) but also of eukaryotes (micro-eukaryotes and meiofauna). The aim of this study is to (1) assess the environmental parameters affecting benthic community composition in marshes, (2) highlight the associations between organisms from the three domains of life, and (3) determine the parameters controlling these associations. Hence, benthic communities of eight different marshes from three typologies (salted, brackish and freshwater) and four seasons (autumn 2020, spring 2021, summer 2021 and autumn 2021) were assessed. This study revealed three main drivers of community composition. First, salinity drives the community composition illustrated by the differences observed between the three typologies of marshes. Relative abundance of Nitrososphaeria, Halobacteria, Bacillariophyceae, Conoidasida and nematodes increased with salinity while methanogenic archaea, Chlorophyceae and copepod's relative abundance decreased. The second driver is the physical-chemistry of the site, particularly nutrients. The season is the last driver of community composition, seasonal pattern varying for each site within a typology. LEfSe analyses defined biomarkers of typology and season, among which many prokaryotes involved in the nitrogen cycle and photosynthetic micro-eukaryotes where present in different co-occurrence networks, highlighting the importance of nitrogen cycle in marshes. Co-occurrence networks revealed several connections between organisms of the three domains of life, particularly between prokaryotes and photosynthetic eukaryotes. This study illustrates thus the importance of holistic approaches in microbial ecology for revealing a comprehensive view of the whole microbial interactions occurring in complex ecosystems.
Collapse
Affiliation(s)
- Clélia Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France; UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université, La Rochelle, France
| | - Andréa Bouchard
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université, La Rochelle, France
| | - Hélène Agogué
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université, La Rochelle, France
| | - Christine Dupuy
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université, La Rochelle, France
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | |
Collapse
|
3
|
Yang Z, Cui X, Fan X, Ruan Y, Xiang Z, Ji L, Gao H, Zhang M, Shan S, Liu W. "Active carbon" is more advantageous to the bacterial community in the rice rhizosphere than "stable carbon". Comput Struct Biotechnol J 2024; 23:1288-1297. [PMID: 38560279 PMCID: PMC10978811 DOI: 10.1016/j.csbj.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Carbon materials are commonly used for soil carbon sequestration and fertilization, which can also affect crop growth by manipulating the rhizosphere bacterial community. However, the comparison of the differences between active carbon (e.g., organic fertilizers) and stable carbon (e.g., biochar) on rhizosphere microdomains is still unclear. Hence, a trial was implemented to explore the influence of control (CK, no fertilizer; NPK, chemical fertilizer), organic fertilizer (CF-O, organic fertilizer; CF-BO, biochar-based organic fertilizer) and biochar material (CF-B, perishable garbage biochar; CF-PMB, pig manure biochar) on the diversity, composition, and interaction of rice rhizosphere bacterial community through 16 S rRNA gene high-throughput sequencing. Our results demonstrate that organic fertilizer increases bacterial alpha-diversity compared to no-carbon supply treatment to the extend, whereas biochar has the opposite effect. The rhizosphere bacterial community composition showed pronounced variations among the various fertilization treatments. The relative abundance in Firmicutes decreased with organic fertilizer application, whereas that in Chloroflexi and Actinobacteria decreased with biochar application. Bacterial network analysis demonstrate that organic fertilizer enhances the complexity and key taxa of bacterial interactions, while biochar exhibits an opposing trend. The findings of our study indicate that organic fertilizer may contribute to a positive and advantageous impact on bacterial diversity and interaction in rice rhizosphere, whereas the influence of biochar is not as favorable and constructive. This study lays the foundation for elucidating the fate of the rhizosphere bacterial community following different carbon material inputs in the context of sustainable agricultural development.
Collapse
Affiliation(s)
- Zongkun Yang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xin Cui
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xiaoge Fan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yefeng Ruan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zhennan Xiang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Lingfei Ji
- Department of Biology, University of York, York, UK
| | - Han Gao
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, China
| | - Min Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wenbo Liu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
4
|
Rousseau M, Siegenthaler A, Skidmore AK, de Groot GA, Laros I. Further reduction in soil bacterial diversity under severe acidification in European temperate forests. EUROPEAN JOURNAL OF SOIL SCIENCE 2024; 75:e70005. [PMID: 39583947 PMCID: PMC11579971 DOI: 10.1111/ejss.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/26/2024]
Abstract
Despite a decrease in industrial nitrogen and sulfur deposition over recent decades, soil acidification remains a persistent challenge to European forest health, especially in regions of intense agriculture and urbanisation. Using topsoil eDNA metabarcoding and functional annotations from a sample of 49 plots (each 30 × 30 m) located in The Netherlands and Germany, we investigated the effect of severe acidification on bacterial taxonomic diversity under different forest types and explored potential functional implications for nutrient cycling. Furthermore, we assessed which soil parameters known to influence soil bacterial communities affect these acidophilic communities. Here, we are the first to demonstrate under natural conditions that soil bacterial diversity in extremely acidic soils (pH <4.5) continues to decline similarly across forest types as pH further decreases under intensifying human activity. Our results confirmed pH as the key driver of soil bacterial communities, even in extremely acidic soils. Ongoing severe acidification continues to reduce bacterial communities, favouring taxa adapted to extreme acidity and primarily involved in recalcitrant carbon-degradation compounds (e.g. cellulolysis potential = 0.78%-9.99%) while simultaneously diminishing taxa associated with nitrogen cycling (e.g. fixation potential = 6.72%-0.00%). Altogether, our findings indicate a further decline in bacterial diversity in already extremely acidic soils, likely disrupting nutrient cycling through changes in immobilisation and mineralisation processes. Our study highlights the continuous acidification of European temperate forests to extremely low pH levels, further disrupting forest ecosystem functioning. The significant reduction in bacterial diversity under such a severe acidification gradient, as demonstrated here, underscores the necessity to include severely acidified forests in conservation programmes and monitoring to prevent further degradation of European soils beyond repair.
Collapse
Affiliation(s)
- Mélody Rousseau
- Natural Resources Department, Faculty of Geo‐Information Science and Earth ObservationUniversity of TwenteEnschedeThe Netherlands
| | - Andjin Siegenthaler
- Natural Resources Department, Faculty of Geo‐Information Science and Earth ObservationUniversity of TwenteEnschedeThe Netherlands
| | - Andrew K. Skidmore
- Natural Resources Department, Faculty of Geo‐Information Science and Earth ObservationUniversity of TwenteEnschedeThe Netherlands
| | - G. Arjen de Groot
- Wageningen Environmental ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Ivo Laros
- Wageningen Environmental ResearchWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
5
|
Liu J, Sun P, Chen Y, Guo J, Liu L, Zhao X, Xin J, Liu X. The regulation pathways of biochar and microorganism in soil-plant system by multiple statistical methods: The forms of carbon participation in coastal wetlands. CHEMOSPHERE 2024; 362:142918. [PMID: 39043273 DOI: 10.1016/j.chemosphere.2024.142918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/25/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Coastal wetlands possess significant carbon storage capabilities. However, in coastal soil-plant systems augmented with biochar and microorganisms, the mechanisms of these amendments and carbon participation remain unclear. This study utilized pot experiments to explore how Enteromorpha prolifera biochar and Arbuscular mycorrhizal fungi (AMF) affect soil organic carbon (SOC), carbon-related microbes, photosynthetic and osmotic system of Suaeda salsa. The results showed biochar reduced exchangeable sodium percentage by 6.9% through adsorption and ion exchange, and increased SOC content by 34.4%. The abundance of carbon-related microorganisms (Bacteroidota and Chloroflexi) was increased and carbon metabolizing enzyme (cellulase and sucrase) activity in the soil was enhanced. AMF significantly improved plant growth compared with CK, as evidenced by the enhanced dry weight by 2.34 times. A partial least squares pathway model (PLS-PM) and correlation analysis suggested that the combined effect of biochar and AMF could be outlined as two pathways: soil and plant. Biochar increased SOC, improved the growth of soil carbon metabolizing microorganisms, and further promoted the activity of carbon-related enzymes. Additionally, AMF facilitated nutrient absorption by plants through root symbiosis, with biochar further enhancing this process by acting as a nutrient adsorber. These combined effects of biochar and AMF at soil and plant level enhanced the photosynthetic process of Suaeda salsa. The transport of photosynthetic products to the roots can increase the carbon storage in the soil. This study provides quantitative evidence supporting the increase of carbon storage in coastal wetland soil-plant systems through a combined application of biochar and AMF.
Collapse
Affiliation(s)
- Jiaxin Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ping Sun
- Key Laboratory of Geological Safety of Coastal Urban Underground Space (Qingdao Geo-Engineering Surveying Institute), Qingdao, 266101, China
| | - Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jiameng Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lecheng Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xinyue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jia Xin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoli Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
6
|
Uddin MJ, Sherrell J, Emami A, Khaleghian M. Application of Artificial Intelligence and Sensor Fusion for Soil Organic Matter Prediction. SENSORS (BASEL, SWITZERLAND) 2024; 24:2357. [PMID: 38610568 PMCID: PMC11014143 DOI: 10.3390/s24072357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Soil organic matter (SOM) is one of the best indicators to assess soil health and understand soil productivity and fertility. Therefore, measuring SOM content is a fundamental practice in soil science and agricultural research. The traditional approach (oven-dry) of measuring SOM is a costly, arduous, and time-consuming process. However, the integration of cutting-edge technology can significantly aid in the prediction of SOM, presenting a promising alternative to traditional methods. In this study, we tested the hypothesis that an accurate estimate of SOM might be obtained by combining the ground-based sensor-captured soil parameters and soil analysis data along with drone images of the farm. The data are gathered using three different methods: ground-based sensors detect soil parameters such as temperature, pH, humidity, nitrogen, phosphorous, and potassium of the soil; aerial photos taken by UAVs display the vegetative index (NDVI); and the Haney test of soil analysis reports measured in a lab from collected samples. Our datasets combined the soil parameters collected using ground-based sensors, soil analysis reports, and NDVI content of farms to perform the data analysis to predict SOM using different machine learning algorithms. We incorporated regression and ANOVA for analyzing the dataset and explored seven different machine learning algorithms, such as linear regression, Ridge regression, Lasso regression, random forest regression, Elastic Net regression, support vector machine, and Stochastic Gradient Descent regression to predict the soil organic matter content using other parameters as predictors.
Collapse
Affiliation(s)
| | | | - Anahita Emami
- College of Science and Engineering, Texas State University, San Marcos, TX 78666, USA; (M.J.U.); (J.S.)
| | - Meysam Khaleghian
- College of Science and Engineering, Texas State University, San Marcos, TX 78666, USA; (M.J.U.); (J.S.)
| |
Collapse
|
7
|
Zhang L, Han G, Zhou L, Li X, Wang X, Zhang X, Xiao L. Moderate increase of precipitation stimulates CO 2 production by regulating soil organic carbon in a saltmarsh. Front Microbiol 2024; 15:1328965. [PMID: 38328421 PMCID: PMC10847529 DOI: 10.3389/fmicb.2024.1328965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
Saltmarsh is widely recognized as a blue carbon ecosystem with great carbon storage potential. Yet soil respiration with a major contributor of atmospheric CO2 can offset its carbon sink function. Up to date, mechanisms ruling CO2 emissions from saltmarsh soil remain unclear. In particular, the effect of precipitation on soil CO2 emissions is unclear in coastal wetlands, due the lack of outdoor data in real situations. We conducted a 7-year field manipulation experiment in a saltmarsh in the Yellow River Delta, China. Soil respiration in five treatments (-60%, -40%, +0%, +40%, and + 60% of precipitation) was measured in the field. Topsoils from the last 3 years (2019-2021) were analyzed for CO2 production potential by microcosm experiments. Furthermore, quality and quantity of soil organic carbon and microbial function were tested. Results show that only the moderate precipitation rise of +40% induced a 66.2% increase of CO2 production potential for the microcosm experiments, whereas other data showed a weak impact. Consistently, soil respiration was also found to be strongest at +40%. The CO2 production potential is positively correlated with soil organic carbon, including carbon quantity and quality. But microbial diversity did not show any positive response to precipitation sizes. r-/K-strategy seemed to be a plausible explanation for biological factors. Overall, our finding reveal that a moderate precipitation increase, not decrease or a robust increase, in a saltmarsh is likely to improve soil organic carbon quality and quantity, and bacterial oligotroph:copiotroph ratio, ultimately leading to an enhanced CO2 production.
