1
|
Sadler DE, Sävilammi T, van Dijk SN, Watts PC, Uusi‐Heikkilä S. Size-selective harvesting drives genomic shifts in a harvested population. JOURNAL OF FISH BIOLOGY 2024; 105:1562-1571. [PMID: 39115138 PMCID: PMC11650958 DOI: 10.1111/jfb.15901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 12/18/2024]
Abstract
Overfishing not only drastically reduces the number of fish in an exploited population but is also often selective for body size by removing the largest individuals from a population. Here, we study experimentally the evolutionary effects of size-selective harvesting using whole-genome sequencing on a model organism, the zebrafish (Danio rerio). We demonstrate genomic shifts in the populations exposed to size-selective harvesting for five generations and show reduced genetic diversity in all harvested lines, including the control line (non-size-selected). We also determine differences in groups of genes related to certain gene ontology annotations between size-selectively harvested lines, with enrichment in nervous system related genes in the large-selected lines. Our results illuminate the biological processes underlying fisheries-induced genetic changes and hence contribute toward the understanding of the changes potentially associated with the vulnerability of an exploited population to future stressors.
Collapse
Affiliation(s)
- Daniel E. Sadler
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| | - Tiina Sävilammi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Stephan N. van Dijk
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Phillip C. Watts
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Silva Uusi‐Heikkilä
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
2
|
van Dijk SN, Sadler DE, Watts PC, Uusi-Heikkilä S. Fisheries-induced life-history changes recover in experimentally harvested fish populations. Biol Lett 2024; 20:20240319. [PMID: 39503198 PMCID: PMC11539050 DOI: 10.1098/rsbl.2024.0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 09/17/2024] [Indexed: 11/09/2024] Open
Abstract
Overfishing is one of the greatest threats to fish populations. Size-selective harvesting favours faster juvenile growth, younger maturation, small adult body size and low reproductive output. Such changes might be slow to recover and ultimately threaten population fitness and survival. To study the recovery potential of exploited experimental populations, we compared life-history traits in three differently size-selected experimental lines (large-selected, small-selected and random-selected) after five generations of harvesting and 10 subsequent generations of recovery (i.e. cessation of harvesting). We show that after a recovery period twice as long as the harvesting period, the differences in adult body size among the selection lines have eroded. While there was still a significant body size difference among the selection lines, this did not translate to differences in reproductive success. Although size-selective harvesting causes phenotypic changes in exploited fish populations, we show that such changes are reversible if the recovery period is long enough.
Collapse
Affiliation(s)
- Stephan N. van Dijk
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Daniel E. Sadler
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Phillip C. Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Silva Uusi-Heikkilä
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
3
|
Paris JR, Nitta Fernandes FA, Pirri F, Greco S, Gerdol M, Pallavicini A, Benoiste M, Cornec C, Zane L, Haas B, Le Bohec C, Trucchi E. Gene Expression Shifts in Emperor Penguin Adaptation to the Extreme Antarctic Environment. Mol Ecol 2024:e17552. [PMID: 39415606 DOI: 10.1111/mec.17552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Gene expression can accelerate ecological divergence by rapidly tweaking the response of an organism to novel environments, with more divergent environments exerting stronger selection and supposedly, requiring faster adaptive responses. Organisms adapted to extreme environments provide ideal systems to test this hypothesis, particularly when compared to related species with milder ecological niches. The Emperor penguin (Aptenodytes forsteri) is the only endothermic vertebrate breeding in the harsh Antarctic winter, in stark contrast with the less cold-adapted sister species, the King penguin (A. patagonicus). Assembling the first de novo transcriptomes and analysing multi-tissue (brain, kidney, liver, muscle, skin) RNA-Seq data from natural populations of both species, we quantified the shifts in tissue-enhanced genes, co-expression gene networks, and differentially expressed genes characterising Emperor penguin adaptation to the extreme Antarctic. Our analyses revealed the crucial role played by muscle and liver in temperature homeostasis, fasting, and whole-body energy metabolism (glucose/insulin regulation, lipid metabolism, fatty acid beta-oxidation, and blood coagulation). Repatterning at the regulatory level appears as more important in the brain of the Emperor penguin, showing the lowest signature of differential gene expression, but the largest co-expression gene network shift. Nevertheless, over-expressed genes related to mTOR signalling in the brain and the liver support their central role in cold and fasting responses. Besides contributing to understanding the genetics underlying complex traits, like body energy reservoir management, our results provide a first insight into the role of gene expression in adaptation to one of the most extreme environmental conditions endured by an endotherm.
Collapse
Affiliation(s)
- Josephine R Paris
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Flávia A Nitta Fernandes
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Federica Pirri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Marine Benoiste
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Clément Cornec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, University of Lyon, Saint-Etienne, France
| | - Lorenzo Zane
- Department of Biology, University of Padova, Padova, Italy
| | - Brian Haas
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Monaco
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
4
|
Sadler DE, Watts PC, Uusi-Heikkilä S. Directional selection, not the direction of selection, affects telomere length and copy number at ribosomal RNA loci. Sci Rep 2024; 14:12162. [PMID: 38802448 PMCID: PMC11130246 DOI: 10.1038/s41598-024-63030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
Many fisheries exert directional selection on traits such as body size and growth rate. Whether directional selection impacts regions of the genome associated with traits related to growth is unknown. To address this issue, we characterised copy number variation in three regions of the genome associated with cell division, (1) telomeric DNA, (2) loci transcribed as ribosomal RNA (rDNA), and (3) mitochondrial DNA (mtDNA), in three selection lines of zebrafish reared at three temperatures (22 °C, 28 °C, and 34 °C). Selection lines differed in (1) the direction of selection (two lines experienced directional selection for large or small body size) and (2) whether they experienced any directional selection itself. Lines that had experienced directional selection were smaller, had lower growth rate, shorter telomeres, and lower rDNA copy number than the line that experiencing no directional selection. Neither telomere length nor rDNA copy number were affected by temperature. In contrast, mtDNA content increased at elevated temperature but did not differ among selection lines. Though directional selection impacts rDNA and telomere length, direction of such selection did not matter, whereas mtDNA acts as a stress marker for temperature. Future work should examine the consequences of these genomic changes in natural fish stocks.
