1
|
Daniel A, Savary P, Foltête JC, Vuidel G, Faivre B, Garnier S, Khimoun A. What can optimized cost distances based on genetic distances offer? A simulation study on the use and misuse of ResistanceGA. Mol Ecol Resour 2025; 25:e14024. [PMID: 39417711 DOI: 10.1111/1755-0998.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Modelling population connectivity is central to biodiversity conservation and often relies on resistance surfaces reflecting multi-generational gene flow. ResistanceGA (RGA) is a common optimization framework for parameterizing these surfaces by maximizing the fit between genetic distances and cost distances using maximum likelihood population effect models. As the reliability of this framework has rarely been studied, we investigated the conditions maximizing its accuracy for both prediction and interpretation of landscape features' permeability. We ran demo-genetic simulations in contrasted landscapes for species with distinct dispersal capacities and specialization levels, using corresponding reference cost scenarios. We then optimized resistance surfaces from the simulated genetic distances using RGA. First, we evaluated whether RGA identified the drivers of the genetic patterns, that is, distinguished Isolation-by-Resistance (IBR) patterns from either Isolation-by-Distance or patterns unrelated to ecological distances. We then assessed RGA predictive performance using a cross-validation method, and its ability to recover the reference cost scenarios shaping genetic structure in simulations. IBR patterns were well detected and genetic distances were predicted with great accuracy. This performance depended on the strength of the genetic structuring, sampling design and landscape structure. Matching the scale of the genetic pattern by focusing on population pairs connected through gene flow and limiting overfitting through cross-validation further enhanced inference reliability. Yet, the optimized cost values often departed from the reference values, making their interpretation and extrapolation potentially dubious. While demonstrating the value of RGA for predictive modelling, we call for caution and provide additional guidance for its optimal use.
Collapse
Affiliation(s)
| | - Paul Savary
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Gilles Vuidel
- ThéMA, UMR 6049 CNRS, Université Bourgogne-Franche-Comté, Besançon, France
| | - Bruno Faivre
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
| | - Stéphane Garnier
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
| | - Aurélie Khimoun
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
| |
Collapse
|
2
|
Kim YR, Kim HR, Kim JY, Myeong HH, Kang JH, Kim BJ, Lee HJ. Spatio-temporal genetic structure of the striped field mouse (Apodemus agrarius) populations inhabiting national parks in South Korea: Implications for conservation and management of protected areas. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1038058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Population or habitat connectivity is a key component in maintaining species and community-level regional biodiversity as well as intraspecific genetic diversity. Ongoing human activities cause habitat destruction and fragmentation, which exacerbate the connectivity due to restricted animal movements across local habitats, eventually resulting in the loss of biodiversity. The Baekdudaegan Mountain Range (BMR) on the Korean Peninsula represents “biodiversity hotspots” and eight of the 22 Korean national parks are located within the BMR. Given the striped field mouse (Apodemus agrarius) is the most common and ecologically important small mammals in these protected areas, the population genetic assessment of this species will allow for identifying “genetic diversity hotspots” and also “genetic barriers” that may hinder gene flow, and will therefore inform on effective conservation and management efforts for the national park habitats. We collected samples from hair, tail, or buccal swabs for 252 A. agrarius individuals in 2015 and 2019. By using mitochondrial DNA cytochrome b (cyt b) sequences and nine microsatellite loci, we determined levels of genetic diversity, genetic differentiation, and gene flow among eight national park populations of A. agrarius along the BMR. We found high levels of genetic diversity but the occurrences of inbreeding for all the nine samples analyzed. Our results also indicated that there was detectable temporal genetic variation between the 2015 and 2019 populations in the Jirisan National Park, which is probably due to a short-term decline in genetic diversity caused by reduced population sizes. We also found a well-admixed shared gene pool among the national park populations. However, a significant positive correlation between geographic and genetic distances was detected only in mtDNA but not microsatellites, which might be attributed to different dispersal patterns between sexes. There was a genetic barrier to animal movements around the Woraksan National Park areas. The poor habitat connectivity surrounding these areas can be improved by establishing an ecological corridor. Our findings of the presence of genetic barriers in some protected areas provide insights into the conservation and management efforts to improve the population or habitat connectivity among the national parks.