Collapse
Affiliation(s)
- Lirong Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangxuan Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai, China
- The Yellow River Delta Ecological Research Station of Coastal Wetland, Chinese Academy of Sciences, Yantai, China
| | - Lifeng Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| | - Xinge Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
- The College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Xiaojie Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai, China
- The Yellow River Delta Ecological Research Station of Coastal Wetland, Chinese Academy of Sciences, Yantai, China
| | - Xiaoshuai Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai, China
- The Yellow River Delta Ecological Research Station of Coastal Wetland, Chinese Academy of Sciences, Yantai, China
| | - Leilei Xiao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai, China
- The Yellow River Delta Ecological Research Station of Coastal Wetland, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
8
|
Hu M, Zhou S, Xiong X, Wang X, Sun Y, Meng Z, Hui D, Li J, Zhang D, Deng Q. Dynamics of soil microbial communities involved in carbon cycling along three successional forests in southern China. Front Microbiol 2024; 14:1326057. [PMID: 38287955 PMCID: PMC10822976 DOI: 10.3389/fmicb.2023.1326057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/31/2023] [Indexed: 01/31/2024] Open
Abstract
Dynamics of plant communities during forest succession have been received great attention in the past decades, yet information about soil microbial communities that are involved in carbon cycling remains limited. Here we investigated soil microbial community composition and carbohydrate degradation potential using metagenomic analysis and examined their influencing factors in three successional subtropical forests in southern China. Results showed that the abundances of soil bacteria and fungi increased (p ≤ 0.05 for both) with forest succession in relation to both soil and litter characteristics, whereas the bacterial diversity did not change (p > 0.05) and the fungal diversity of Shannon-Wiener index even decreased (p ≤ 0.05). The abundances of microbial carbohydrate degradation functional genes of cellulase, hemicellulase, and pectinase also increased with forest succession (p ≤ 0.05 for all). However, the chitinase gene abundance did not change with forest succession (p > 0.05) and the amylase gene abundance decreased firstly in middle-succession forest and then increased in late-succession forest. Further analysis indicated that changes of functional gene abundance in cellulase, hemicellulase, and pectinase were primarily affected by soil organic carbon, soil total nitrogen, and soil moisture, whereas the variation of amylase gene abundance was well explained by soil phosphorus and litterfall. Overall, we created a metagenome profile of soil microbes in subtropical forest succession and fostered our understanding of microbially-mediated soil carbon cycling.
Collapse
Affiliation(s)
- Minghui Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuyidan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
| | - Xin Xiong
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xuan Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
| | - Yu Sun
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Ze Meng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Jianling Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
| | - Deqiang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
| | - Qi Deng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China National Botanical Garden, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Guo Q, Gong L. Compared with pure forest, mixed forest alters microbial diversity and increases the complexity of interdomain networks in arid areas. Microbiol Spectr 2024; 12:e0264223. [PMID: 38095470 PMCID: PMC10783054 DOI: 10.1128/spectrum.02642-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The results provide a comparative study of the response of soil microbial ecology to the afforestation of different tree species and deepen the understanding of the factors controlling soil microbial community structure.
Collapse
Affiliation(s)
- Qian Guo
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Lu Gong
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| |
Collapse
|
10
|
Cao Y, Lu N, Yang D, Mo M, Zhang KQ, Li C, Shang S. Root-knot nematode infections and soil characteristics significantly affected microbial community composition and assembly of tobacco soil microbiota: a large-scale comparison in tobacco-growing areas. Front Microbiol 2023; 14:1282609. [PMID: 38107871 PMCID: PMC10722292 DOI: 10.3389/fmicb.2023.1282609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Tobacco root-knot nematode (RKN) is a highly destructive soil-borne disease worldwide. However, there is a lack of research on the relationship between RKN and tobacco root microbial community composition under large-scale geographical conditions in China. Methods In this study, we collected 65 samples from 28 main tobacco-growing areas across 10 provinces in China and conducted 16S rDNA sequencing to investigate the dynamic microbial changes in tobacco soil infected by RKN compared to healthy tobacco soil. Based on the analysis of rhizosphere soil bacterial communities, changes after RKN infection, and soil environmental factors. Results We found the 28 tobacco-growing areas could be divided into two distinct groups with different microbial compositions and varying responses to RKN infection. In group1 of the provinces of Anhui, Henan, Shanxi, and Heilongjiang, Vicinamibacteria dominated the bacterial community, while Acidobacteriae was present in low abundance. In contrast, group2 of the other six provinces (Yunnan, Guizhou, Chongqing, Guangxi, Hubei, and Shandong) exhibited an opposite pattern. After infected by RKN, the genera Chitinophaga increased significant in group 1, while the genera Rhodococcus in group 2 exhibited a substantial increase. Alpha-diversity analysis revealed that RKN-infected tobacco exhibited a richer and more diverse rhizosphere soil bacterial community compared to healthy tobacco in most growing areas. A total of 12 kinds of soil environmental factors were measured in healthy and RKN-infected tobacco soil, and based on the co-occurrence and correlation analysis between environmental factors and microbial species, the pH level, calcium (Ca), magnesium (Mg), phosphorus (P), iron (Fe), and sodium (Na) were identified as key environmental factors influencing the population composition of rhizosphere microorganisms during RKN infection. We observed that RKN infection further increased the pH in weakly alkaline group 1 soil, while weakly acidic group 2 soil experienced a further decrease in pH. Furthermore, we identified three genera as potential biocontrol or plant growth-promoting bacteria for tobacco. Discussion These findings provide valuable reference data for managing RKN disease in different tobacco-growing areas and contribute to the exploration of new and effective biological control methods.
Collapse
Affiliation(s)
- Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Ning Lu
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Dongmei Yang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Minghe Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China
| | - Caibin Li
- Bijie Tobacco Company of Guizhou Province, Bijie, Guizhou, China
| | - Shenghua Shang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| |
Collapse
|
11
|
Yang J, He J, Jia L, Gu H. Integrating metagenomics and metabolomics to study the response of microbiota in black soil degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165486. [PMID: 37442461 DOI: 10.1016/j.scitotenv.2023.165486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
As the largest commercial food production base and ecological security barrier, land degradation in black soil areas seriously threatens the global food supply and natural ecosystems. Therefore, determining the response of soil microbiota is crucial to restoring degraded soils. This study combined metagenomics and metabolomics to investigate the effect of different degrees of soil degradation on microbial community composition and metabolic function in black soils. It was found that alpha diversity in degraded soils (Shannon: 22.3) was higher than in nondegraded soil (ND) (Shannon: 21.8), and the degree of degradation significantly altered the structure and composition of soil microbial communities. The results of LEfSe analysis obtained 9 (ND), 7 (lightly degraded, LD), 10 (moderately degraded, MD), and 1 (severely degraded, SD) biomarkers in four samples. Bradyrhizobium, Sphingomonas, and Ramlibacter were significantly affected by soil degradation and can be considered biomarkers of ND, MD, and SD, respectively. Soil nutrient and enzyme activities decreased significantly with increasing black soil degradation, soil organic matter (SOM) content decreased from 11.12 % to 1.97 %, and Sucrase decreased from 23.53 to 6.59 mg/g/d. In addition, C was the critical driver affecting microbial community structure, contributing 61.2 % to differences in microbial community distribution, and microbial altering relative abundance which participle in the carbon cycle to respond to soil degradation. Metabolomic analyses indicated that soil degradation significantly modified the soil metabolite spectrum, and the metabolic functions of most microorganisms responding to soil degradation were adversely affected. The combined multi-omics analysis further indicated that biomarkers dominate in accumulating metabolites. These findings confirmed that due to their role in the composition and functioning of these degraded soils, these biomarkers could be employed in strategies for managing and restoring degraded black soils.
Collapse
Affiliation(s)
- Jia Yang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jianhu He
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lin Jia
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Huiyan Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
12
|
Yin Y, Wang X, Hu Y, Li F, Cheng H. Insights on the assembly processes and drivers of soil microbial communities in different depth layers in an abandoned polymetallic mining district. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132043. [PMID: 37453349 DOI: 10.1016/j.jhazmat.2023.132043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Soil microbes, which play crucial roles in maintaining soil functions and restoring degraded lands, are impacted by heavy metal pollution. This study investigated the vertical distribution of bacterial communities along the soil profiles across four types of areas (heavy metal pollution level: tailings heap area > phytoremediation area > natural restoration area > original forest area) in an abandoned polymetallic mining district by 16S rRNA sequencing, and aimed to disentangle the assembly mechanisms and key drivers of the vertical variation in bacterial community structure. Bacterial diversity and composition were found to vary remarkably between the depth layers in all types of areas, with heterogeneous selection dominated the vertical distribution pattern of soil bacterial communities. Pearson correlation analysis and partial Mantel test revealed that soil nutrients mainly shaped the vertical distribution of bacterial microbiota along soil profiles in the original forest and natural restoration areas. Ni, As, and bioavailable As were the key drivers regulating the vertical variation of bacterial assemblages in the phytoremediation area, whereas Pb, pH, soil organic carbon, and available nitrogen were crucial drivers in the tailings heap area. These findings reveal the predominant assembly mechanisms and drivers governing the vertical distribution of soil bacterial microbiota and indicate the efficiency of phytoremediation and ecological restoration on ameliorating edaphic micro-ecosystems in heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fadong Li
- State Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Hou M, Zhao X, Wang Y, Lv X, Chen Y, Jiao X, Sui Y. Pedogenesis of typical zonal soil drives belowground bacterial communities of arable land in the Northeast China Plain. Sci Rep 2023; 13:14555. [PMID: 37666914 PMCID: PMC10477331 DOI: 10.1038/s41598-023-41401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
Belowground bacterial communities play essential roles in maintaining ecosystem multifunction, while our understanding of how and why their distribution patterns and community compositions may change with the distinct pedogenetic conditions of different soil types is still limited. Here, we evaluated the roles of soil physiochemical properties and biotic interactions in driving belowground bacterial community composition across three typical zonal soil types, including black calcium soil (QS), typical black soil (HL) and dark brown soil (BQL), with distinct pedogenesis on the Northeast China Plain. Changes in soil bacterial diversity and community composition in these three zonal soil types were strongly correlated with soil pedogenetic features. SOC concentrations in HL were higher than in QS and BQL, but bacterial diversity was low, and the network structure revealed greater stability and connectivity. The composition of the bacterial community correlated significantly with soil pH in QS but with soil texture in BQL. The bacterial co-occurrence network of HL had higher density and clustering coefficients but lower edges, and different keystone species of networks were also detected. This work provides a basic understanding of the driving mechanisms responsible for belowground bacterial biodiversity and distribution patterns over different pedogenetic conditions in agroecosystems.
Collapse
Affiliation(s)
- Meng Hou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China
| | - Xiaorui Zhao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China
| | - Yao Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China
| | - Xuemei Lv
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, 150080, Harbin, People's Republic of China
| | - Yimin Chen
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China
| | - Xiaoguang Jiao
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, 150080, Harbin, People's Republic of China.
| | - Yueyu Sui
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China.