Collapse
Affiliation(s)
- Daniel E Sadler
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Silva Uusi-Heikkilä
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| |
Collapse
|
5
|
Sadler DE, van Dijk S, Karjalainen J, Watts PC, Uusi‐Heikkilä S. Does size-selective harvesting erode adaptive potential to thermal stress? Ecol Evol 2024; 14:e11007. [PMID: 38333098 PMCID: PMC10850808 DOI: 10.1002/ece3.11007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Overharvesting is a serious threat to many fish populations. High mortality and directional selection on body size can cause evolutionary change in exploited populations via selection for a specific phenotype and a potential reduction in phenotypic diversity. Whether the loss of phenotypic diversity that accompanies directional selection impairs response to environmental stress is not known. To address this question, we exposed three zebrafish selection lines to thermal stress. Two lines had experienced directional selection for (1) large and (2) small body size, and one was (3) subject to random removal of individuals with respect to body size (i.e. line with no directional selection). Selection lines were exposed to three temperatures (elevated, 34°C; ambient, 28°C; low, 22°C) to determine the response to an environmental stressor (thermal stress). We assessed differences among selection lines in their life history (growth and reproduction), physiological traits (metabolic rate and critical thermal max) and behaviour (activity and feeding behaviour) when reared at different temperatures. Lines experiencing directional selection (i.e. size selected) showed reduced growth rate and a shift in average phenotype in response to lower or elevated thermal stress compared with fish from the random-selected line. Our data indicate that populations exposed to directional selection can have a more limited capacity to respond to thermal stress compared with fish that experience a comparable reduction in population size (but without directional selection). Future studies should aim to understand the impacts of environmental stressors on natural fish stocks.
Collapse
Affiliation(s)
- Daniel E. Sadler
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Stephan van Dijk
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Juha Karjalainen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Phillip C. Watts
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Silva Uusi‐Heikkilä
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
6
|
Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Bull JK, Stanford BCM, Bokvist JK, Josephson MP, Rogers SM. Environment and genotype predict the genomic nature of domestication of salmonids as revealed by gene expression. Proc Biol Sci 2022; 289:20222124. [PMID: 36475438 PMCID: PMC9727666 DOI: 10.1098/rspb.2022.2124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Billions of salmonids are produced annually by artificial reproduction for harvest and conservation. Morphologically, behaviourally and physiologically these fish differ from wild-born fish, including in ways consistent with domestication. Unlike most studied domesticates, which diverged from wild ancestors millennia ago, salmonids offer a tractable model for early-stage domestication. Here, we review a fundamental mechanism for domestication-driven differences in early-stage domestication, differentially expressed genes (DEGs), in salmonids. We found 34 publications examining DEGs under domestication driven by environment and genotype, covering six species, over a range of life-history stages and tissues. Three trends emerged. First, domesticated genotypes have increased expression of growth hormone and related metabolic genes, with differences magnified under artificial environments with increased food. Regulatory consequences of these DEGs potentially drive overall DEG patterns. Second, immune genes are often DEGs under domestication and not simply owing to release from growth-immune trade-offs under increased food. Third, domesticated genotypes exhibit reduced gene expression plasticity, with plasticity further reduced in low-complexity environments typical of production systems. Recommendations for experimental design improvements, coupled with tissue-specific expression and emerging analytical approaches for DEGs present tractable avenues to understand the evolution of domestication in salmonids and other species.
Collapse
Affiliation(s)
- James K. Bull
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4
| | | | - Jessy K. Bokvist
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4,Fisheries and Oceans Canada, South Coast Area Office, Nanaimo, British Columbia, Canada V9T 1K3
| | - Matthew P. Josephson
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4
| | - Sean M. Rogers
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada V0R 1B0
| |
Collapse
|
8
|
Sbragaglia V, Roy T, Thörnqvist PO, López-Olmeda JF, Winberg S, Arlinghaus R. Evolutionary implications of size-selective mortality on the ontogenetic development of shoal cohesion: a neurochemical approach using a zebrafish, Danio rerio, harvest selection experiment. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Size-selective mortality may evolutionarily alter life-history as well as individual behavioral and physiological traits. Moreover, size-selective mortality can affect group behavioral traits, such as shoaling and collective properties (e.g., shoal cohesion), which are relevant for finding food and reducing risk of predation. Here, we present experimental evidence using selection lines of zebrafish (Danio rerio) that were exposed to positive (large-harvested), negative (small-harvested), and random (control) size-selective mortality for five generations, followed by eight generations during which harvesting was halted to remove maternal effects and to study evolutionarily fixed outcomes. We investigated changes in shoal cohesion and turnover in monoamines in zebrafish through ontogeny. To that end, we repeatedly measured inter-individual distance in groups of eight fish and the turnovers of dopamine and serotonin in brains of fish from juvenile to the adult stage at 40-day intervals. We, firstly, found that shoal cohesion was overall consistent through ontogeny at group levels suggesting the presence of collective personality. Secondly, we found a decrease in shoal cohesion through ontogeny in the small-harvested and control lines, while the large-harvested line did not show any ontogenetic change. Thirdly, the selection lines did not differ among each other in shoal cohesion at any ontogenetic stage. Fourthly, dopamine turnover increased through ontogeny in a similar way for all lines while the serotonin turnover decreased in the large-harvested and control lines, but not in the small-harvested line. The large-harvested line also had higher serotonin turnover than controls at specific time periods. In conclusion, intensive size-selective mortality left an evolutionary legacy of asymmetric selection responses in the ontogeny of shoal cohesion and the underlying physiological mechanisms in experimentally harvested zebrafish in the laboratory.
Significant statement
The evolution of animal behavior can be affected by human activities both at behavioral and physiological levels, but causal evidence is scarce and mostly focusing on single life-stages. We studied whether and to what extent size-selective harvesting, a common selection pattern in fisheries, can be an evolutionary driver of the development of shoal cohesion during ontogeny. We used a multi-generation experiment with zebrafish to study cause-and-effects of opposing size-selection patterns. We quantified shoal cohesion, and serotonin and dopamine turnover in the brain. We found that shoal cohesion emerged as a collective personality trait and that behavioral and physiological responses were asymmetrical with respect to the opposing selection patterns.