Collapse
|
3
|
Perrin A, Khimoun A, Ollivier A, Richard Y, Pérez-Rodríguez A, Faivre B, Garnier S. Habitat fragmentation matters more than habitat loss: The case of host-parasite interactions. Mol Ecol 2023; 32:951-969. [PMID: 36461661 DOI: 10.1111/mec.16807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
While ecologists agree that habitat loss has a substantial negative effect on biodiversity it is still very much a matter of debate whether habitat fragmentation has a lesser effect and whether this effect is positive or negative for biodiversity. Here, we assess the relative influence of tropical forest loss and fragmentation on the prevalence of vector-borne blood parasites of the genera Plasmodium and Haemoproteus in six forest bird species. We also determine whether habitat loss and fragmentation are associated with a rise or fall in prevalence. We sample more than 4000 individual birds from 58 forest sites in Guadeloupe and Martinique. Considering 34 host-parasite combinations independently and a fine characterization of the amount and spatial configuration of habitat, we use partial least square regressions to disentangle the relative effects of forest loss, forest fragmentation, landscape heterogeneity, and local weather conditions on spatial variability of parasite prevalence. Then we test for the magnitude and the sign of the effect of each environmental descriptor. Strikingly, we show that forest fragmentation explains twice as much of the variance in prevalence as habitat loss or landscape heterogeneity. In addition, habitat fragmentation leads to an overall rise in prevalence in Guadeloupe, but its effect is variable in Martinique. Both habitat loss and landscape heterogeneity exhibit taxon-specific effects. Our results suggest that habitat loss and fragmentation may have contrasting effects between tropical and temperate regions and that inter-specific interactions may not respond in the same way as more commonly used biodiversity metrics such as abundance and diversity.
Collapse
Affiliation(s)
- Antoine Perrin
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Aurélie Khimoun
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Anthony Ollivier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Yves Richard
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Bruno Faivre
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Garnier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
4
|
Daniel A, Savary P, Foltête JC, Khimoun A, Faivre B, Ollivier A, Éraud C, Moal H, Vuidel G, Garnier S. Validating graph-based connectivity models with independent presence-absence and genetic data sets. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14047. [PMID: 36661070 DOI: 10.1111/cobi.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 05/11/2023]
Abstract
Habitat connectivity is a key objective of current conservation policies and is commonly modeled by landscape graphs (i.e., sets of habitat patches [nodes] connected by potential dispersal paths [links]). These graphs are often built based on expert opinion or species distribution models (SDMs) and therefore lack empirical validation from data more closely reflecting functional connectivity. Accordingly, we tested whether landscape graphs reflect how habitat connectivity influences gene flow, which is one of the main ecoevolutionary processes. To that purpose, we modeled the habitat network of a forest bird (plumbeous warbler [Setophaga plumbea]) on Guadeloupe with graphs based on expert opinion, Jacobs' specialization indices, and an SDM. We used genetic data (712 birds from 27 populations) to compute local genetic indices and pairwise genetic distances. Finally, we assessed the relationships between genetic distances or indices and cost distances or connectivity metrics with maximum-likelihood population-effects distance models and Spearman correlations between metrics. Overall, the landscape graphs reliably reflected the influence of connectivity on population genetic structure; validation R2 was up to 0.30 and correlation coefficients were up to 0.71. Yet, the relationship among graph ecological relevance, data requirements, and construction and analysis methods was not straightforward because the graph based on the most complex construction method (species distribution modeling) sometimes had less ecological relevance than the others. Cross-validation methods and sensitivity analyzes allowed us to make the advantages and limitations of each construction method spatially explicit. We confirmed the relevance of landscape graphs for conservation modeling but recommend a case-specific consideration of the cost-effectiveness of their construction methods. We hope the replication of independent validation approaches across species and landscapes will strengthen the ecological relevance of connectivity models.