- University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Zhang Q, Zhou L, Zhao Y, Gao S, Yang Y, Chen Q, Li W, Qi Q, Dong Q, Lei J, Guo X, Gao Q, Yang Y. Uncovering the virome and its interaction with antibiotic resistome during compost fertilization. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131763. [PMID: 37311294 DOI: 10.1016/j.jhazmat.2023.131763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance is a pressing global health issue, leading to increased illnesses and fatalities. The contribution of viruses to the acquisition, preservation, and dissemination of antibiotic resistance genes (ARGs) is not yet fully understood. By using a high-throughput functional gene-based microarray (GeoChip 5.0), this study examines the prevalence and relative abundance of bacteriophage and eukaryotic viral genes in swine manure, compost, compost-amended agricultural soil, and unamended soil from suburban regions of Beijing, China. Our findings reveal a significantly elevated presence of biomarker viral genes in compost-amended soils compared to unamended soils, suggesting potential health risks associated with compost fertilization. We also observed stronger ecological interactions between ARGs and viral genes in manure and compost than in soils. Network analysis identified arabinose efflux permeases and EmrB/QacA resistance genes, linked to CRISPR encoding sequences, as keystone nodes, indicating possible ARG acquisition via virus infections. Moreover, positive correlations were found between viral genes, antibiotic concentrations, and ARG diversity in manure, compost, and compost-amended soils, highlighting a likely pathway for virus-mediated ARG transfer. In summary, our results indicate that use of compost as a fertilizer in agricultural settings could facilitate the spread of ARGs through viral mechanisms, allowing for time-delayed genetic exchanges over broader temporal and spatial scales than ARGs within bacterial genomes.
Collapse
Affiliation(s)
- Qingxia Zhang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lei Zhou
- Center for professional training and service, China Association for Science and Technology, China
| | - Yilong Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuhong Gao
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yanjun Yang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qingyun Chen
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wenhui Li
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qi Qi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Dong
- Institute of Chemical Defense, Beijing 102205, China
| | - Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Zhang M, Shi C, Li X, Wang K, Qiu Z, Shi F. Changes in the structure and function of rhizosphere soil microbial communities induced by Amaranthus palmeri invasion. Front Microbiol 2023; 14:1114388. [PMID: 37056750 PMCID: PMC10089265 DOI: 10.3389/fmicb.2023.1114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionPlant invasion can profoundly alter ecosystem processes driven by microorganisms. The fundamental mechanisms linking microbial communities, functional genes, and edaphic characteristics in invaded ecosystems are, nevertheless, poorly understood.MethodsHere, soil microbial communities and functions were determined across 22 Amaranthus palmeri (A. palmeri) invaded patches by pairwise 22 native patches located in the Jing-Jin-Ji region of China using high-throughput amplicon sequencing and quantitative microbial element cycling technologies.ResultsAs a result, the composition and structure of rhizosphere soil bacterial communities differed significantly between invasive and native plants according to principal coordinate analysis. A. palmeri soils exhibited higher abundance of Bacteroidetes and Nitrospirae, and lower abundance of Actinobacteria than native soils. Additionally, compared to native rhizosphere soils, A. palmeri harbored a much more complex functional gene network with higher edge numbers, average degree, and average clustering coefficient, as well as lower network distance and diameter. Furthermore, the five keystone taxa identified in A. palmeri rhizosphere soils belonged to the orders of Longimicrobiales, Kineosporiales, Armatimonadales, Rhizobiales and Myxococcales, whereas Sphingomonadales and Gemmatimonadales predominated in the native rhizosphere soils. Moreover, random forest model revealed that keystone taxa were more important indicators of soil functional attributes than edaphic variables in both A. palmeri and native rhizosphere soils. For edaphic variables, only ammonium nitrogen was a significant predictor of soil functional potentials in A. palmeri invaded ecosystems. We also found keystone taxa in A. palmeri rhizosphere soils had strong and positive correlations with functional genes compared to native soils.DiscussionOur study highlighted the importance of keystone taxa as a driver of soil functioning in invaded ecosystem.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin, China
| | - Xueying Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kefan Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenlu Qiu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fuchen Shi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
- *Correspondence: Fuchen Shi,
| |
Collapse
|
16
|
Xie L, Li W, Pang X, Liu Q, Yin C. Soil properties and root traits are important factors driving rhizosphere soil bacterial and fungal community variations in alpine Rhododendron nitidulum shrub ecosystems along an altitudinal gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161048. [PMID: 36563760 DOI: 10.1016/j.scitotenv.2022.161048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Both soil properties and plant root traits are pivotal factors affecting microbial communities. However, there is still limited information about their importance in shaping rhizosphere soil microbial communities, particularly in less-studied alpine shrub ecosystems. To investigate the effects of altitude (3300, 3600, 3900, and 4200 m) on the diversity and composition of rhizosphere soil bacterial and fungal communities, as well as the factors shaping rhizosphere soil microbial communities, we conducted this study in alpine Rhododendron nitidulum shrub ecosystems from the Zheduo mountain of the eastern Tibetan Plateau. Results demonstrated that bacterial community diversity and richness decreased to the lowest value at 3600 m and then increased at higher altitudes compared with 3300 m; whereas fungal richness at 3300 m was much lower than at other altitudes, and was closely related to soil properties and root traits. The composition of rhizosphere soil bacterial and fungal communities at the low altitude (3300 m) was different from that at high altitudes. Permutational multivariate analysis of variance and redundancy analysis indicated that soil properties (soil water content, pH, NO3--N, and available phosphorus) and root traits (surface area, and maximum depth) were the major factors explaining the variations of rhizosphere soil bacterial and fungal communities. Specific bacterial and fungal taxa along altitudes were identified. The bacterial taxa Planctomycetota was dominant at 3300 and 3600 m with low soil nutrient availability and high root surface area, whereas the fungal taxa Mortierellomycota was abundant at 3900 and 4200 m with high soil nutrient availability and low root surface area. These results suggested that different soil microbes can respond differently to altitude. This study provides a novel insight into factors driving rhizosphere soil bacterial and fungal community variations, which could improve our understanding of microbial ecology in alpine R. nitidulum shrub ecosystems along altitude.
Collapse
Affiliation(s)
- Lulu Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Wanting Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Xueyong Pang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China
| | - Qinghua Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China.
| |
Collapse
|
17
|
Tian Q, Jiang Q, Huang L, Li D, Lin Q, Tang Z, Liu F. Vertical Distribution of Soil Bacterial Communities in Different Forest Types Along an Elevation Gradient. MICROBIAL ECOLOGY 2023; 85:628-641. [PMID: 35083529 DOI: 10.1007/s00248-021-01949-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/15/2021] [Indexed: 05/25/2023]
Abstract
Microorganisms inhabit the entire soil profile and play important roles in nutrient cycling and soil formation. Recent studies have found that soil bacterial diversity and composition differ significantly among soil layers. However, little is known about the vertical variation in soil bacterial communities and how it may change along an elevation gradient. In this study, we collected soil samples from 5 forest types along an elevation gradient in Taibai Mountain to characterize the bacterial communities and their vertical patterns and variations across soil profiles. The richness and Shannon index of soil bacterial communities decreased from surface soils to deep soils in three forest types, and were comparable among soil layers in the other two forests at the medium elevation. The composition of soil bacterial communities differed significantly between soil layers in all forest types, and was primarily affected by soil C availability. Oligotrophic members of the bacterial taxa, such as Chloroflexi, Gemmatimonadetes, Nitrospirae, and AD3, were more abundant in the deep layers. The assembly of soil bacterial communities within each soil profile was mainly governed by deterministic processes based on environmental heterogeneity. The vertical variations in soil bacterial communities differed among forest types, and the soil bacterial communities in the Betula albo-sinensis forest at the medium elevation had the lowest vertical variation. The vertical variation was negatively correlated with mean annual precipitation (MAP), weighted rock content, and weighted sand particle content in soils, among which MAP had the highest explanatory power. These results indicated that the vertical mobilization of microbes with preferential and matrix flows likely enhanced bacterial homogeneity. Overall, our results suggest that the vertical variations in soil bacterial communities differ along the elevation gradient and potentially affect soil biological processes across soil profiles.
Collapse
Affiliation(s)
- Qiuxiang Tian
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Qinghu Jiang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lin Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa, 850000, China
| | - Qiaoling Lin
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyao Tang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Feng Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
18
|
Deng J, Zhou W, Dai L, Yuan Q, Zhou L, Qi L, Yu D. The Effects of Shrub Removal on Soil Microbial Communities in Primary Forest, Secondary Forest and Plantation Forest on Changbai Mountain. MICROBIAL ECOLOGY 2023; 85:642-658. [PMID: 35089393 DOI: 10.1007/s00248-021-01943-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Shrub removal is a common management method in forest ecosystems, but comparatively little is known regarding the effects of shrub removal on soil microbial communities among primary forest, secondary forest, and plantation forests in temperate forests, which limits our accurate assessment of sustainable management of understory vegetation removal. Given this, we used a long-term operation experiment across a contrasting mixed broadleaved-Pinus koraiensis forest, Betula platyphylla forest, and Larix gmelinii plantation forest to explore the variations of soil properties and microbial community after 5 years of shrub removal on Changbai Mountain, as well as the contribution of the soil properties and understory plant diversity to the soil microbial community. The results demonstrated that shrub removal could significantly alter soil SWC and TN, TP, and AP contents of the L. gmelinii, as well as N/P of B. platyphylla. Moreover, shrub removal also clearly improved soil bacterial Pielou_e index and Simpson index of mixed broadleaved-P. koraiensis and soil bacterial Simpson index of L. gmelinii, and decreased soil fungal Pielou_e index and Shannon index of L. gmelinii and soil bacterial Pielou_e index and soil fungal Shannon index of B. platyphylla. Identically, shrub removal notably altered the soil bacterial community composition. Soil characteristics and understory plant diversity accounted for 48.02% and 26.88%, and 45.88% and 27.57% of the variance in the bacterial and fungal community composition, respectively. This study aimed to provide an important scientific basis for the restoration and sustainable management of temperate forests in the Changbai Mountain region.
Collapse
Affiliation(s)
- Jiaojiao Deng
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wangming Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Limin Dai
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Quan Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Li Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Lin Qi
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Dapao Yu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
19
|
Liu L, Wang Z, Ma D, Zhang M, Fu L. Diversity and Distribution Characteristics of Soil Microbes across Forest-Peatland Ecotones in the Permafrost Regions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14782. [PMID: 36429502 PMCID: PMC9690085 DOI: 10.3390/ijerph192214782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Permafrost peatlands are a huge carbon pool that is uniquely sensitive to global warming. However, despite the importance of peatlands in global carbon sequestration and biogeochemical cycles, few studies have characterized the distribution characteristics and drivers of soil microbial community structure in forest-peatland ecotones. Here, we investigated the vertical distribution patterns of soil microbial communities in three typical peatlands along an environmental gradient using Illumina high-throughput sequencing. Our findings indicated that bacterial richness and diversity decreased with increasing soil depth in coniferous swamp (LT) and thicket swamp (HT), whereas the opposite trend was observed in a tussock swamp (NT). Additionally, these parameters decreased at 0-20 and 20-40 cm and increased at 40-60 cm along the environmental gradient (LT to NT). Principal coordinate analysis (PCoA) indicated that the soil microbial community structure was more significantly affected by peatland type than soil depth. Actinomycetota, Proteobacteria, Firmicutes, Chloroflexota, Acidobacteriota, and Bacteroidota were the predominant bacterial phyla across all soil samples. Moreover, there were no significant differences in the functional pathways between the three peatlands at each depth, except for amino acid metabolism, membrane transport, cell motility, and signal transduction. Redundancy analysis (RDA) revealed that pH and soil water content were the primary environmental factors influencing the bacterial community structure. Therefore, this study is crucial to accurately forecast potential changes in peatland ecosystems and improve our understanding of the role of peat microbes as carbon pumps in the process of permafrost degradation.