Collapse
|
9
|
Roy T, Arlinghaus R. Size-selective mortality fosters ontogenetic changes in collective risk-taking behaviour in zebrafish, Danio rerio. Oecologia 2022; 200:89-106. [PMID: 36181546 PMCID: PMC9547785 DOI: 10.1007/s00442-022-05256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/03/2022] [Indexed: 12/02/2022]
Abstract
Size-selective mortality is common in fish populations and can operate either in a positive size-selective fashion by harvesting larger-than-average fish or be negatively size-selective by harvesting smaller-than-average fish. Through various mechanisms (like genetic correlations among behaviour and life-history traits or direct selection on behaviour co-varying with growth rate or size-at-maturation), size-selection can result in evolutionary changes in behavioural traits. Theory suggests that both positive and negative size-selection without additional selection on behaviour favours boldness, while evolution of shyness is possible if the largest fish are harvested. Here we examined the impact of size-selective mortality on collective boldness across ontogeny using three experimental lines of zebrafish (Daniorerio) generated through positive (large-harvested), negative (small-harvested) and random (control line) size-selective mortality for five generations and then relaxed selection for 10 generations to examine evolutionarily fixed outcomes. We measured collective risk-taking during feeding (boldness) under simulated aerial predation threat, and across four contexts in presence/absence of a cichlid. Boldness decreased across ontogeny under aerial predation threat, and the small-harvested line was consistently bolder than controls. The large and small-harvested lines showed higher behavioural plasticity as larvae and developed personality earlier compared to the controls. The large-harvested line showed increased variability and plasticity in boldness throughout ontogeny. In the presence of a live predator, fish did not differ in boldness in three contexts compared to the controls, but the large-harvested line showed reduced behavioural plasticity across contexts than controls. Our results confirmed theory by demonstrating that size-selective harvesting evolutionarily alters collective boldness and its variability and plasticity.
Collapse
Affiliation(s)
- Tamal Roy
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| | - Robert Arlinghaus
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.,Division of Integrative Fisheries Management, Department of Crop and Animal Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 7, 10115, Berlin, Germany
| |
Collapse
|
10
|
Yagound B, West AJ, Richardson MF, Gruber J, Reid JG, Whiting MJ, Rollins LA. Captivity induces large and population-dependent brain transcriptomic changes in wild-caught cane toads (Rhinella marina). Mol Ecol 2022; 31:4949-4961. [PMID: 35894800 PMCID: PMC9804778 DOI: 10.1111/mec.16633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 01/09/2023]
Abstract
Gene expression levels are key molecular phenotypes at the interplay between genotype and environment. Mounting evidence suggests that short-term changes in environmental conditions, such as those encountered in captivity, can substantially affect gene expression levels. Yet, the exact magnitude of this effect, how general it is, and whether it results in parallel changes across populations are not well understood. Here, we take advantage of the well-studied cane toad, Rhinella marina, to examine the effect of short-term captivity on brain gene expression levels, and determine whether effects of captivity differ between long-colonized and vanguard populations of the cane toad's Australian invasion range. We compared the transcriptomes of wild-caught toads immediately assayed with those from toads captured from the same populations but maintained in captivity for seven months. We found large differences in gene expression levels between captive and wild-caught toads from the same population, with an over-representation of processes related to behaviour and the response to stress. Captivity had a much larger effect on both gene expression levels and gene expression variability in toads from vanguard populations compared to toads from long-colonized areas, potentially indicating an increased plasticity in toads at the leading edge of the invasion. Overall, our findings indicate that short-term captivity can induce large and population-specific transcriptomic changes, which has significant implications for studies comparing phenotypic traits of wild-caught organisms from different populations that have been held in captivity.
Collapse
Affiliation(s)
- Boris Yagound
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Andrea J. West
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Mark F. Richardson
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia,Deakin Genomics Centre, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Jodie Gruber
- College of Life and Environmental SciencesUniversity of ExeterPenrynUK,School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Jack G. Reid
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Martin J. Whiting
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Lee A. Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia,Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
11
|
Halasan LC, Lin HC. Integrated morphometrics reveals conservatism in the cryptic yellowstripe scad (Perciformes: Carangidae) lineages from the Tropical Western Pacific. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Therkildsen NO, Pinsky ML. A long evolutionary reach for fishing nets. Science 2022; 376:344-345. [PMID: 35446662 DOI: 10.1126/science.abo6512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Earlier maturation of Atlantic salmon is linked to indirect effects of fisheries on its prey.
Collapse
Affiliation(s)
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
13
|
Sun P, Shang Y, Sun R, Tian Y, Heino M. The Effects of Selective Harvest on Japanese Spanish Mackerel (Scomberomorus niphonius) Phenotypic Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Japanese Spanish mackerel (Scomberomorus niphonius) is an important fish species in the China Seas with wide distribution, extensive migration, and high economic value. This species has been yielding high fisheries production despite experiencing continuously high fishing pressure and the conversion from gillnet to trawl harvesting. Meanwhile, changes in life-history traits have been observed, including earlier maturation and smaller size at age. Here, we build an individual-based eco-genetic model parameterized for Japanese Spanish mackerel to investigate the population’s response to different fishing scenarios (fishing by trawl or by gillnet). The model allows evolution of life-history processes including maturation, reproduction and growth. It also incorporates environmental variability, phenotypic plasticity, and density-dependent feedbacks. Our results show that different gear types can result in different responses of life-history traits and altered population dynamics. The population harvested by gillnet shows weaker response to fishing than that by trawl. When fishing ceases, gillnet-harvested population can recover to the pre-harvest level more easily than that harvested by trawl. The different responses of population growth rate and evolution to different fishing gears demonstrated in this study shed light on the sustainable management and utilization of Japanese Spanish mackerel in the over-exploited China Seas.
Collapse
|
14
|
Lamont MM, Mollenhauer R, Foley AM. Capture vulnerability of sea turtles on recreational fishing piers. Ecol Evol 2022; 12:e8473. [PMID: 35127015 PMCID: PMC8796914 DOI: 10.1002/ece3.8473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022] Open
Abstract
Capture vulnerability of commercial and recreational fishes has been associated with behavioral, morphological, and life-history traits; however, relationships with non-target species, such as sea turtles, have not been adequately studied. We examined species composition, timing of captures, morphological variables including body size and head width, and body condition of sea turtles captured from a recreational fishing pier in the northern Gulf of Mexico and of sea turtles captured in the waters adjacent to the pier. From 2014 to 2019, 148 net captures and 112 pier captures of three sea turtle species were documented. Green turtles were captured most frequently in the net and on the pier. Turtles captured from the pier were larger than those captured in the net. There was no difference in head width between net-caught and pier-caught turtles; however, small sample sizes limited those comparisons. The body condition index was lower for pier-caught than net-caught Kemp';s ridleys but did not differ with green turtles or loggerheads. Differences were also observed in the timing of capture on the pier as compared to in the net. Finally, the relationship between size, body condition, and pier-capture vulnerability suggests these are complex interactions. Mortality of sea turtles captured from fishing piers could be selecting against bolder individuals, which may result in changes in sea turtle population demographics over a long time period.