Collapse
Affiliation(s)
- Alexandrine Daniel
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne-Franche-Comté, Dijon, France
| | - Paul Savary
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne-Franche-Comté, Dijon, France
- ThéMA, UMR 6049 CNRS, Université de Franche-Comté, Besançon, France
- ARP-Astrance, Paris, France
| | | | - Aurélie Khimoun
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne-Franche-Comté, Dijon, France
| | - Bruno Faivre
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne-Franche-Comté, Dijon, France
| | - Anthony Ollivier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne-Franche-Comté, Dijon, France
| | - Cyril Éraud
- Office Français de la Biodiversité, Chizé, France
| | | | - Gilles Vuidel
- ThéMA, UMR 6049 CNRS, Université de Franche-Comté, Besançon, France
| | - Stéphane Garnier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|
5
|
Genetic diversity and spatial genetic structure support the specialist-generalist variation hypothesis in two sympatric woodpecker species. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01451-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSpecies are often arranged along a continuum from “specialists” to “generalists”. Specialists typically use fewer resources, occur in more patchily distributed habitats and have overall smaller population sizes than generalists. Accordingly, the specialist-generalist variation hypothesis (SGVH) proposes that populations of habitat specialists have lower genetic diversity and are genetically more differentiated due to reduced gene flow compared to populations of generalists. Here, expectations of the SGVH were tested by examining genetic diversity, spatial genetic structure and contemporary gene flow in two sympatric woodpecker species differing in habitat specialization. Compared to the generalist great spotted woodpecker (Dendrocopos major), lower genetic diversity was found in the specialist middle spotted woodpecker (Dendrocoptes medius). Evidence for recent bottlenecks was revealed in some populations of the middle spotted woodpecker, but in none of the great spotted woodpecker. Substantial spatial genetic structure and a significant correlation between genetic and geographic distances were found in the middle spotted woodpecker, but only weak spatial genetic structure and no significant correlation between genetic and geographic distances in the great spotted woodpecker. Finally, estimated levels of contemporary gene flow did not differ between the two species. Results are consistent with all but one expectations of the SGVH. This study adds to the relatively few investigations addressing the SGVH in terrestrial vertebrates.
Collapse
|
6
|
Lima-Rezende CA, Cabanne GS, Rocha AV, Carboni M, Zink RM, Caparroz R. A comparative phylogenomic analysis of birds reveals heterogeneous differentiation processes among Neotropical savannas. Mol Ecol 2022; 31:3451-3467. [PMID: 35510775 DOI: 10.1111/mec.16487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
The main objective of this study is to evaluate biogeographic hypotheses of diversification and connection between isolated savannas north (Amazonian savannas) and south (Cerrado core) of the Amazon River. To achieve our goal, we employed genomic markers (genotyping-by-sequencing) to evaluate the genetic structure, population phylogenetic relationships, and historical range shifts of four Neotropical passerines with peri-Atlantic distributions: the Narrow-billed Woodcreeper (Lepidocolaptes angustirostris), the Plain-crested Elaenia (Elaenia cristata), the Grassland Sparrow (Ammodramus humeralis), and the White-banded Tanager (Neothraupis fasciata). The population genetic analyses indicated that landscape (e.g., geographic distance, landscape resistance, and percentage of tree cover) and climate metrics explained divergence among populations in most species, but without indicating a differential role between current and historical factors. Our results did not fully support the hypothesis that isolated populations at Amazonian savannas have been recently derived from the Cerrado core domain. Intraspecific phylogenies and gene flow analyses supported multiple routes of connection between the Cerrado and Amazonian savannas, rejecting the hypothesis that the Atlantic corridor explains the peri-Atlantic distribution. Our results reveal that the biogeographic history of the region is complex and cannot be explained by simple vicariant models.