Collapse
Affiliation(s)
| | - Zhongliang Wang
- Correspondence: (Z.W.); (D.M.); Tel.: +86-451-88060524 (Z.W. & D.M.)
| | - Dalong Ma
- Correspondence: (Z.W.); (D.M.); Tel.: +86-451-88060524 (Z.W. & D.M.)
| | | | | |
Collapse
|
20
|
Zhao X, Zhang W, Feng Y, Mo Q, Su Y, Njoroge B, Qu C, Gan X, Liu X. Soil organic carbon primarily control the soil moisture characteristic during forest restoration in subtropical China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1003532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soil organic carbon (SOC) is a crucial component of the soil carbon pool that regulates fundamental soil properties and water status. In the global context of restoring vegetation, the soil carbon-water coupling relationship has gained attention. In particular, the regulatory mechanism of SOC on soil moisture requires further research. In this study, three typical forests in subtropical China were chosen as restoration sequences to investigate the changes in SOC and soil moisture during subtropical forest restoration and its regulation mechanisms: broadleaf-conifer mixed forest (EF), broad-leaved forest (MF), and old-growth forest (LF). The soil water content (35.71 ± 1.52%), maximum water holding capacity (47.74 ± 1.91%), capillary water holding capacity (43.92 ± 1.43%), and field water holding capacity (41.07 ± 1.65%) in LF were significantly higher than those in EF (p < 0.01). As forest restoration progressed, the amount of litter returning to the soil increased gradually, and the SOC content (0–100 cm) increased from 9.51 ± 1.42 g/kg (EF) to 15.60 ± 2.30 g/kg (LF). The SOC storage increased from 29.49 ± 3.59 to 42.62 ± 5.78 Mg/ha. On one hand, forest restoration led to a change in SOC content, which optimizes the soil structure and enhances soil porosity (path coefficient of 0.537, p < 0.01), further leading to a change in soil water content (path coefficient of 0.940, p < 0.01). On the other hand, the increase in SOC influenced the change in soil nutrient content, i.e., total nitrogen (TN) and total phosphorus (TP) (path coefficient of 0.842, p < 0.01). Changes in SOC and soil nutrients stimulated changes in the stoichiometric ratio, i.e., C:P and N:P (path coefficients of 0.988 and –0.968, respectively, p < 0.01), and the biological activity in soil changed appropriately, which eventually led to a change in soil water content (path coefficient of –0.257, p < 0.01). These results highlight the changes in SOC and soil water content (SWC), as well as the mechanism of SOC controlling SWC as a result of vegetation restoration, which is of tremendous importance for advancing our understanding of the eco-hydrological process of subtropical forest restoration.
Collapse
|
21
|
Chen H, Jing Q, Liu X, Zhou X, Fang C, Li B, Zhou S, Nie M. Microbial respiratory thermal adaptation is regulated by r-/K-strategy dominance. Ecol Lett 2022; 25:2489-2499. [PMID: 36134698 DOI: 10.1111/ele.14106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
Microbial thermal adaptation is considered to be one of the core mechanisms affecting soil carbon cycling. However, the role of microbial community composition in controlling thermal adaptation is poorly understood. Using microbial communities from the rhizosphere and bulk soils in an 8-year warming experiment as a model, we experimentally demonstrate that respiratory thermal adaptation was much stronger in microbial K-strategist-dominated bulk soils than in microbial r-strategist-dominated rhizosphere soils. Soil carbon availability exerted strong selection on the dominant ecological strategy of the microbial community, indirectly influencing respiratory thermal adaptation. Our findings shed light on the linchpin of the dominant ecological strategy exhibited by the microbial community in determining its respiratory thermal adaptation, with implications for understanding soil carbon losses under warming.
Collapse
Affiliation(s)
- Hongyang Chen
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingfang Jing
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Xiang Liu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xuhui Zhou
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Changming Fang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China.,Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming, China
| | - Shurong Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Li Z, Liu X, Zhang M, Xing F. Plant Diversity and Fungal Richness Regulate the Changes in Soil Multifunctionality in a Semi-Arid Grassland. BIOLOGY 2022; 11:870. [PMID: 35741391 PMCID: PMC9220314 DOI: 10.3390/biology11060870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
Loss in plant diversity is expected to impact biodiversity and ecosystem functioning (BEF) in terrestrial ecosystems. Soil microbes play essential roles in regulating ecosystem functions. However, the important roles and differences in bacterial and fungal diversity and rare microbial taxa in driving soil multifunctionality based on plant diversity remain poorly understood in grassland ecosystems. Here, we carried out an experiment in six study sites with varied plant diversity levels to evaluate the relationships between soil bacterial and fungal diversity, rare taxa, and soil multifunctionality in a semi-arid grassland. We used Illumina HiSeq sequencing to determine soil bacterial and fungal diversity and evaluated soil functions associated with the nutrient cycle. We found that high diversity plant assemblages had a higher ratio of below-ground biomass to above-ground biomass, soil multifunctionality, and lower microbial carbon limitation than those with low diversity. Moreover, the fungal richness was negatively and significantly associated with microbial carbon limitations. The fungal richness was positively related to soil multifunctionality, but the bacterial richness was not. We also found that the relative abundance of saprotrophs was positively correlated with soil multifunctionality, and the relative abundance of pathogens was negatively correlated with soil multifunctionality. In addition, the rare fungal taxa played a disproportionate role in regulating soil multifunctionality. Structural equation modeling showed that the shift of plant biomass allocation patterns increased plant below-ground biomass in the highly diverse plant plots, which can alleviate soil microbial carbon limitations and enhance the fungal richness, thus promoting soil multifunctionality. Overall, these findings expand our comprehensive understanding of the critical role of soil fungal diversity and rare taxa in regulating soil multifunctionality under global plant diversity loss scenarios.
Collapse
Affiliation(s)
- Zhuo Li
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun 130024, China; (Z.L.); (X.L.); (M.Z.)
- Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun 130024, China
| | - Xiaowei Liu
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun 130024, China; (Z.L.); (X.L.); (M.Z.)
- Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun 130024, China
| | - Minghui Zhang
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun 130024, China; (Z.L.); (X.L.); (M.Z.)
- Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun 130024, China
| | - Fu Xing
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun 130024, China; (Z.L.); (X.L.); (M.Z.)
- Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun 130024, China
| |
Collapse
|
23
|
She W, Yang J, Wu G, Jiang H. The synergy of environmental and microbial variations caused by hydrologic management affects the carbon emission in the Three Gorges Reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153446. [PMID: 35092771 DOI: 10.1016/j.scitotenv.2022.153446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The synergy of environmental and microbiological changes caused by hydrologic management on carbon emissions of river reservoirs remains unknown. Here, we investigated physiochemistry parameters, compositions of dissolved organic matter (DOM), carbon fluxes (CH4 and CO2), and microbial communities in the surface waters of the Three Gorges Reservoir (TGR) within one whole hydrological year. The results showed that hydrologic management significantly changed physiochemistry and DOM composition of the TGR water, and further influenced microbial community composition and functions. DOM content during the drainage period was much lower than during the impoundment period. During the impoundment period, humification extent of DOM became decreasing, while biotransformation extent became increasing compared with the drainage period. DOM composition and water pH exhibited significant correlation with the fluxes of CH4 and CO2, respectively. Microbial community composition and function significantly differed between the drainage and impoundment periods. Most of the differential microbial taxa were affiliated with functional groups involved in carbon cycle such as methanotrophy and phototrophy, which showed significant correlation with carbon fluxes. CH4 and CO2 fluxes can be mostly explained by synergy of microbial function with DOM composition and water pH, respectively. Such synergistic effect may account for the observed temporal variations of CH4 fluxes and spatial variations of CO2, and for the relatively low annual carbon emissions in the TGR. In summary, the synergy of environmental and microbial variations caused by hydrologic management affects carbon emissions from river reservoirs.
Collapse
Affiliation(s)
- Weiyu She
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
24
|
Zeng XM, Feng J, Chen J, Delgado-Baquerizo M, Zhang Q, Zhou XQ, Yuan Y, Feng S, Zhang K, Liu YR, Huang Q. Microbial assemblies associated with temperature sensitivity of soil respiration along an altitudinal gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153257. [PMID: 35065115 DOI: 10.1016/j.scitotenv.2022.153257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Identifying the drivers of the response of soil microbial respiration to warming is integral to accurately forecasting the carbon-climate feedbacks in terrestrial ecosystems. Microorganisms are the fundamental drivers of soil microbial respiration and its response to warming; however, the specific microbial communities and properties involved in the process remain largely undetermined. Here, we identified the associations between microbial community and temperature sensitivity (Q10) of soil microbial respiration in alpine forests along an altitudinal gradient (from 2974 to 3558 m) from the climate-sensitive Tibetan Plateau. Our results showed that changes in microbial community composition accounted for more variations of Q10 values than a wide range of other factors, including soil pH, moisture, substrate quantity and quality, microbial biomass, diversity and enzyme activities. Specifically, co-occurring microbial assemblies (i.e., ecological clusters or modules) targeting labile carbon consumption were negatively correlated with Q10 of soil microbial respiration, whereas microbial assemblies associated with recalcitrant carbon decomposition were positively correlated with Q10 of soil microbial respiration. Furthermore, there were progressive shifts of microbial assemblies from labile to recalcitrant carbon consumption along the altitudinal gradient, supporting relatively high Q10 values in high-altitude regions. Our results provide new insights into the link between changes in major microbial assemblies with different trophic strategies and Q10 of soil microbial respiration along an altitudinal gradient, highlighting that warming could have stronger effects on microbially-mediated soil organic matter decomposition in high-altitude regions than previously thought.
Collapse
Affiliation(s)
- Xiao-Min Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele 8830, Denmark
| | | | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin-Quan Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yusen Yuan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Songhui Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Kexin Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
25
|
Liu S, Gao H, Dong Q, Su Y, Dai T, Qin Z, Yang Y, Gao Q. Bacteria are better predictive biomarkers of environmental estrogen transmission than fungi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118838. [PMID: 35031405 DOI: 10.1016/j.envpol.2022.118838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/08/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The heavy reliance on estrogens in the food industry worldwide greatly contributes to the environmental release of these compounds, begetting serious public concern of their fate. Various microorganisms capable of estrogen degradation, and their catabolic pathways, have been isolated, suggesting that they can eliminate estrogens in both engineered and natural environments. Nonetheless, it remains little understood as to how potential estrogen-degrading microorganisms are distributed within those habitats. An estrogen transmission chain from swine manure to compost, compost-amended soil, and neighboring agricultural soil was investigated in five suburban areas of Beijing, China. The concentrations of major estrogen classes decreased by > 90% from manure to soils, which did not co-vary with environmental antibiotics and heavy metal concentrations. Many bacterial taxa, such as Lactobacillus and Bacteroides, could serve as potential biomarkers of estrogen concentrations, while fungi were only occasionally accurate. To explain this phenomenon, stochasticity was found to be dominant in shaping the fungal communities across all samples, while deterministic selection, arising from biotic interactions, was important for bacterial communities. Metabolic genes involved in oxidizing phenol and catalyzing oxidative ring cleavage of catechol were detected, co-varying with estrogen concentrations. These findings are important as identifying microbial biomarkers of estrogen dynamics, spanning the levels of both taxonomy and functional genes, provides valuable information for assessing estrogen bioavailability and biomarking of estrogen fate in the environment.