Collapse
Affiliation(s)
- Margaret M Lamont
- U.S. Geological Survey Wetland and Aquatic Research Center Gainesville Florida USA
| | - Robert Mollenhauer
- U.S. Geological Survey Wetland and Aquatic Research Center Gainesville Florida USA
| | - Allen M Foley
- Florida Fish and Wildlife Conservation Commission Jacksonville Field Laboratory Fish and Wildlife Research Institute Jacksonville Florida USA
| |
Collapse
|
15
|
Sbragaglia V, Klamser PP, Romanczuk P, Arlinghaus R. Evolutionary impact of size-selective harvesting on shoaling behavior: Individual-level mechanisms and possible consequences for natural and fishing mortality. Am Nat 2021; 199:480-495. [DOI: 10.1086/718591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Qin J, Ye F, Xu L, Zhou X, Crickmore N, Zhou X, Zhang Y, Guo Z. A cis-Acting Mutation in the PxABCG1 Promoter Is Associated with Cry1Ac Resistance in Plutella xylostella (L.). Int J Mol Sci 2021; 22:6106. [PMID: 34198929 PMCID: PMC8201282 DOI: 10.3390/ijms22116106] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms of insect resistance to Cry toxins generated from the bacterium Bacillus thuringiensis (Bt) urgently need to be elucidated to enable the improvement and sustainability of Bt-based products. Although downregulation of the expression of midgut receptor genes is a pivotal mechanism of insect resistance to Bt Cry toxins, the underlying transcriptional regulation of these genes remains elusive. Herein, we unraveled the regulatory mechanism of the downregulation of the ABC transporter gene PxABCG1 (also called Pxwhite), a functional midgut receptor of the Bt Cry1Ac toxin in Plutella xylostella. The PxABCG1 promoters of Cry1Ac-susceptible and Cry1Ac-resistant strains were cloned and analyzed, and they showed clear differences in activity. Subsequently, a dual-luciferase reporter assay, a yeast one-hybrid (Y1H) assay, and RNA interference (RNAi) experiments demonstrated that a cis-mutation in a binding site of the Hox transcription factor Antennapedia (Antp) decreased the promoter activity of the resistant strain and eliminated the binding and regulation of Antp, thereby enhancing the resistance of P. xylostella to the Cry1Ac toxin. These results advance our knowledge of the roles of cis- and trans-regulatory variations in the regulation of midgut Cry receptor genes and the evolution of Bt resistance, contributing to a more complete understanding of the Bt resistance mechanism.
Collapse
Affiliation(s)
- Jianying Qin
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.Q.); (X.Z.)
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| | - Fan Ye
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| | - Linzheng Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA;
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK;
| | - Xiaomao Zhou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.Q.); (X.Z.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| |
Collapse
|
17
|
|
18
|
Genomic stability through time despite decades of exploitation in cod on both sides of the Atlantic. Proc Natl Acad Sci U S A 2021; 118:2025453118. [PMID: 33827928 PMCID: PMC8054022 DOI: 10.1073/pnas.2025453118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mode and extent of rapid evolution and genomic change in response to human harvesting are key conservation issues. Although experiments and models have shown a high potential for both genetic and phenotypic change in response to fishing, empirical examples of genetic responses in wild populations are rare. Here, we compare whole-genome sequence data of Atlantic cod (Gadus morhua) that were collected before (early 20th century) and after (early 21st century) periods of intensive exploitation and rapid decline in the age of maturation from two geographically distinct populations in Newfoundland, Canada, and the northeast Arctic, Norway. Our temporal, genome-wide analyses of 346,290 loci show no substantial loss of genetic diversity and high effective population sizes. Moreover, we do not find distinct signals of strong selective sweeps anywhere in the genome, although we cannot rule out the possibility of highly polygenic evolution. Our observations suggest that phenotypic change in these populations is not constrained by irreversible loss of genomic variation and thus imply that former traits could be reestablished with demographic recovery.
Collapse
|
19
|
Size Selective Harvesting Does Not Result in Reproductive Isolation among Experimental Lines of Zebrafish, Danio rerio: Implications for Managing Harvest-Induced Evolution. BIOLOGY 2021; 10:biology10020113. [PMID: 33557025 PMCID: PMC7913724 DOI: 10.3390/biology10020113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Mortality in fish populations is commonly size-selective. In fisheries, larger fish are preferentially caught while natural predators preferentially consume smaller fish. Removal of certain sized fish from populations and elevated fishing mortality constitute a selection pressure which may change life-history, behaviour and reduce adult body-size. Because behaviour and body-size are related and influence mating preferences and reproductive output, size-selective mortality may favour subpopulations that less readily mate with each other. Our aim is to test this possibility using three experimental lines of zebrafish (Danio rerio) generated in laboratory by removing large-sized, small-sized and random-sized fish for five generations. We tested mating preferences among males and females and tested if they spawned together. We found males and females of all subpopulations to reproduce among themselves. Females generally preferred large-sized males. Females of all lines spawned with males, and males of all lines fertilised eggs of females independent of the subpopulation origin. Our study shows that size-selective mortality typical of fisheries or in populations facing heavy predation does not result in evolution of reproductive barriers. Thus, when populations adapted to fishing pressure come in contact with populations unexposed to such pressures, interbreeding may happen thereby helping exploited populations recover from harvest-induced evolution. Abstract Size-selective mortality is common in fish stocks. Positive size-selection happens in fisheries where larger size classes are preferentially targeted while gape-limited natural predation may cause negative size-selection for smaller size classes. As body size and correlated behavioural traits are sexually selected, harvest-induced trait changes may promote prezygotic reproductive barriers among selection lines experiencing differential size-selective mortality. To investigate this, we used three experimental lines of zebrafish (Danio rerio) exposed to positive (large-harvested), negative (small-harvested) and random (control line) size-selective mortality for five generations. We tested prezygotic preferences through choice tests and spawning trials. In the preference tests without controlling for body size, we found that females of all lines preferred males of the generally larger small-harvested line. When the body size of stimulus fish was statistically controlled, this preference disappeared and a weak evidence of line-assortative preference emerged, but only among large-harvested line fish. In subsequent spawning trials, we did not find evidence for line-assortative reproductive allocation in any of the lines. Our study suggests that size-selection due to fisheries or natural predation does not result in reproductive isolation. Gene flow between wild-populations and populations adapted to size-selected mortality may happen during secondary contact which can speed up trait recovery.