Collapse
Affiliation(s)
- Cássia Alves Lima-Rezende
- División de Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" - CONICET, Buenos Aires, Argentina
| | - Gustavo S Cabanne
- División de Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" - CONICET, Buenos Aires, Argentina
| | - Amanda Vaz Rocha
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Martin Carboni
- División de Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" - CONICET, Buenos Aires, Argentina
| | - Robert M Zink
- School of Natural Resources, School of Biological Sciences, and Nebraska State Museum, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Renato Caparroz
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
7
|
Turnover-driven loss of forest-dependent species changes avian species richness, functional diversity, and community composition in Andean forest fragments. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Vaccaro AS, Filloy J, Bellocq MI. Bird taxonomic and functional diversity in urban settlements within a forest biome vary with the landscape matrix. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Perrin A, Khimoun A, Faivre B, Ollivier A, de Pracontal N, Théron F, Loubon M, Leblond G, Duron O, Garnier S. Habitat fragmentation differentially shapes neutral and immune gene variation in a tropical bird species. Heredity (Edinb) 2021; 126:148-162. [PMID: 32934360 PMCID: PMC7853120 DOI: 10.1038/s41437-020-00366-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/30/2020] [Accepted: 08/30/2020] [Indexed: 01/11/2023] Open
Abstract
Habitat fragmentation is a major cause of biodiversity loss, responsible for an alteration of intraspecific patterns of neutral genetic diversity and structure. Although neutral genetic variation can be informative for demographic inferences, it may be a poor predictor of adaptive genetic diversity and thus of the consequences of habitat fragmentation on selective evolutionary processes. In this context, we contrasted patterns of genetic diversity and structure of neutral loci (microsatellites) and immune genes (i.e., toll-like receptors) in an understorey bird species, the wedge-billed woodcreeper Glyphorynchus spirurus. The objectives were (1) to investigate forest fragmentation effects on population genetic diversity, (2) to disentangle the relative role of demography (genetic drift and migration) and selection, and (3) to assess whether immunogenetic patterns could be associated with variation of ectoparasite (i.e., ticks) pressures. Our results revealed an erosion of neutral genetic diversity and a substantial genetic differentiation among fragmented populations, resulting from a decrease in landscape connectivity and leading to the divergence of distinct genetic pools at a small spatial scale. Patterns of genetic diversity observed for TLR4 and TLR5 were concordant with neutral genetic patterns, whereas those observed for TLR3 and TLR21 were discordant. This result underlines that the dominant evolutionary force shaping immunogenetic diversity (genetic drift vs. selection) may be different depending on loci considered. Finally, tick prevalence was higher in fragmented environments. We discussed the hypothesis that pathogen selective pressures may contribute to maintain adaptive genetic diversity despite the negative demographic effect of habitat fragmentation on neutral genetic diversity.
Collapse
Affiliation(s)
- Antoine Perrin
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France.
| | - Aurélie Khimoun
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Bruno Faivre
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Anthony Ollivier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Nyls de Pracontal
- Groupe d'Etude et de Protection des Oiseaux en Guyane, 431 route d'Attila Cabassou, 97354, Rémire-Montjoly, France
| | - Franck Théron
- Groupe d'Etude et de Protection des Oiseaux en Guyane, 431 route d'Attila Cabassou, 97354, Rémire-Montjoly, France
| | - Maxime Loubon
- Groupe d'Etude et de Protection des Oiseaux en Guyane, 431 route d'Attila Cabassou, 97354, Rémire-Montjoly, France
| | - Gilles Leblond
- SARL BIOS, Route de Davidon, Duzer, 97115, Sainte-Rose, France
| | - Olivier Duron
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Stéphane Garnier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| |
Collapse
|
10
|
Botero-Delgadillo E, Quirici V, Poblete Y, Acevedo M, Cuevas É, Bravo C, Cragnolini M, Rozzi R, Poulin E, Mueller JC, Kempenaers B, Vásquez RA. Range-wide genetic structure in the thorn-tailed rayadito suggests limited gene flow towards peripheral populations. Sci Rep 2020; 10:9409. [PMID: 32523081 PMCID: PMC7287099 DOI: 10.1038/s41598-020-66450-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Understanding the population genetic consequences of habitat heterogeneity requires assessing whether patterns of gene flow correspond to landscape configuration. Studies of the genetic structure of populations are still scarce for Neotropical forest birds. We assessed range-wide genetic structure and contemporary gene flow in the thorn-tailed rayadito (Aphrastura spinicauda), a passerine bird inhabiting the temperate forests of South America. We used 12 microsatellite loci to genotype 582 individuals from eight localities across a large latitudinal range (30°S–56°S). Using population structure metrics, multivariate analyses, clustering algorithms, and Bayesian methods, we found evidence for moderately low regional genetic structure and reduced gene flow towards the range margins. Genetic differentiation increased with geographic distance, particularly in the southern part of the species’ distribution where forests are continuously distributed. Populations in the north seem to experience limited gene flow likely due to forest discontinuity, and may comprise a demographically independent unit. The southernmost population, on the other hand, is genetically depauperate and different from all other populations. Different analytical approaches support the presence of three to five genetic clusters. We hypothesize that the genetic structure of the species follows a hierarchical clustered pattern.