Collapse
Affiliation(s)
- Suo Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hanbo Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qiang Dong
- Institute of Chemical Defense, Beijing, 102205, China
| | - Yifan Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tianjiao Dai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ziyan Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
26
|
Cui J, Zhu R, Wang X, Xu X, Ai C, He P, Liang G, Zhou W, Zhu P. Effect of high soil C/N ratio and nitrogen limitation caused by the long-term combined organic-inorganic fertilization on the soil microbial community structure and its dominated SOC decomposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114155. [PMID: 34861507 DOI: 10.1016/j.jenvman.2021.114155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/20/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The application of organic fertilizers, such as straw and manure, is an efficient approach to maintain soil productivity. However, the effect of these organic fertilizers on soil microbial nutrient balance has not yet been established. In this study, the effects of the long-term combined organic-inorganic fertilization on microbial community were investigated by conducting a 30-year-long field test. Overall, the following five fertilizer groups were employed: inorganic NP fertilizer (NP), inorganic NK fertilizer (NK), inorganic NPK fertilizer (NPK), NPK + manure (MNPK), and NPK + straw (SNPK). The results indicated that the mean natural logarithm of the soil C:N:P acquisition enzyme ratio was 1.04:1.11:1.00 under organic-inorganic treatments, which showed a deviation from its overall mean ratio of 1:1:1. This indicates that microbial resources do not have a balance. Vector analysis (vector angle <45°) and threshold elemental ratio analysis (RC:N-TERC:N > 0) further demonstrated that the microbial metabolism was limited by Nitrogen (N) under SNPK and MNPK treatments. N limitation further influenced soil microbial community structure and its dominated SOC decomposition. Specifically, Microbial communities transformed into a more oligotrophic-dominant condition (fungal, Acidobacteria, Chloroflexi) from copiotrophic-dominant (Proteobacteria, Actinobacteria) condition with increasing N limitation. Lysobacter genus and Blastocatellaceae family, in the bacterial communities along with the Mortierella elongata species in fungal communities, were markedly associated with the N limitation, which could be the critical biomarker that represented N limitation. Both correlation analysis and partial least squares path modeling showed significant positive effects of N limitation on the ratio of bacterial functional genes (Cellulase/Amylase), involved in recalcitrant SOC degradation.
Collapse
Affiliation(s)
- Jiwen Cui
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Ruili Zhu
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Xiya Wang
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Xinpeng Xu
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Chao Ai
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Ping He
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Guoqing Liang
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Wei Zhou
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China.
| | - Ping Zhu
- Jilin Academy of Agricultural Sciences, Gongzhuling, 130124, PR China.
| |
Collapse
|
27
|
Soil bacterial community composition and diversity response to land conversion is depth-dependent. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Tian Q, Jiang Y, Tang Y, Wu Y, Tang Z, Liu F. Soil pH and Organic Carbon Properties Drive Soil Bacterial Communities in Surface and Deep Layers Along an Elevational Gradient. Front Microbiol 2021; 12:646124. [PMID: 34394018 PMCID: PMC8363232 DOI: 10.3389/fmicb.2021.646124] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Elevational gradients strongly affect the spatial distribution and structure of soil bacterial communities. However, our understanding of the effects and determining factors is still limited, especially in the deep soil layer. Here, we investigated the diversity and composition of soil bacterial communities in different soil layers along a 1,500-m elevational gradient in the Taibai Mountain. The variables associated with climate conditions, plant communities, and soil properties were analyzed to assess their contributions to the variations in bacterial communities. Soil bacterial richness and α-diversity showed a hump-shaped trend with elevation in both surface and deep layers. In the surface layer, pH was the main factor driving the elevational pattern in bacterial diversity, while in the deep layer, pH and soil carbon (C) availability were the two main predictors. Bacterial community composition differed significantly along the elevational gradient in all soil layers. In the surface layer, Acidobacteria, Delta-proteobacteria, and Planctomycetes were significantly more abundant in the lower elevation sites than in the higher elevation sites; and Gemmatimonadetes, Chloroflexi, and Beta-proteobacteria were more abundant in the higher elevation sites. In the deep layer, AD3 was most abundant in the highest elevation site. The elevational pattern of community composition co-varied with mean annual temperature, mean annual precipitation, diversity and basal area of trees, pH, soil C availability, and soil C fractions. Statistical results showed that pH was the main driver of the elevational pattern of the bacterial community composition in the surface soil layer, while soil C fractions contributed more to the variance of the bacterial composition in the deep soil layer. These results indicated that changes in soil bacterial communities along the elevational gradient were driven by soil properties in both surface and deep soil layers, which are critical for predicting ecosystem functions under future climate change scenarios.
Collapse
Affiliation(s)
- Qiuxiang Tian
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Ying Jiang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yanan Tang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyao Tang
- Key Laboratory for Earth Surface Processes, Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Feng Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
29
|
Cheng J, Han Z, Cong J, Yu J, Zhou J, Zhao M, Zhang Y. Edaphic variables are better indicators of soil microbial functional structure than plant-related ones in subtropical broad-leaved forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145630. [PMID: 33582323 DOI: 10.1016/j.scitotenv.2021.145630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Soil microorganisms play important roles in the ecosystem functioning of subtropical broad-leaved forests (SBFs). However, the patterns and environmental indicators of soil microbial functional structure remain unclear in SBFs. In the present work, we used a functional microarray (GeoChip 4.0) to examine the soil microbial functional structure of three types of SBFs, including a deciduous broad-leaved forest (DBF), a mixed evergreen-deciduous broad-leaved forest (MBF), and an evergreen broad-leaved forest (EBF). We found that microbial functional structure was significantly different among SBFs (P < 0.05). Compared to the DBF and the EBF, the MBF had higher functional α-diversity (P = 0.001, F = 12.55) but lower β-diversity (P < 0.001, F = 61.09), and showed more complex functional gene networks. Besides, the MBF had higher relative abundances of functional genes for carbon (C) decomposition, C fixation, nitrogen (N) cycling, sulfur (S) cycling, and phosphorus (P) cycling (P < 0.05), indicating stronger microbial functional capabilities of nutrient cycling processes. Edaphic variables (i.e., soil pH and soil nutrient content) were revealed as better indicators of soil microbial functional structure than plant-related ones (i.e., vegetation type and plant diversity) in SBFs. For example, functional gene structure of the DBF was significantly related to soil total S (P = 0.041), that of the MBF was significantly related to soil organic C (P = 0.027) and plant available P (P = 0.034), and that of the EBF was significantly related to soil pH (P = 0.006) and total potassium (K) (P = 0.038). Overall, through the analysis of microbial functional gene profiles, this study yields unique insights into the environmental indicators of patterns and mechanisms of soil microbial functional structure in SBFs.
Collapse
Affiliation(s)
- Jingmin Cheng
- Research Institute of Forest Ecology, Environment and Protection, Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China.
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Jingjing Yu
- Research Institute of Forest Ecology, Environment and Protection, Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China.
| | - Jizhong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Mengxin Zhao
- Research Institute of Forest Ecology, Environment and Protection, Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yuguang Zhang
- Research Institute of Forest Ecology, Environment and Protection, Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
30
|
Shi R, Han T, Xu S, Huang H, Qi Z, Zhu Q. Bacterial community responses to the redox profile changes of mariculture sediment. MARINE POLLUTION BULLETIN 2021; 166:112250. [PMID: 33725565 DOI: 10.1016/j.marpolbul.2021.112250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Suspended mariculture has significantly influences on the benthic sediment. However, our understanding on how bacterial communities respond to mariculture induced changes in redox profiles is limited. In present study, sediments from two maricultures and reference areas were collected and incubated for 28 day. The results indicated that the dominant pathway of organic matter mineralization in the sediment varied from groups, in the reference, it was the iron reduction, but in the two mariculture groups it was the SO42- reduction. Remarkable changes of bacteria community were recorded in the aerobic zone, where the abundances of 14 OTUs belonging to Gammaproteobacteria and Alphaproteobacteria were significantly higher than that in oxidation and anaerobic zones. However, 4 keystone OTUs were strictly anaerobic and belonging to Desulfobacteraceae (n = 3) and Marinilabiaceae (n = 1). The main environmental drivers determining sediment bacterial distribution were the particle organic carbon, dissolve oxygen, NO3-, and moisture content.
Collapse
Affiliation(s)
- Rongjun Shi
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | - Tingting Han
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | - Shumin Xu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | - Honghui Huang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Zhanhui Qi
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China.
| | - Qingzhi Zhu
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA.
| |
Collapse
|
31
|
Wang K, Bi Y, Cao Y, Peng S, Christie P, Ma S, Zhang J, Xie L. Shifts in composition and function of soil fungal communities and edaphic properties during the reclamation chronosequence of an open-cast coal mining dump. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144465. [PMID: 33434846 DOI: 10.1016/j.scitotenv.2020.144465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The diversity, composition and ecological guilds of soil fungal communities in relation to revegetation were assessed during an open-cast mining dump reclamation chronosequence of the soil <1, 5, 10, 15 and 20 years after the start of reclamation. Soil pH and electrical conductivity, total nitrogen (TN), soil organic carbon (SOC), available potassium (AK), and available phosphorus (AP) contents, and soil phosphatase (Pha), urease (U) and invertase (INV) activities were measured. Using high-throughput sequence analysis on internal transcribed spacer (ITS) sequences, 1059 soil fungal operational taxonomic units (OTUs) were identified belonging to 64 orders and these were further categorized by ecological guild. Soil fungal diversity indices were significantly different between the early (<1 year) and later reclamation communities. Nonmetric multidimensional scaling (NMDS) analysis indicates that the composition and ecological guilds of soil fungal communities were significantly different early in the process and at the end of reclamation (P < 0.05). Co-occurrence network and structural equation model analyses show that soil fungal community structure and ecological guilds were correlated with edaphic properties and had an indirect effect on soil available nutrients through direct action on soil enzymes. Overall, the data suggest that soil fungal community composition and function within an open-cast coal mining dump reclamation chronosequence changed during the period following artificial re-vegetation, with interactions between edaphic properties and soil fungal communities associated with these changes.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
| | - Yinli Bi
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China; College of Geology and Environment, Xi'an University of Science and Technology, Shaanxi 710054, China.