Collapse
|
20
|
Elizabeth Alter S, Tariq L, Creed JK, Megafu E. Evolutionary responses of marine organisms to urbanized seascapes. Evol Appl 2021; 14:210-232. [PMID: 33519966 PMCID: PMC7819572 DOI: 10.1111/eva.13048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Many of the world's major cities are located in coastal zones, resulting in urban and industrial impacts on adjacent marine ecosystems. These pressures, which include pollutants, sewage, runoff and debris, temperature increases, hardened shorelines/structures, and light and acoustic pollution, have resulted in new evolutionary landscapes for coastal marine organisms. Marine environmental changes influenced by urbanization may create new selective regimes or may influence neutral evolution via impacts on gene flow or partitioning of genetic diversity across seascapes. While some urban selective pressures, such as hardened surfaces, are similar to those experienced by terrestrial species, others, such as oxidative stress, are specific to aquatic environments. Moreover, spatial and temporal scales of evolutionary responses may differ in the ocean due to the spatial extent of selective pressures and greater capacity for dispersal/gene flow. Here, we present a conceptual framework and synthesis of current research on evolutionary responses of marine organisms to urban pressures. We review urban impacts on genetic diversity and gene flow and examine evidence that marine species are adapting, or are predicted to adapt, to urbanization over rapid evolutionary time frames. Our findings indicate that in the majority of studies, urban stressors are correlated with reduced genetic diversity. Genetic structure is often increased in urbanized settings, but artificial structures can also act as stepping stones for some hard-surface specialists, promoting range expansion. Most evidence for rapid adaptation to urban stressors comes from studies of heritable tolerance to pollutants in a relatively small number of species; however, the majority of marine ecotoxicology studies do not test directly for heritability. Finally, we highlight current gaps in our understanding of evolutionary processes in marine urban environments and present a framework for future research to address these gaps.
Collapse
Affiliation(s)
- S. Elizabeth Alter
- Department of Biology & ChemistryCalifornia State University, Monterey BayChapman Academic Science CenterSeasideCAUSA
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
- Department of IchthyologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Laraib Tariq
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
| | - James Keanu Creed
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
- Department of IchthyologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Emmanuel Megafu
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
| |
Collapse
|
21
|
Perälä T, Kuparinen A. Eco-evolutionary dynamics driven by fishing: From single species models to dynamic evolution within complex food webs. Evol Appl 2020; 13:2507-2520. [PMID: 33294005 PMCID: PMC7691468 DOI: 10.1111/eva.13058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 01/04/2023] Open
Abstract
Evidence of contemporary evolution across ecological time scales stimulated research on the eco-evolutionary dynamics of natural populations. Aquatic systems provide a good setting to study eco-evolutionary dynamics owing to a wealth of long-term monitoring data and the detected trends in fish life-history traits across intensively harvested marine and freshwater systems. In the present study, we focus on modelling approaches to simulate eco-evolutionary dynamics of fishes and their ecosystems. Firstly, we review the development of modelling from single species to multispecies approaches. Secondly, we advance the current state-of-the-art methodology by implementing evolution of life-history traits of a top predator into the context of complex food web dynamics as described by the allometric trophic network (ATN) framework. The functioning of our newly developed eco-evolutionary ATNE framework is illustrated using a well-studied lake food web. Our simulations show how both natural selection arising from feeding interactions and size-selective fishing cause evolutionary changes in the top predator and how those feed back to its prey species and further cascade down to lower trophic levels. Finally, we discuss future directions, particularly the need to integrate genomic discoveries into eco-evolutionary projections.
Collapse
Affiliation(s)
- Tommi Perälä
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
| | - Anna Kuparinen
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
22
|
Sbragaglia V, López-Olmeda JF, Frigato E, Bertolucci C, Arlinghaus R. Size-selective mortality induces evolutionary changes in group risk-taking behaviour and the circadian system in a fish. J Anim Ecol 2020; 90:387-403. [PMID: 33064849 DOI: 10.1111/1365-2656.13372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
Intensive and trait-selective mortality of fish and wildlife can cause evolutionary changes in a range of life-history and behavioural traits. These changes might in turn alter the circadian system due to co-evolutionary mechanisms or correlated selection responses both at behavioural and molecular levels, with knock-on effects on daily physiological processes and behavioural outputs. We examined the evolutionary impact of size-selective mortality on group risk-taking behaviour and the circadian system in a model fish species. We exposed zebrafish Danio rerio to either large or small size-selective harvesting relative to a control over five generations, followed by eight generations during which harvesting was halted to remove maternal effects. Size-selective mortality affected fine-scale timing of behaviours. In particular, small size-selective mortality, typical of specialized fisheries and gape-limited predators targeting smaller size classes, increased group risk-taking behaviuor during feeding and after simulated predator attacks. Moreover, small size-selective mortality increased early peaks of daily activity as well as extended self-feeding daily activity to the photophase compared to controls. By contrast large size-selective mortality, typical of most wild capture fisheries, only showed an almost significant effect of decreasing group risk-taking behaviour during the habituation phase and no clear changes in fine-scale timing of daily behavioural rhythms compared to controls. We also found changes in the molecular circadian core clockwork in response to both size-selective mortality treatments. These changes disappeared in the clock output pathway because both size-selected lines showed similar transcription profiles. This switch downstream to the molecular circadian core clockwork also resulted in similar overall behavioural rhythms (diurnal swimming and self-feeding in the last hours of darkness) independent of the underlying molecular clock. To conclude, our experimental harvest left an asymmetrical evolutionary legacy in group risk-taking behaviour and in fine-scale daily behavioural rhythms. Yet, the overall timing of activity showed evolutionary resistance probably maintained by a molecular switch. Our experimental findings suggest that size-selective mortality can have consequences for behaviour and physiological processes.