Collapse
Affiliation(s)
- Esteban Botero-Delgadillo
- Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. .,Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany. .,SELVA: Research for conservation in the Neotropics, Bogotá, Colombia.
| | - Veronica Quirici
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile.,Centro de investigación para la sustentabilidad, Universidad Andrés Bello, Santiago, Chile
| | - Yanina Poblete
- Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Matías Acevedo
- Programa de Magister en Áreas Silvestres y Conservación de la Naturaleza, Facultad de Ciencias Forestales y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| | - Élfego Cuevas
- Doctorado en Medicina de la Conservación, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile
| | - Camila Bravo
- Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Margherita Cragnolini
- Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany
| | - Ricardo Rozzi
- Programa de Conservación Biocultural Sub-Antártica, Parque Etnobotánico Omora, Universidad de Magallanes & Instituto de Ecología y Biodiversidad, Santiago, Chile.,Sub-Antarctic Biocultural Conservation Program, Department of Philosophy and Religion & Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Elie Poulin
- Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jakob C Mueller
- Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany
| | - Rodrigo A Vásquez
- Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Thatte P, Chandramouli A, Tyagi A, Patel K, Baro P, Chhattani H, Ramakrishnan U. Human footprint differentially impacts genetic connectivity of four wide‐ranging mammals in a fragmented landscape. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.13022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Prachi Thatte
- National Center for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | - Anuradha Chandramouli
- National Center for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | - Abhinav Tyagi
- National Center for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | - Kaushal Patel
- National Center for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | - Phulmani Baro
- National Center for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | - Himanshu Chhattani
- National Center for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | - Uma Ramakrishnan
- National Center for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| |
Collapse
|
12
|
Kjeldsen SR, Raadsma HW, Leigh KA, Tobey JR, Phalen D, Krockenberger A, Ellis WA, Hynes E, Higgins DP, Zenger KR. Genomic comparisons reveal biogeographic and anthropogenic impacts in the koala (Phascolarctos cinereus): a dietary-specialist species distributed across heterogeneous environments. Heredity (Edinb) 2019; 122:525-544. [PMID: 30209291 PMCID: PMC6461856 DOI: 10.1038/s41437-018-0144-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/07/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023] Open
Abstract
The Australian koala is an iconic marsupial with highly specific dietary requirements distributed across heterogeneous environments, over a large geographic range. The distribution and genetic structure of koala populations has been heavily influenced by human actions, specifically habitat modification, hunting and translocation of koalas. There is currently limited information on population diversity and gene flow at a species-wide scale, or with consideration to the potential impacts of local adaptation. Using species-wide sampling across heterogeneous environments, and high-density genome-wide markers (SNPs and PAVs), we show that most koala populations display levels of diversity comparable to other outbred species, except for those populations impacted by population reductions. Genetic clustering analysis and phylogenetic reconstruction reveals a lack of support for current taxonomic classification of three koala subspecies, with only a single evolutionary significant unit supported. Furthermore, ~70% of genetic variance is accounted for at the individual level. The Sydney Basin region is highlighted as a unique reservoir of genetic diversity, having higher diversity levels (i.e., Blue Mountains region; AvHecorr=0.20, PL% = 68.6). Broad-scale population differentiation is primarily driven by an isolation by distance genetic structure model (49% of genetic variance), with clinal local adaptation corresponding to habitat bioregions. Signatures of selection were detected between bioregions, with no single region returning evidence of strong selection. The results of this study show that although the koala is widely considered to be a dietary-specialist species, this apparent specialisation has not limited the koala's ability to maintain gene flow and adapt across divergent environments as long as the required food source is available.
Collapse
Affiliation(s)
- Shannon R Kjeldsen
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia.