| | - Yong Cao
- Shehua Group Zhungeer Energy CO., LTD, Ordos 017000, China
| | - Suping Peng
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
| | - Peter Christie
- College of Geology and Environment, Xi'an University of Science and Technology, Shaanxi 710054, China
| | - Shaopeng Ma
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
| | - Jiayu Zhang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
| | - Linlin Xie
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
| |
Collapse
|
32
|
Wang W, Li J, Ye Z, Wang J, Qu L, Zhang T. Spatial factors and plant attributes influence soil fungal community distribution patterns in the lower reaches of the Heihe River Basin, Northwest China. Environ Microbiol 2021; 23:2499-2508. [PMID: 33728751 DOI: 10.1111/1462-2920.15466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
Inland river basins include critical habitats and provide various ecosystem services in extremely arid lands. However, we know little about the distribution patterns of soil fungal communities in these river basins. We investigated the distribution patterns of soil fungal communities from the riparian oasis zone (ROZ) to the circumjacent desert zone (CDZ) at the lower reaches of the Heihe River. The results indicated that soil fungal communities were mainly dominated by the phyla Ascomycota and Basidiomycota across all samples. The dominant soil fungi taxa were significantly different between ROZ and CDZ habitats at both the phylum and genus levels. Fungal alpha diversity was mainly affected by spatial factors and plant functional traits, and Pearson correlation analysis revealed that fungal alpha diversity was more closely related to plant functional traits than soil properties. Furthermore, fungal community structure was best explained by spatial factors and plant attributes (including plant diversity and plant functional traits). Together, our findings provide new insights into the significance of spatial factors and plant attributes for predicting distributions of fungal communities in arid inland river basins, which will help us better understand the functions and services of these ecosystems.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jingwen Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Ziqi Ye
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jianming Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Laiye Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tianhan Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
33
|
Gao Q, Gao S, Bates C, Zeng Y, Lei J, Su H, Dong Q, Qin Z, Zhao J, Zhang Q, Ning D, Huang Y, Zhou J, Yang Y. The microbial network property as a bio-indicator of antibiotic transmission in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143712. [PMID: 33277004 DOI: 10.1016/j.scitotenv.2020.143712] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/18/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Interspecies interaction is an essential mechanism for bacterial communities to develop antibiotic resistance via horizontal gene transfer. Nonetheless, how bacterial interactions vary along the environmental transmission of antibiotics and the underpinnings remain unclear. To address it, we explore potential microbial associations by analyzing bacterial networks generated from 16S rRNA gene sequences and functional networks containing a large number of antibiotic-resistance genes (ARGs). Antibiotic concentration decreased by more than 4000-fold along the environmental transmission chain from manure samples of swine farms to aerobic compost, compost-amended agricultural soils, and neighboring agricultural soils. Both bacterial and functional networks became larger in nodes and links with decreasing antibiotic concentrations, likely resulting from lower antibiotics stress. Nonetheless, bacterial networks became less clustered with decreasing antibiotic concentrations, while functional networks became more clustered. Modularity, a key topological property that enhances system resilience to antibiotic stress, remained high for functional networks, but the modularity values of bacterial networks were the lowest when antibiotic concentrations were intermediate. To explain it, we identified a clear shift from deterministic processes, particularly variable selection, to stochastic processes at intermediate antibiotic concentrations as the dominant mechanism in shaping bacterial communities. Collectively, our results revealed microbial network dynamics and suggest that the modularity value of association networks could serve as an important indicator of antibiotic concentrations in the environment.
Collapse
Affiliation(s)
- Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuhong Gao
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Colin Bates
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qiang Dong
- Institute of Chemical Defense, Beijing 102205, China
| | - Ziyan Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianshu Zhao
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Qiuting Zhang
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Daliang Ning
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Jizhong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
34
|
Abstract
Microbial communities, coupled with substrate quality and availability, regulate the stock (formation versus mineralization) of soil organic matter (SOM) in terrestrial ecosystems. However, our understanding of how soil microbes interact with contrasting substrates influencing SOM quantity and quality is still very superficial. Here, we used thermodynamic theory principles and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to evaluate the linkages between dissolved organic matter (DOM [organic substrates in soil that are readily available]), thermodynamic quality, and microbial communities. We investigated soils from subtropical paddy ecosystems across a 1,000-km gradient and comprising contrasting levels of SOM content and nutrient availability. Our region-scale study suggested that soils with a larger abundance of readily accessible resources (i.e., lower Gibbs free energy) supported higher levels of microbial diversity and higher SOM content. We further advocated a novel phylotype-level microbial classification based on their associations with OM quantities and qualities and identified two contrasting clusters of bacterial taxa: phylotypes that are highly positively correlated with thermodynamically favorable DOM and larger SOM content versus those which are associated with less-favorable DOM and lower SOM content. Both groups are expected to play critical roles in regulating SOM contents in the soil. By identifying the associations between microbial phylotypes of different life strategies and OM qualities and quantities, our study indicates that thermodynamic theory can act as a proxy for the relationship between OM and soil microbial communities and should be considered in models of soil organic matter preservation.IMPORTANCE Microbial communities are known to be important drivers of organic matter (OM) accumulation in terrestrial ecosystems. However, despite the importance of these soil microbes and processes, the mechanisms behind these microbial-SOM associations remain poorly understood. Here, we used the principles of thermodynamic theory and novel Fourier transform ion cyclotron resonance mass spectrometry techniques to investigate the links between microbial communities and dissolved OM (DOM) thermodynamic quality in soils across a 1,000-km gradient and comprising contrasting nutrient and C contents. Our region-scale study provided evidence that soils with a larger amount of readily accessible resources (i.e., lower Gibbs free energy) supported higher levels of microbial diversity and larger SOM content. Moreover, we created a novel phylotype-level microbial classification based on the associations between microbial taxa and DOM quantities and qualities. We found two contrasting clusters of bacterial taxa based on their level of association with thermodynamically favorable DOM and SOM content. Our study advances our knowledge on the important links between microbial communities and SOM. Moreover, by identifying the associations between microbial phylotypes of different life strategies and OM qualities and quantities, our study indicates that thermodynamic theory can act as a proxy for the relationship between OM and soil microbial communities. Together, our findings support that the association between microbial species taxa and substrate thermodynamic quality constituted an important complement explanation for soil organic matter preservation.
Collapse
|
35
|
Yang C, Zhang X, Ni H, Gai X, Huang Z, Du X, Zhong Z. Soil carbon and associated bacterial community shifts driven by fine root traits along a chronosequence of Moso bamboo (Phyllostachys edulis) plantations in subtropical China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142333. [PMID: 33207507 DOI: 10.1016/j.scitotenv.2020.142333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Moso bamboo (Phyllostachys edulis) is widely considered to be effective in capturing and sequestering atmospheric C, but the long-term effects of extensive management strategies on soil organic carbon (SOC), bacterial communities, fine root (FR, ø ≤ 2 mm) traits, and their inherent connection remain unclear. In this study, we simultaneously measured the SOC content of the bulk and rhizosphere soil fractions, the aggregate stability, the chemical composition of SOC (solid-state 13C nuclear magnetic resonance [NMR]), the bacterial community structure in the rhizosphere, and the FR morphological traits including biomass, specific root length (SRL), and root length density (RLD) along a chronosequence (stand age of 19, 37, and 64 years) of extensively managed Moso bamboo plantations and in an adjacent secondary forest as a control. The organic C content in both the rhizosphere and bulk soil increased rapidly with plantation age in the 0-20- and 20-40-cm soil layers, accompanied by an increase in the aggregate stability. FR traits including biomass, SRL, and RLD also increased continuously in response to soil C:N:P stoichiometry. All of these traits were significantly correlated with SOC, occluded particulate organic C (oPOC), and mineral-associated organic C (MOC), suggesting that FR traits could drive the soil C sequestration with the plantation age. Further analysis indicated that the microbial biomass C (MBC) content, MBC/total organic carbon (TOC) ratio, and bacterial abundance decreased with the plantation age, and the shift from soil oligotrophy to copiotrophy bacteria were mainly driven by changes in FR traits and SOC properties. Such a reassembly of bacterial communities combined with an increase in root biomass is favorable for the accumulation of stable C functional groups (alkyl C or aromatic C). Our findings indicate that extensive management regimes of Moso bamboo plantations could promote long-term soil C sequestration especially in the rhizosphere by promoting the formation of soil aggregates and organic-mineral complexes and by shifting bacterial community composition, and that these changes can be inferred through changes in the FR traits.
Collapse
Affiliation(s)
- Chuanbao Yang
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou 310012, PR China
| | - Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou 310012, PR China
| | - Huijing Ni
- International Centre for Bamboo and Rattan, Key Laboratory of Science and Technology of Bamboo and Rattan of State Forestry Administration, Beijing 100020, PR China
| | - Xu Gai
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou 310012, PR China
| | - Zichen Huang
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou 310012, PR China
| | - Xuhua Du
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou 310012, PR China.
| | - Zheke Zhong
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou 310012, PR China.
| |
Collapse
|
36
|
Premarathne C, Jiang Z, He J, Fang Y, Chen Q, Cui L, Wu Y, Liu S, Chunyu Z, Vijerathna P, Huang X. Low Light Availability Reduces the Subsurface Sediment Carbon Content in Halophila beccarii From the South China Sea. FRONTIERS IN PLANT SCIENCE 2021; 12:664060. [PMID: 34163504 PMCID: PMC8215720 DOI: 10.3389/fpls.2021.664060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/15/2023]
Abstract
Eutrophication, dredging, agricultural and urban runoffs, and epiphyte overgrowth could reduce light availability for seagrass. This may affect "blue carbon" stocks in seagrass beds. However, little research is available on the effect of light intensities on carbon sequestration capacity in seagrass beds, especially small-bodied seagrasses. The dominant seagrass Halophila beccarii, a vulnerable species on the IUCN Red List, was cultured in different light intensities to examine the response of vegetation and sediment carbon in seagrass beds. The results showed that low light significantly reduced leaf length and above-ground biomass, while carbon content in both above-ground and below-ground tissues were not affected. Low light reduced both the above-ground biomass carbon and the total biomass carbon. Interestingly, while under saturating light conditions, the subsurface and surface carbon content was similar, under low light conditions, subsurface sediment carbon was significantly lower than the surface content. The reduction of subsurface sediment carbon might be caused by less release flux of dissolved organic carbon from roots in low light. Taken together, these results indicate that reduced light intensities, to which these meadows are exposed to, will reduce carbon sequestration capacity in seagrass beds. Measures should be taken to eliminate the input of nutrients on seagrass meadows and dredging activities to maintain the "blue carbon" storage service by enhancing light penetration into seagrass.
Collapse
Affiliation(s)
- Chanaka Premarathne
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Zhijian Jiang,
| | - Jialu He
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Fang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiming Chen
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Cui
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Zhao Chunyu
- College of Resources, Environment and Planning, Dezhou University, Dezhou, China
| | | | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Xiaoping Huang,
| |
Collapse
|
37
|
Zheng Y, Han X, Zhao D, Wei K, Yuan Y, Li Y, Liu M, Zhang CS. Exploring Biocontrol Agents From Microbial Keystone Taxa Associated to Suppressive Soil: A New Attempt for a Biocontrol Strategy. FRONTIERS IN PLANT SCIENCE 2021; 12:655673. [PMID: 33959142 PMCID: PMC8095248 DOI: 10.3389/fpls.2021.655673] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 05/02/2023]
Abstract
Recent studies have observed differing microbiomes between disease-suppressive and disease-conducive soils. However, it remains unclear whether the microbial keystone taxa in suppressive soil are critical for the suppression of diseases. Bacterial wilt is a common soil-borne disease caused by Ralstonia solanacearum that affects tobacco plants. In this study, two contrasting tobacco fields with bacterial wilt disease incidences of 0% (disease suppressive) and 100% (disease conducive) were observed. Through amplicon sequencing, as expected, a high abundance of Ralstonia was found in the disease-conducive soil, while large amounts of potential beneficial bacteria were found in the disease-suppressive soil. In the fungal community, an abundance of the Fusarium genus, which contains species that cause Fusarium wilt, showed a positive correlation (p < 0.001) with the abundance of Ralstonia. Network analysis revealed that the healthy plants had more complex bacterial networks than the diseased plants. A total of 9 and 13 bacterial keystone taxa were identified from the disease-suppressive soil and healthy root, respectively. Accumulated abundance of these bacterial keystones showed a negative correlation (p < 0.001) with the abundance of Ralstonia. To complement network analysis, culturable strains were isolated, and three species belonging to Pseudomonas showed high 16S rRNA gene similarity (98.4-100%) with keystone taxa. These strains displayed strong inhibition on pathogens and reduced the incidence of bacterial wilt disease in greenhouse condition. This study highlighted the importance of keystone species in the protection of crops against pathogen infection and proposed an approach to obtain beneficial bacteria through identifying keystone species, avoiding large-scale bacterial isolation and cultivation.