Collapse
Affiliation(s)
- Valerio Sbragaglia
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Jose Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Division of Integrative Fisheries Management, Faculty of Life Sciences & Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
23
|
Sun H, Chen W, Wang J, Zhang L, Rossiter SJ, Mao X. Echolocation call frequency variation in horseshoe bats: molecular basis revealed by comparative transcriptomics. Proc Biol Sci 2020; 287:20200875. [PMID: 32900318 DOI: 10.1098/rspb.2020.0875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recently diverged taxa with contrasting phenotypes offer opportunities for unravelling the genetic basis of phenotypic variation in nature. Horseshoe bats are a speciose group that exhibit a derived form of high-duty cycle echolocation in which the inner ear is finely tuned to echoes of the narrowband call frequency. Here, by focusing on three recently diverged subspecies of the intermediate horseshoe bat (Rhinolophus affinis) that display divergent echolocation call frequencies, we aim to identify candidate loci putatively involved in hearing frequency variation. We used de novo transcriptome sequencing of two mainland taxa (himalayanus and macrurus) and one island taxon (hainanus) to compare expression profiles of thousands of genes. By comparing taxa with divergent call frequencies (around 15 kHz difference), we identified 252 differentially expressed genes, of which six have been shown to be involved in hearing or deafness in human/mouse. To obtain further validation of these results, we applied quantitative reverse transcription-PCR to the candidate gene FBXL15 and found a broad association between the level of expression and call frequency across taxa. The genes identified here represent strong candidate loci associated with hearing frequency variation in bats.
Collapse
Affiliation(s)
- Haijian Sun
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, People's Republic of China
| | - Wenli Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, People's Republic of China
| | - Jiaying Wang
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, People's Republic of China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, People's Republic of China
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, People's Republic of China.,Institute of Eco-Chongming (IEC), East China Normal University, Shanghai 200062, People's Republic of China
| |
Collapse
|
24
|
The Effects of Quantitative Trait Architecture on Detection Power in Short-Term Artificial Selection Experiments. G3-GENES GENOMES GENETICS 2020; 10:3213-3227. [PMID: 32646912 PMCID: PMC7466968 DOI: 10.1534/g3.120.401287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Evolve and resequence (E&R) experiments, in which artificial selection is imposed on organisms in a controlled environment, are becoming an increasingly accessible tool for studying the genetic basis of adaptation. Previous work has assessed how different experimental design parameters affect the power to detect the quantitative trait loci (QTL) that underlie adaptive responses in such experiments, but so far there has been little exploration of how this power varies with the genetic architecture of the evolving traits. In this study, we use forward simulation to build a more realistic model of an E&R experiment in which a quantitative polygenic trait experiences a short, but strong, episode of truncation selection. We study the expected power for QTL detection in such an experiment and how this power is influenced by different aspects of trait architecture, including the number of QTL affecting the trait, their starting frequencies, effect sizes, clustering along a chromosome, dominance, and epistasis patterns. We show that all of these parameters can affect allele frequency dynamics at the QTL and linked loci in complex and often unintuitive ways, and thus influence our power to detect them. One consequence of this is that existing detection methods based on models of independent selective sweeps at individual QTL often have lower detection power than a simple measurement of allele frequency differences before and after selection. Our findings highlight the importance of taking trait architecture into account when designing and interpreting studies of molecular adaptation with temporal data. We provide a customizable modeling framework that will enable researchers to easily simulate E&R experiments with different trait architectures and parameters tuned to their specific study system, allowing for assessment of expected detection power and optimization of experimental design.
Collapse
|
25
|
Quintela M, Kvamme C, Bekkevold D, Nash RDM, Jansson E, Sørvik AG, Taggart JB, Skaala Ø, Dahle G, Glover KA. Genetic analysis redraws the management boundaries for the European sprat. Evol Appl 2020; 13:1906-1922. [PMID: 32908594 PMCID: PMC7463317 DOI: 10.1111/eva.12942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/03/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sustainable fisheries management requires detailed knowledge of population genetic structure. The European sprat is an important commercial fish distributed from Morocco to the Arctic circle, Baltic, Mediterranean, and Black seas. Prior to 2018, annual catch advice on sprat from the International Council for the Exploration of the Sea (ICES) was based on five putative stocks: (a) North Sea, (b) Kattegat-Skagerrak and Norwegian fjords, (c) Baltic Sea, (d) West of Scotland-southern Celtic Seas, and (e) English Channel. However, there were concerns that the sprat advice on stock size estimates management plan inadequately reflected the underlying biological units. Here, we used ddRAD sequencing to develop 91 SNPs that were thereafter used to genotype approximately 2,500 fish from 40 locations. Three highly distinct and relatively homogenous genetic groups were identified: (a) Norwegian fjords; (b) Northeast Atlantic including the North Sea, Kattegat-Skagerrak, Celtic Sea, and Bay of Biscay; and (c) Baltic Sea. Evidence of genetic admixture and possibly physical mixing was detected in samples collected from the transition zone between the North and Baltic seas, but not between any of the other groups. These results have already been implemented by ICES with the decision to merge the North Sea and the Kattegat-Skagerrak sprat to be assessed as a single unit, thus demonstrating that genetic data can be rapidly absorbed to align harvest regimes and biological units.
Collapse
Affiliation(s)
| | | | - Dorte Bekkevold
- DTU-Aqua National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | | | | | | | - John B Taggart
- Institute of Aquaculture School of Natural Sciences University of Stirling Stirling UK
| | | | - Geir Dahle
- Institute of Marine Research Bergen Norway
| | - Kevin A Glover
- Institute of Marine Research Bergen Norway
- Institute of Biology University of Bergen Bergen Norway
| |
Collapse
|
26
|
Bowles E, Marin K, Mogensen S, MacLeod P, Fraser DJ. Size reductions and genomic changes within two generations in wild walleye populations: associated with harvest? Evol Appl 2020; 13:1128-1144. [PMID: 32684951 PMCID: PMC7359826 DOI: 10.1111/eva.12987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023] Open
Abstract
The extent and rate of harvest‐induced genetic changes in natural populations may impact population productivity, recovery, and persistence. While there is substantial evidence for phenotypic changes in harvested fishes, knowledge of genetic change in the wild remains limited, as phenotypic and genetic data are seldom considered in tandem, and the number of generations needed for genetic changes to occur is not well understood. We quantified changes in size‐at‐age, sex‐specific changes in body size, and genomic metrics in three harvested walleye (Sander vitreus) populations and a fourth reference population with low harvest levels over a 15‐year period in Mistassini Lake, Quebec. We also collected Indigenous knowledge (IK) surrounding concerns about these populations over time. Using ~9,000 SNPs, genomic metrics included changes in population structure, neutral genomic diversity, effective population size, and signatures of selection. Indigenous knowledge revealed overall reductions in body size and number of fish caught. Smaller body size, a small reduction in size‐at‐age, nascent changes to population structure (population differentiation within one river and homogenization between two others), and signatures of selection between historical and contemporary samples reflected coupled phenotypic and genomic change in the three harvested populations in both sexes, while no change occurred in the reference population. Sex‐specific analyses revealed differences in both body size and genomic metrics but were inconclusive about whether one sex was disproportionately affected. Although alternative explanations cannot be ruled out, our collective results are consistent with the hypothesis that genetic changes associated with harvesting may arise within 1–2.5 generations in long‐lived wild fishes. This study thus demonstrates the need to investigate concerns about harvest‐induced evolution quickly once they have been raised.