| | - Herman W Raadsma
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, Private Mail Bag 4003, Narellan, NSW, 2570, Australia
| | - Kellie A Leigh
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, Private Mail Bag 4003, Narellan, NSW, 2570, Australia
- Science for Wildlife, PO Box 286, Cammeray, NSW, 2062, Australia
| | - Jennifer R Tobey
- San Diego Zoo Institute for Conservation Research, Escondido, CA, 92027, USA
| | - David Phalen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, Private Mail Bag 4003, Narellan, NSW, 2570, Australia
| | - Andrew Krockenberger
- Centre for Tropical Biodiversity and Climate Change, Division of Research and Innovation, James Cook University, Cairns, QLD, 4878, Australia
| | - William A Ellis
- School of Agriculture and Food Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Emily Hynes
- Ecoplan Australia, PO Box 968, Torquay, VIC, 3228, Australia
| | - Damien P Higgins
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kyall R Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
13
|
Grundler MR, Singhal S, Cowan MA, Rabosky DL. Is genomic diversity a useful proxy for census population size? Evidence from a species-rich community of desert lizards. Mol Ecol 2019; 28:1664-1674. [PMID: 30739375 DOI: 10.1111/mec.15042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
Abstract
Species abundance data are critical for testing ecological theory, but obtaining accurate empirical estimates for many taxa is challenging. Proxies for species abundance can help researchers circumvent time and cost constraints that are prohibitive for long-term sampling. Under simple demographic models, genetic diversity is expected to correlate with census size, such that genome-wide heterozygosity may provide a surrogate measure of species abundance. We tested whether nucleotide diversity is correlated with long-term estimates of abundance, occupancy and degree of ecological specialization in a diverse lizard community from arid Australia. Using targeted sequence capture, we obtained estimates of genomic diversity from 30 species of lizards, recovering an average of 5,066 loci covering 3.6 Mb of DNA sequence per individual. We compared measures of individual heterozygosity to a metric of habitat specialization to investigate whether ecological preference exerts a measurable effect on genetic diversity. We find that heterozygosity is significantly correlated with species abundance and occupancy, but not habitat specialization. Demonstrating the power of genomic sampling, the correlation between heterozygosity and abundance/occupancy emerged from considering just one or two individuals per species. However, genetic diversity does no better at predicting abundance than a single day of traditional sampling in this community. We conclude that genetic diversity is a useful proxy for regional-scale species abundance and occupancy, but a large amount of unexplained variation in heterozygosity suggests additional constraints or a failure of ecological sampling to adequately capture variation in true population size.
Collapse
Affiliation(s)
- Maggie R Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan.,Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, California
| | - Sonal Singhal
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan.,Department of Biology, CSU Dominguez Hills, Carson, California
| | - Mark A Cowan
- Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Kobayashi T, Sota T. Contrasting effects of habitat discontinuity on three closely related fungivorous beetle species with diverging host-use patterns and dispersal ability. Ecol Evol 2019; 9:2475-2486. [PMID: 30891194 PMCID: PMC6405892 DOI: 10.1002/ece3.4862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
Understanding how landscape structure influences biodiversity patterns and ecological processes are essential in ecological research and conservation practices. Forest discontinuity is a primary driver affecting the population persistence and genetic structure of forest-dwelling species. However, the actual impacts on populations are highly species-specific. In this study, we tested whether dispersal capability and host specialization are associated with susceptibility to forest discontinuity using three closely related, sympatric fungivorous ciid beetle species (two host specialists, Octotemnus assimilis and O. crassus; one host generalist, O. kawanabei). Landscape genetic analyses and the estimation of effective migration surfaces (EEMS) method consistently demonstrated contrasting differences in the relationships between genetic structure and configuration of forest land cover. Octotemnus assimilis, one of the specialists with a presumably higher dispersal capability due to lower wing loading, lacked a definite spatial genetic structure in our study landscape. The remaining two species showed clear spatial genetic structure, but the results of landscape genetic analyses differed between the two species: while landscape resistance appeared to describe the spatial genetic structure of the specialist O. crassus, genetic differentiation of the generalist O. kawanabei was explained by geographic distance alone. This finding is consistent with the prediction that nonforest areas act more strongly as barriers between specialist populations. Our results suggest that differences in host range can influence the species-specific resistance to habitat discontinuity among closely related species inhabiting the same landscape.