Collapse
Affiliation(s)
- Yanfen Zheng
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaobin Han
- Biological Organic Fertilizer Engineering Technology Center of China Tobacco, Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Donglin Zhao
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Keke Wei
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yuan Yuan
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yiqiang Li
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Minghong Liu
- Biological Organic Fertilizer Engineering Technology Center of China Tobacco, Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
- Minghong Liu,
| | - Cheng-Sheng Zhang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Cheng-Sheng Zhang,
| |
Collapse
|
38
|
Zhou Y, Yao Q, Zhu H. Soil Organic Carbon Attenuates the Influence of Plants on Root-Associated Bacterial Community. Front Microbiol 2020; 11:594890. [PMID: 33240249 PMCID: PMC7680919 DOI: 10.3389/fmicb.2020.594890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
Plant-derived carbon (PDC) released by roots has a strong effect on root-associated bacterial community, which is critical for plant fitness in natural environments. However, the freshly exuded PDC can be diluted by the ancient soil-derived carbon (SDC) at a short distance from root apices. Thus, the rhizosphere C pools are normally dominated by SDC rather than PDC. Yet, how PDC and SDC interact to regulate root-associated bacterial community is largely unknown. In this study, a grass species and a legume species were planted in two contrasting matrixes, quartz sand and soil, to assess the role of PDC and SDC in regulating root-associated bacterial community, and to explore whether SDC affects the influence of PDC on bacterial community in soil. Our results indicated that the legume plant showed significantly positive priming effect on soil organic matter decomposition but the grass plant did not. PDC significantly shaped bacterial community in sand culture as indicated by PCR-DGGE and high-throughput sequencing of bacterial 16S rRNA gene. Intriguingly, we found that dissimilarity of bacterial communities associated with two plant species and the percentage of specific OTUs in quartz sand were significantly higher than those in soil. Moreover, several biomarkers enriched by plants in quartz sand turned to be general taxa in soil, which indicated that SDC attenuated the regulation of bacterial community by PDC. Taken together, these results suggest that SDC interacted with PDC and the root-associated microbial community, thus acted as soil buffering component of biological process contributing to soil resilience. The importance of PDC in structuring rhizosphere bacterial community needs to be reconsidered in the context of wider contribution of other C pool, such as SDC.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- College of Horticulture, South China Agricultural University, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass Science, Guangzhou, China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
39
|
Das Kangabam R, Silla Y, Goswami G, Barooah M. Bacterial Operational Taxonomic Units Replace the Interactive Roles of Other Operational Taxonomic Units Under Strong Environmental Changes. Curr Genomics 2020; 21:512-524. [PMID: 33214767 PMCID: PMC7604743 DOI: 10.2174/1389202921999200716104355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/28/2020] [Accepted: 05/30/2020] [Indexed: 01/22/2023] Open
Abstract
Background Microorganisms are an important component of an aquatic ecosystem and play a critical role in the biogeochemical cycle which influences the circulation of the materials and maintains the balance in aquatic ecosystems. Objective The seasonal variation along with the impact of anthropogenic activities, water quality, bacterial community composition and dynamics in the Loktak Lake, the largest freshwater lake of North East India, located in the Indo-Burma hotspot region was assessed during post-monsoon and winter season through metagenome analysis. Methods Five soil samples were collected during Post-monsoon and winter season from the Loktak Lake that had undergone different anthropogenic impacts. The metagenomic DNA of the soil samples was extracted using commercial metagenomic DNA extraction kits following the manufacturer’s instruction. The extracted DNA was used to prepare the NGS library and sequenced in the Illumina MiSeq platform. Results Metagenomics analysis reveals Proteobacteria as the predominant community followed by Acidobacteria and Actinobacteria. The presence of these groups of bacteria indicates nitrogen fixation, oxidation of iron, sulfur, methane, and source of novel antibiotic candidates. The bacterial members belonging to different groups were involved in various biogeochemical processes, including fixation of carbon and nitrogen, producing streptomycin, gramicidin and perform oxidation of sulfur, sulfide, ammonia, and methane. Conclusion The outcome of this study provides a valuable dataset representing a seasonal profile across various land use and analysis, targeting at establishing an understanding of how the microbial communities vary across the land use and the role of keystone taxa. The findings may contribute to searches for microbial bio-indicators as biodiversity markers for improving the aquatic ecosystem of the Loktak Lake.
Collapse
Affiliation(s)
- Rajiv Das Kangabam
- 1Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India; 2Advanced Computational and Data Sciences Division, CSIR- North East Institute of Science and Technology, Jorhat-785006, India; 3DBT North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India
| | - Yumnam Silla
- 1Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India; 2Advanced Computational and Data Sciences Division, CSIR- North East Institute of Science and Technology, Jorhat-785006, India; 3DBT North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India
| | - Gunajit Goswami
- 1Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India; 2Advanced Computational and Data Sciences Division, CSIR- North East Institute of Science and Technology, Jorhat-785006, India; 3DBT North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India
| | - Madhumita Barooah
- 1Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India; 2Advanced Computational and Data Sciences Division, CSIR- North East Institute of Science and Technology, Jorhat-785006, India; 3DBT North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India
| |
Collapse
|
40
|
Raes EJ, Karsh K, Kessler AJ, Cook PLM, Holmes BH, van de Kamp J, Bodrossy L, Bissett A. Can We Use Functional Genetics to Predict the Fate of Nitrogen in Estuaries? Front Microbiol 2020; 11:1261. [PMID: 32655525 PMCID: PMC7325967 DOI: 10.3389/fmicb.2020.01261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing nitrogen (N) loads present a threat to estuaries, which are among the most heavily populated and perturbed parts of the world. N removal is largely mediated by the sediment microbial process of denitrification, in direct competition to dissimilatory nitrate reduction to ammonium (DNRA), which recycles nitrate to ammonium. Molecular proxies for N pathways are increasingly measured and analyzed, a major question in microbial ecology, however, is whether these proxies can add predictive power around the fate of N. We analyzed the diversity and community composition of sediment nirS and nrfA genes in 11 temperate estuaries, covering four types of land use in Australia, and analyzed how these might be used to predict N removal. Our data suggest that sediment microbiomes play a central role in controlling the magnitude of the individual N removal rates in the 11 estuaries. Inclusion, however, of relative gene abundances of 16S, nirS, nrfA, including their ratios did not improve physicochemical measurement-based regression models to predict rates of denitrification or DNRA. Co-occurrence network analyses of nirS showed a greater modularity and a lower number of keystone OTUs in pristine sites compared to urban estuaries, suggesting a higher degree of niche partitioning in pristine estuaries. The distinctive differences between the urban and pristine network structures suggest that the nirS gene could be a likely gene candidate to understand the mechanisms by which these denitrifying communities form and respond to anthropogenic pressures.
Collapse
Affiliation(s)
- Eric J Raes
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Kristen Karsh
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Adam J Kessler
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC, Australia
| | - Perran L M Cook
- Water Studies Centre, School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Bronwyn H Holmes
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Levente Bodrossy
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| |
Collapse
|
41
|
Soil Microbial Community Assembly and Interactions Are Constrained by Nitrogen and Phosphorus in Broadleaf Forests of Southern China. FORESTS 2020. [DOI: 10.3390/f11030285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Subtropical and tropical broadleaf forests play important roles in conserving biodiversity and regulating global carbon cycle. Nonetheless, knowledge about soil microbial diversity, community composition, turnover and microbial functional structure in sub- and tropical broadleaf forests is scarce. In this study, high-throughput sequencing was used to profile soil microbial community composition, and a micro-array GeoChip 5.0 was used to profile microbial functional gene distribution in four sub- and tropical broadleaf forests (HS, MES, HP and JFL) in southern China. The results showed that soil microbial community compositions differed dramatically among all of four forests. Soil microbial diversities in JFL were the lowest (5.81–5.99) and significantly different from those in the other three forests (6.22–6.39). Furthermore, microbial functional gene interactions were the most complex and closest, likely in reflection to stress associated with the lowest nitrogen and phosphorus contents in JFL. In support of the importance of environmental selection, we found selection (78–96%) dominated microbial community assembly, which was verified by partial Mantel tests showing significant correlations between soil phosphorus and nitrogen content and microbial community composition. Taken together, these results indicate that nitrogen and phosphorus are pivotal in shaping soil microbial communities in sub- and tropical broadleaf forests in southern China. Changes in soil nitrogen and phosphorus, in response to plant growth and decomposition, will therefore have significant changes in both microbial community assembly and interaction.
Collapse
|
42
|
Progressive Microbial Community Networks with Incremental Organic Loading Rates Underlie Higher Anaerobic Digestion Performance. mSystems 2020; 5:5/1/e00357-19. [PMID: 31911462 PMCID: PMC6946792 DOI: 10.1128/msystems.00357-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although biotic interactions among members of microbial communities have been conceived to be crucial for community assembly, it remains unclear how changes in environmental conditions affect microbial interaction and consequently system performance. Here, we adopted a random matrix theory-based network analysis to explore microbial interactions in triplicate anaerobic digestion (AD) systems, which is widely applied for organic pollutant treatments. The digesters were operated with incremental organic loading rates (OLRs) from 1.0 g volatile solids (VS)/liter/day to 1.3 g VS/liter/day and then to 1.5 g VS/liter/day, which increased VS removal and methane production proportionally. Higher resource availability led to networks with higher connectivity and shorter harmonic geodesic distance, suggestive of more intense microbial interactions and quicker responses to environmental changes. Strikingly, a number of topological properties of microbial network showed significant (P < 0.05) correlation with AD performance (i.e., methane production, biogas production, and VS removal). When controlling for environmental parameters (e.g., total ammonia, pH, and the VS load), node connectivity, especially that of the methanogenic archaeal network, still correlated with AD performance. Last, we identified the Methanothermus, Methanobacterium, Chlorobium, and Haloarcula taxa and an unclassified Thaumarchaeota taxon as keystone nodes of the network.IMPORTANCE AD is a biological process widely used for effective waste treatment throughout the world. Biotic interactions among microbes are critical to the assembly and functioning of the microbial community, but the response of microbial interactions to environmental changes and their influence on AD performance are still poorly understood. Using well-replicated time series data of 16S rRNA gene amplicons and functional gene arrays, we constructed random matrix theory-based association networks to characterize potential microbial interactions with incremental OLRs. We demonstrated striking linkage between network topological features of methanogenic archaea and AD functioning independent of environmental parameters. As the intricate balance of multiple microbial functional groups is responsible for methane production, our results suggest that microbial interaction may be an important, previously unrecognized mechanism in determining AD performance.