Collapse
Affiliation(s)
| | - Kia Marin
- Concordia University Montreal QC Canada.,Golder Associates Montréal QC Canada
| | | | | | | |
Collapse
|
27
|
Effects of genetic origin on phenotypic divergence in Brook Trout populations stocked with domestic fish. Ecosphere 2020. [DOI: 10.1002/ecs2.3119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
28
|
Abstract
Quantitative trait loci (QTL) are genetic regions that influence phenotypic variation of a complex trait, often through genetic interactions with each other and the environment. These are commonly identified through a statistical genetic analysis known as QTL mapping. Here, I present a step-by-step, practical approach to QTL mapping along with a sample data file. I focus on methods commonly used and discoveries that have been made in fishes, and utilize a multiple QTL mapping (MQM) approach in the free software package R/qtl.
Collapse
Affiliation(s)
- Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
29
|
Harder AM, Willoughby JR, Ardren WR, Christie MR. Among-family variation in survival and gene expression uncovers adaptive genetic variation in a threatened fish. Mol Ecol 2019; 29:1035-1049. [PMID: 31837181 DOI: 10.1111/mec.15334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/15/2019] [Accepted: 12/04/2019] [Indexed: 12/29/2022]
Abstract
Variation in among-family transcriptional responses to different environmental conditions can help to identify adaptive genetic variation, even prior to a selective event. Coupling differential gene expression with formal survival analyses allows for the disentanglement of treatment effects, required for understanding how individuals plastically respond to environmental stressors, from the adaptive genetic variation responsible for differential survival. We combined these two approaches to investigate responses to an emerging conservation issue, thiamine (vitamin B1 ) deficiency, in a threatened population of Atlantic salmon (Salmo salar). Thiamine is an essential vitamin that is increasingly limited in many ecosystems. In Lake Champlain, Atlantic salmon cannot acquire thiamine in sufficient quantities to support natural reproduction; fertilized eggs must be reared in hatcheries and treated with supplemental thiamine. We evaluated transcriptional responses (via RNA sequencing) to thiamine treatment across families and found 3,616 genes differentially expressed between control (no supplemental thiamine) and treatment individuals. Fewer genes changed expression equally across families (i.e., additively) than exhibited genotype × environment interactions in response to thiamine. Differentially expressed genes were related to known physiological effects of thiamine deficiency, including oxidative stress, cardiovascular irregularities and neurological abnormalities. We also identified 1,446 putatively adaptive genes that were strongly associated with among-family survival in the absence of thiamine treatment, many of which related to neurogenesis and visual perception. Our results highlight the utility of coupling RNA sequencing with formal survival analyses to identify candidate genes that underlie the among-family variation in survival required for an adaptive response to natural selection.
Collapse
Affiliation(s)
- Avril M Harder
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Janna R Willoughby
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.,School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | | | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
30
|
Therkildsen NO, Wilder AP, Conover DO, Munch SB, Baumann H, Palumbi SR. Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 2019; 365:487-490. [DOI: 10.1126/science.aaw7271] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
Abstract
Humans cause widespread evolutionary change in nature, but we still know little about the genomic basis of rapid adaptation in the Anthropocene. We tracked genomic changes across all protein-coding genes in experimental fish populations that evolved pronounced shifts in growth rates due to size-selective harvest over only four generations. Comparisons of replicate lines show parallel allele frequency shifts that recapitulate responses to size-selection gradients in the wild across hundreds of unlinked variants concentrated in growth-related genes. However, a supercluster of genes also rose rapidly in frequency and dominated the evolutionary dynamic in one replicate line but not in others. Parallel phenotypic changes thus masked highly divergent genomic responses to selection, illustrating how contingent rapid adaptation can be in the face of strong human-induced selection.
Collapse
|
31
|
Morgan R, Sundin J, Finnøen MH, Dresler G, Vendrell MM, Dey A, Sarkar K, Jutfelt F. Are model organisms representative for climate change research? Testing thermal tolerance in wild and laboratory zebrafish populations. CONSERVATION PHYSIOLOGY 2019; 7:coz036. [PMID: 31249690 PMCID: PMC6589993 DOI: 10.1093/conphys/coz036] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/29/2019] [Accepted: 05/24/2019] [Indexed: 05/31/2023]
Abstract
Model organisms can be useful for studying climate change impacts, but it is unclear whether domestication to laboratory conditions has altered their thermal tolerance and therefore how representative of wild populations they are. Zebrafish in the wild live in fluctuating thermal environments that potentially reach harmful temperatures. In the laboratory, zebrafish have gone through four decades of domestication and adaptation to stable optimal temperatures with few thermal extremes. If maintaining thermal tolerance is costly or if genetic traits promoting laboratory fitness at optimal temperature differ from genetic traits for high thermal tolerance, the thermal tolerance of laboratory zebrafish could be hypothesized to be lower than that of wild zebrafish. Furthermore, very little is known about the thermal environment of wild zebrafish and how close to their thermal limits they live. Here, we compared the acute upper thermal tolerance (critical thermal maxima; CTmax) of wild zebrafish measured on-site in West Bengal, India, to zebrafish at three laboratory acclimation/domestication levels: wild-caught, F1 generation wild-caught and domesticated laboratory AB-WT line. We found that in the wild, CTmax increased with increasing site temperature. Yet at the warmest site, zebrafish lived very close to their thermal limit, suggesting that they may currently encounter lethal temperatures. In the laboratory, acclimation temperature appeared to have a stronger effect on CTmax than it did in the wild. The fish in the wild also had a 0.85-1.01°C lower CTmax compared to all laboratory populations. This difference between laboratory-held and wild populations shows that environmental conditions can affect zebrafish's thermal tolerance. However, there was no difference in CTmax between the laboratory-held populations regardless of the domestication duration. This suggests that thermal tolerance is maintained during domestication and highlights that experiments using domesticated laboratory-reared model species can be appropriate for addressing certain questions on thermal tolerance and global warming impacts.