Collapse
Affiliation(s)
- Takuya Kobayashi
- Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan
| | - Teiji Sota
- Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan
| |
Collapse
|
15
|
Warren BH, Hagen O, Gerber F, Thébaud C, Paradis E, Conti E. Evaluating alternative explanations for an association of extinction risk and evolutionary uniqueness in multiple insular lineages. Evolution 2018; 72:2005-2024. [DOI: 10.1111/evo.13582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/16/2018] [Accepted: 08/07/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Ben H. Warren
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRSSorbonne Université EPHE, CP 51, 57 Rue Cuvier 75005 Paris France
- Department of Systematic and Evolutionary BotanyUniversity of Zurich Zollikerstrasse 107, 8008 Zurich Switzerland
| | - Oskar Hagen
- Swiss Federal Research Institute WSL 8903 Birmensdorf Switzerland
- Landscape EcologyInstitute of Terrestrial Ecosystems ETH Zurich 8092 Zurich Switzerland
| | - Florian Gerber
- Department of MathematicsUniversity of Zurich 8057 Zurich Switzerland
| | - Christophe Thébaud
- Laboratoire Evolution et Diversité BiologiqueUMR 5174 CNRS‐Université Paul Sabatier‐ENFA 31062 Toulouse Cedex 9 France
| | | | - Elena Conti
- Department of Systematic and Evolutionary BotanyUniversity of Zurich Zollikerstrasse 107, 8008 Zurich Switzerland
| |
Collapse
|
16
|
Delord C, Lassalle G, Oger A, Barloy D, Coutellec M, Delcamp A, Evanno G, Genthon C, Guichoux E, Le Bail P, Le Quilliec P, Longin G, Lorvelec O, Massot M, Reveillac E, Rinaldo R, Roussel J, Vigouroux R, Launey S, Petit EJ. A cost‐and‐time effective procedure to develop
SNP
markers for multiple species: A support for community genetics. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chrystelle Delord
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
- HYDRECO Guyane SARLLaboratoire‐Environnement de Petit Saut Kourou France
| | - Gilles Lassalle
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | - Adrien Oger
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | - Dominique Barloy
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | | | | | - Guillaume Evanno
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | | | | | | | | | | | - Olivier Lorvelec
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | | | - Elodie Reveillac
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | | | | | - Regis Vigouroux
- HYDRECO Guyane SARLLaboratoire‐Environnement de Petit Saut Kourou France
| | - Sophie Launey
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| | - Eric J. Petit
- ESE, Ecology and Ecosystem HealthAgrocampus OuestINRA Rennes France
| |
Collapse
|
17
|
Khimoun A, Peterman W, Eraud C, Faivre B, Navarro N, Garnier S. Landscape genetic analyses reveal fine-scale effects of forest fragmentation in an insular tropical bird. Mol Ecol 2017; 26:4906-4919. [DOI: 10.1111/mec.14233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Aurélie Khimoun
- CNRS; Biogéosciences UMR6282; Université Bourgogne Franche-Comté; Dijon France
| | - William Peterman
- School of Environment and Natural Resources; The Ohio State University; Columbus OH USA
| | - Cyril Eraud
- CNERA Avifaune Migratrice; Office National de la Chasse et de la Faune Sauvage; Villiers en Bois France
| | - Bruno Faivre
- CNRS; Biogéosciences UMR6282; Université Bourgogne Franche-Comté; Dijon France
| | - Nicolas Navarro
- CNRS; Biogéosciences UMR6282; Université Bourgogne Franche-Comté; Dijon France
- EPHE; PSL Research University Paris; Dijon France
| | - Stéphane Garnier
- CNRS; Biogéosciences UMR6282; Université Bourgogne Franche-Comté; Dijon France
| |
Collapse
|
18
|
Menger J, Henle K, Magnusson WE, Soro A, Husemann M, Schlegel M. Genetic diversity and spatial structure of the Rufous-throated Antbird ( Gymnopithys rufigula), an Amazonian obligate army-ant follower. Ecol Evol 2017; 7:2671-2684. [PMID: 28428858 PMCID: PMC5395437 DOI: 10.1002/ece3.2880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/23/2022] Open
Abstract
Amazonian understory antbirds are thought to be relatively sedentary and to have limited dispersal ability; they avoid crossing forest gaps, and even narrow roads through a forest may limit their territories. However, most evidence for sedentariness in antbirds comes from field observations and plot‐based recapture of adult individuals, which do not provide evidence for lack of genetic dispersal, as this often occurs through juveniles. In this study, we used microsatellite markers and mitochondrial control‐region sequences to investigate contemporary and infer historical patterns of genetic diversity and structure of the Rufous‐throated Antbird (Gymnopithys rufigula) within and between two large reserves in central Amazonia. Analyses based on microsatellites suggested two genetically distinct populations and asymmetrical gene flow between them. Within a population, we found a lack of genetic spatial autocorrelation, suggesting that genotypes are randomly distributed and that G. rufigula may disperse longer distances than expected for antbirds. Analyses based on mitochondrial sequences did not recover two clear genetic clusters corresponding to the two reserves and indicated the whole population of the Rufous‐throated Antbird in the region has been expanding over the last 50,000 years. Historical migration rates were low and symmetrical between the two reserves, but we found evidence for a recent unilateral increase in gene flow. Recent differentiation between individuals of the two reserves and a unilateral increase in gene flow suggest that recent urban expansion and habitat loss may be driving changes and threatening populations of Rufous‐throated Antbird in central Amazonia. As ecological traits and behavioral characteristics affect patterns of gene flow, comparative studies of other species with different behavior and ecological requirements will be necessary to better understand patterns of genetic dispersal and effects of urban expansion on Amazonian understory antbirds.