Collapse
|
43
|
Liu L, Zhu K, Wurzburger N, Zhang J. Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere 2020. [DOI: 10.1002/ecs2.2999] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Lan Liu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station & Shanghai Key Lab for Urban Ecological Processes and Eco‐Restoration School of Ecological and Environmental Sciences East China Normal University Shanghai 200241 China
- Department of Environmental Studies University of California Santa Cruz California 95064 USA
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| | - Kai Zhu
- Department of Environmental Studies University of California Santa Cruz California 95064 USA
| | - Nina Wurzburger
- Odum School of Ecology University of Georgia Athens Georgia 30602 USA
| | - Jian Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station & Shanghai Key Lab for Urban Ecological Processes and Eco‐Restoration School of Ecological and Environmental Sciences East China Normal University Shanghai 200241 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| |
Collapse
|
44
|
Zhao J, Gao Q, Zhou J, Wang M, Liang Y, Sun B, Chu H, Yang Y. The scale dependence of fungal community distribution in paddy soil driven by stochastic and deterministic processes. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Sheng Y, Cong J, Lu H, Yang L, Liu Q, Li D, Zhang Y. Broad-leaved forest types affect soil fungal community structure and soil organic carbon contents. Microbiologyopen 2019; 8:e874. [PMID: 31215766 PMCID: PMC6813455 DOI: 10.1002/mbo3.874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/06/2022] Open
Abstract
Evergreen broad-leaved (EBF) and deciduous broad-leaved (DBF) forests are two important vegetation types in terrestrial ecosystems that play key roles in sustainable biodiversity and global carbon (C) cycling. However, little is known about their associated soil fungal community and the potential metabolic activities involved in biogeochemical processes. In this study, soil samples were collected from EBF and DBF in Shennongjia Mountain, China, and soil fungal community structure and functional gene diversity analyzed based on combined Illumina MiSeq sequencing with GeoChip technologies. The results showed that soil fungal species richness (p = 0.079) and fungal functional gene diversity (p < 0.01) were higher in DBF than EBF. Zygomycota was the most dominant phylum in both broad-leaved forests, and the most dominant genera found in each forest varied (Umbelopsis dominated in DBF, whereas Mortierella dominated in EBF). A total of 4, 439 soil fungi associated functional gene probes involved in C and nitrogen (N) cycling were detected. Interestingly, the relative abundance of functional genes related to labile C degradation (e.g., starch, pectin, hemicellulose, and cellulose) was significantly higher (p < 0.05) in DBF than EBF, and the functional gene relative abundance involved in C cycling was significantly negatively correlated with soil labile organic C (r = -0.720, p = 0.002). In conclusion, the soil fungal community structure and potential metabolic activity showed marked divergence in different broad-leaved forest types, and the higher relative abundance of functional genes involved in C cycling in DBF may be caused by release of loss of organic C in the soil.
Collapse
Affiliation(s)
- Yuyu Sheng
- Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Jing Cong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hui Lu
- Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Linsen Yang
- Shennongjia National Park, Shennongjia, Hubei Province, China
| | - Qiang Liu
- Shennongjia National Park, Shennongjia, Hubei Province, China
| | - Diqiang Li
- Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Yuguang Zhang
- Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
46
|
Hui C, Liu B, Wei R, Jiang H, Zhao Y, Liang Y, Zhang Q, Xu L. Dynamics, biodegradability, and microbial community shift of water-extractable organic matter in rice-wheat cropping soil under different fertilization treatments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:686-695. [PMID: 30933766 DOI: 10.1016/j.envpol.2019.03.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Although fertilization plays an important role in determining the contents of soil dissolved organic matters or water-extractable organic matter (DOM, WEOM), knowledge regarding the dynamics, biodegradability, and microbial community shifts of WEOM in response to different fertilization treatments is very limited, particularly in rice-wheat cropping soil. Thus, in the present study, we performed biodegradation experiments using WEOM extracted from samples of soil that had been subjected to four different fertilization treatments: unfertilized control (CK), chemical fertilizer (CF), 50% chemical fertilizer plus pig manure (PMCF), and 100% chemical fertilizer plus rice straw (SRCF). UV spectrum and fluorescence 3D excitation-emission matrix analyses applied to investigate the chemical composition of WEOM revealed that all examined WEOMs were derived from microbial activity and the dominant portion comprised humic acid-like compounds. After the incubation, 31.17, 31.63, 43.47, and 33.01% of soil WEOM from CK, CF, PMCF, and SRCF treatments, respectively, were biodegraded. PMCF- derived WEOM had the highest biodegradation rate. High-throughput sequencing analyses performed to determine the microbial community before and after the incubation indicated that Sphingomonas, Bacillus, and Flavisolibacter were the predominant bacterial genera in the original inoculum derived from the four fertilization treatments. Following biodegradation, we observed that the dominant bacteria differed according to fertilization treatments: Curvibacter (43.25%) and Sphingobium (10.47%) for CK, Curvibacter (29.68%) and Caulobacter (20.00%) for CF, Azospirillum (23.68%) and Caulobacter (13.29%) for PMCF, and Ralstonia (51.75%) for SRCF. Canonical correspondence analysis revealed that, shifts in the microbial community were closely correlated with pH and specific UV absorbance at 254 nm. We speculated that the inherent traits of different WEOM and the properties of soil solutions under different fertilization treatments shaped the soil microbial community structure, thereby influencing the biodegradation of WEOM.
Collapse
Affiliation(s)
- Cai Hui
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Ran Wei
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Jiang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhua Zhao
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Institute of Soil and Water Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Qichun Zhang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ligen Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Chen L, Xiang W, Wu H, Ouyang S, Lei P, Hu Y, Ge T, Ye J, Kuzyakov Y. Contrasting patterns and drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests. Appl Microbiol Biotechnol 2019; 103:5421-5433. [PMID: 31073876 DOI: 10.1007/s00253-019-09867-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
Subtropical broadleaved forests play a crucial role in supporting terrestrial ecosystem functions, but little is known about their belowground soil fungal communities despite that they have central functions in C, N, and P cycles. This study investigated the structures and identified the drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests, using high-throughput sequencing and FUNGuild for fungal identification and assignment to the trophic guild. Fungal richness was much higher in the deciduous than in the evergreen forest. Both forests were dominated by Ascomycota and Basidiomycota phyla, but saprophytic fungi were more abundant in the deciduous forest and ectomycorrhizal fungi predominated in the evergreen forest. Fungal communities had strong links to plant and soil properties. Specifically, plant diversity and litter biomass were the main aboveground drivers of fungal diversity and composition in the deciduous forest, while host effects were prominent in the evergreen forest. The belowground factors, i.e., soil pH, water content, and nutrients especially available P, were identified as the primary drivers of soil fungal communities in the broadleaved forests. Co-occurrence network analysis revealed assembly of fungal composition in broadleaved forest soils was non-random. The smaller modularity of the network in the deciduous forest reflects lower resistance to environment changes. Concluding, these results showed that plant community attributes, soil properties, and potential interactions among fungal functional guilds operate jointly on the divergence of soil fungal community assembly in the two broadleaved forest types.
Collapse
Affiliation(s)
- Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China. .,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China.
| | - Huili Wu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Shuai Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Pifeng Lei
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Yajun Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Jun Ye
- Australian Centre for Ecogenomics, The University of Queensland, QLD, St. Lucia, 4072, Australia
| | - Yakov Kuzyakov
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, 37077, Göttingen, Germany.,Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russia
| |
Collapse
|
48
|
Zhang Q, Wang M, Ma X, Gao Q, Wang T, Shi X, Zhou J, Zuo J, Yang Y. High variations of methanogenic microorganisms drive full-scale anaerobic digestion process. ENVIRONMENT INTERNATIONAL 2019; 126:543-551. [PMID: 30852441 DOI: 10.1016/j.envint.2019.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic digestion is one of the most successful waste management strategies worldwide, wherein microorganisms play an essential role in reducing organic pollutants and producing renewable energy. However, variations of microbial community in full-scale anaerobic digesters, particularly functional groups relevant to biogas production, remain elusive. Here, we examined microbial community in a year-long monthly time series of 3 full-scale anaerobic digesters. We observed substantial diversification in community composition, with only a few abundant OTUs (e.g. Clostridiales, Anaerolineaceae and Methanosaeta) persistently present across different samples. Similarly, there were high variations in relative abundance of methanogenic archaea and methanogenic genes, which were positively correlated (r2 = 0.530, P < 0.001). Variations of methanogens explained 55.7% of biogas producing rates, much higher than the explanatory percentage of environmental parameters (16.4%). Hydrogenotrophic methanogens, especially abundant Methanomicrobiales taxa, were correlated with biogas production performance (r = 0.665, P < 0.001) and nearly all methanogenic genes (0.430 < r < 0.735, P < 0.012). Given that methanogenic archaea or genes are well established for methanogenesis, we conclude that high variations in methanogenic traits (e.g. taxa or genes) are responsible for biogas production variations in full-scale anaerobic digesters.
Collapse
Affiliation(s)
- Qiuting Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Mengmeng Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China; School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xingyu Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Qun Gao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Tengxu Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Xuchuan Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Jizhong Zhou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA; School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| | - Yunfeng Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
49
|
Zhao M, Sun B, Wu L, Wang F, Wen C, Wang M, Liang Y, Hale L, Zhou J, Yang Y. Dissimilar responses of fungal and bacterial communities to soil transplantation simulating abrupt climate changes. Mol Ecol 2019; 28:1842-1856. [DOI: 10.1111/mec.15053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Mengxin Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment Tsinghua University Beijing China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China
| | - Linwei Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment Tsinghua University Beijing China
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences University of Oklahoma Norman Oklahoma
| | - Feng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China
- Ningbo Academy of Agricultural Sciences Ningbo China
| | - Chongqing Wen
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences University of Oklahoma Norman Oklahoma
- Fisheries College Guangdong Ocean University Zhanjiang China
| | - Mengmeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment Tsinghua University Beijing China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China
| | - Lauren Hale
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences University of Oklahoma Norman Oklahoma
| | - Jizhong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment Tsinghua University Beijing China
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences University of Oklahoma Norman Oklahoma
- Earth and Environmental Sciences Lawrence Berkeley National Laboratory Berkeley California
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment Tsinghua University Beijing China
| |
Collapse
|
50
|
Liao B, Yan X, Zhang J, Chen M, Li Y, Huang J, Lei M, He H, Wang J. Microbial community composition in alpine lake sediments from the Hengduan Mountains. Microbiologyopen 2019; 8:e00832. [PMID: 30848090 PMCID: PMC6741133 DOI: 10.1002/mbo3.832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 11/18/2022] Open
Abstract
Microbial communities in sediments play an important role in alpine lake ecosystems. However, the microbial diversity and community composition of alpine lake sediments from the Hengduan Mountains remain largely unknown. Therefore, based on the Illumina MiSeq platform, high‐throughput sequencing analysis of the 16S rRNA gene was performed on 15 alpine lake sediments collected at different locations in the Hengduan Mountains. The abundance‐based coverage estimate (ACE), Chao1, and Shannon indices indicated that the microbial abundance and diversity of these sediments were high. There are some differences in the composition of microbial communities among sediments. However, in general, Proteobacteria accounted for the largest proportion of all sediments (22.3%–67.6%) and was the dominant phylum. Followed by Bacteroidetes, Acidobacteria, Chloroflexi, and Planctomycetes. In addition, the operational taxonomic unit (OTU) interactions network had modular structures and suggested more cooperation than competition in the microbial community. Besides, we also found that temperature has a significant contribution to the sample–environment relationship. This study revealed the diversity and composition of microbial communities in alpine lake sediments from the Hengduan Mountains, and describe the correlation between microbial community structure and different environmental variables.
Collapse
Affiliation(s)
- Binqiang Liao
- School of Life Science Central South University, Changsha, China
| | - Xiaoxin Yan
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, China
| | - Jiang Zhang
- School of Life Science Central South University, Changsha, China
| | - Ming Chen
- Sanway Gene Technology Inc., Changsha, China
| | - Yanling Li
- Key Laboratory of Plateau Lake Ecology and Environment Change, Institute of Plateau Lake Ecology and Pollution Management, School of Resource Environment and Earth Science, Yunnan University, Kunming, China
| | - Jiafeng Huang
- School of Life Science Central South University, Changsha, China
| | - Ming Lei
- School of Life Science Central South University, Changsha, China
| | - Hailun He
- School of Life Science Central South University, Changsha, China
| | - Jun Wang
- School of Life Science Central South University, Changsha, China.,Sanway Gene Technology Inc., Changsha, China
| |
Collapse
|