Collapse
Affiliation(s)
- Juliana Menger
- UFZ - Helmholtz Centre for Environmental Research Department of Conservation Biology Leipzig Germany.,Faculty of Biosciences, Pharmacy and Psychology University of Leipzig Leipzig Germany.,INPA - Coordenação de Pesquisa em Biodiversidade Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
| | - Klaus Henle
- UFZ - Helmholtz Centre for Environmental Research Department of Conservation Biology Leipzig Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig Leipzig Germany
| | - William E Magnusson
- INPA - Coordenação de Pesquisa em Biodiversidade Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
| | - Antonella Soro
- General Zoology Institute of Biology Martin-Luther-University Halle-Wittenberg Halle Germany
| | - Martin Husemann
- Centrum für Naturkunde University of Hamburg Hamburg Germany
| | - Martin Schlegel
- Faculty of Biosciences, Pharmacy and Psychology University of Leipzig Leipzig Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig Leipzig Germany
| |
Collapse
|
19
|
Khimoun A, Ollivier A, Faivre B, Garnier S. Level of genetic differentiation affects relative performances of expressed sequence tag and genomic SSRs. Mol Ecol Resour 2017; 17:893-903. [PMID: 27978606 DOI: 10.1111/1755-0998.12642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/26/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022]
Abstract
Microsatellites, also called simple sequence repeats (SSRs), are markers of choice to estimate relevant parameters for conservation genetics, such as migration rates, effective population size and kinship. Cross-amplification of SSRs is the simplest way to obtain sets of markers, and highly conserved SSRs have recently been developed from expressed sequence tags (EST) to improve SSR cross-species utility. As EST-SSRs are located in coding regions, the higher stability of their flanking regions reduces the frequency of null alleles and improves cross-species amplification. However, EST-SSRs have generally less allelic variability than genomic SSRs, potentially leading to differences in estimates of population genetic parameters such as genetic differentiation. To assess the potential of EST-SSRs in studies of within-species genetic diversity, we compared the relative performance of EST- and genomic SSRs following a multispecies approach on passerine birds. We tested whether patterns and levels of genetic diversity within and between populations assessed from EST- and from genomic SSRs are congruent, and we investigated how the relative efficiency of EST- and genomic SSRs is influenced by levels of differentiation. EST- and genomic SSRs ensured comparable inferences of population genetic structure in cases of strong genetic differentiation, and genomic SSRs performed slightly better than EST-SSRs when differentiation is moderate. However and interestingly, EST-SSRs had a higher power to detect weak genetic structure compared to genomic SSRs. Our study attests that EST-SSRs may be valuable molecular markers for conservation genetic studies in taxa such as birds, where the development of genomic SSRs is impeded by their low frequency.
Collapse
Affiliation(s)
- Aurélie Khimoun
- Biogéosciences UMR6282, CNRS, Univ. Bourgogne Franche-Comté, Equipe BIOME, 6 bd Gabriel, 21000, Dijon, France
| | - Anthony Ollivier
- Biogéosciences UMR6282, CNRS, Univ. Bourgogne Franche-Comté, Equipe BIOME, 6 bd Gabriel, 21000, Dijon, France
| | - Bruno Faivre
- Biogéosciences UMR6282, CNRS, Univ. Bourgogne Franche-Comté, Equipe BIOME, 6 bd Gabriel, 21000, Dijon, France
| | - Stéphane Garnier
- Biogéosciences UMR6282, CNRS, Univ. Bourgogne Franche-Comté, Equipe BIOME, 6 bd Gabriel, 21000, Dijon, France
| |
Collapse
|