Collapse
Affiliation(s)
- Rachael Morgan
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Josefin Sundin
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mette H Finnøen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gunnar Dresler
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marc Martínez Vendrell
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biology, University of Barcelona, Barcelona, Spain
| | - Arpita Dey
- Department of Zoology, University of North Bengal, Darjeeling, Siliguri, West Bengal, India
| | - Kripan Sarkar
- Rainbow Ornamental Fish Farm, Baxipara, Raninagar, Mohitnagar, Jalpaiguri, West Bengal, India
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
32
|
Sbragaglia V, Gliese C, Bierbach D, Honsey AE, Uusi-Heikkilä S, Arlinghaus R. Size-selective harvesting fosters adaptations in mating behaviour and reproductive allocation, affecting sexual selection in fish. J Anim Ecol 2019; 88:1343-1354. [PMID: 31131886 DOI: 10.1111/1365-2656.13032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/20/2019] [Indexed: 01/01/2023]
Abstract
The role of sexual selection in the context of harvest-induced evolution is poorly understood. However, elevated and trait-selective harvesting of wild populations may change sexually selected traits, which in turn can affect mate choice and reproduction. We experimentally evaluated the potential for fisheries-induced evolution of mating behaviour and reproductive allocation in fish. We used an experimental system of zebrafish (Danio rerio) lines exposed to large, small or random (i.e. control) size-selective mortality. The large-harvested line represented a treatment simulating the typical case in fisheries where the largest individuals are preferentially harvested. We used a full factorial design of spawning trials with size-matched individuals to control for the systematic impact of body size during reproduction, thereby singling out possible changes in mating behaviour and reproductive allocation. Both small size-selective mortality and large size-selective mortality left a legacy on male mating behaviour by elevating intersexual aggression. However, there was no evidence for line-assortative reproductive allocation. Females of all lines preferentially allocated eggs to the generally less aggressive males of the random-harvested control line. Females of the large-harvested line showed enhanced reproductive performance, and males of the large-harvested line had the highest egg fertilization rate among all males. These findings can be explained as an evolutionary adaptation by which individuals of the large-harvested line display an enhanced reproductive performance early in life to offset the increased probability of adult mortality due to harvest. Our results suggest that the large-harvested line evolved behaviourally mediated reproductive adaptations that could increase the rate of recovery when populations adapted to high fishing pressure come into secondary contact with other populations.
Collapse
Affiliation(s)
- Valerio Sbragaglia
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Institute for Environmental Protection and Research (ISPRA), Livorno, Italy
| | - Catalina Gliese
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Andrew E Honsey
- Ecology, Evolution, and Behavior Graduate Program, University of Minnesota, Saint Paul, Minnesota
| | - Silva Uusi-Heikkilä
- Department of Biology, University of Turku, Turku, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Division of Integrative Fisheries Management, Department of Crop and Animal Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
33
|
Meekan MG, McCormick MI, Simpson SD, Chivers DP, Ferrari MCO. Never Off the Hook—How Fishing Subverts Predator-Prey Relationships in Marine Teleosts. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Gossieaux P, Sirois P, Bernatchez L, Garant D. Introgressive hybridization between wild and domestic individuals and its relationship with parasitism in brook charr Salvelinus fontinalis. JOURNAL OF FISH BIOLOGY 2018; 93:664-673. [PMID: 29992561 DOI: 10.1111/jfb.13752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
The effects of introgression on parasitism in brook charr Salvelinus fontinalis were investigated in 28 lakes with various levels of stocking in Québec, Canada. No effect of genetic background on parasitism was found at the individual level. Body length seemed to explain most of the variation observed at this level, with largest fish being more infected. However, lakes with the greater average domestic genetic background were found to display significantly lower parasite prevalence and diversity. Since our results indicate no effect of domestic genes at the individual level, the negative association with introgression found at the population level may be mainly attributed to differences in intrinsic environmental quality of lakes (e.g. fishing pressure, availability of food resources, abiotic characteristics).
Collapse
Affiliation(s)
- Philippine Gossieaux
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pascal Sirois
- Chaire de recherche sur les espèces aquatiques exploitées, Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec, Québec, Canada
| | - Dany Garant
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
35
|
Klefoth T, Skov C, Kuparinen A, Arlinghaus R. Toward a mechanistic understanding of vulnerability to hook-and-line fishing: Boldness as the basic target of angling-induced selection. Evol Appl 2017; 10:994-1006. [PMID: 29151855 PMCID: PMC5680629 DOI: 10.1111/eva.12504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/15/2017] [Indexed: 01/19/2023] Open
Abstract
In passively operated fishing gear, boldness-related behaviors should fundamentally affect the vulnerability of individual fish and thus be under fisheries selection. To test this hypothesis, we used juvenile common-garden reared carp (Cyprinus carpio) within a narrow size range to investigate the mechanistic basis of behavioral selection caused by angling. We focused on one key personality trait (i.e., boldness), measured in groups within ponds, two morphological traits (body shape and head shape), and one life-history trait (juvenile growth capacity) and studied mean standardized selection gradients caused by angling. Carp behavior was highly repeatable within ponds. In the short term, over seven days of fishing, total length, not boldness, was the main predictor of angling vulnerability. However, after 20 days of fishing, boldness turned out to be the main trait under selection, followed by juvenile growth rate, while morphological traits were only weakly related to angling vulnerability. In addition, we found juvenile growth rate to be moderately correlated with boldness. Hence, direct selection on boldness will also induce indirect selection on juvenile growth and vice versa, but given that the two traits are not perfectly correlated, independent evolution of both traits is also possible. Our study is among the first to mechanistically reveal that energy-acquisition-related behaviors, and not growth rate per se, are key factors determining the probability of capture, and hence, behavioral traits appear to be the prime targets of angling selection. We predict an evolutionary response toward increased shyness in intensively angling-exploited fish stocks, possibly causing the emergence of a timidity syndrome.
Collapse
Affiliation(s)
- Thomas Klefoth
- Department of Biology and Ecology of Fishes Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin Germany.,Angling Association of Lower Saxony (Anglerverband Niedersachsen e.V.) Hannover Germany
| | - Christian Skov
- National Institute of Aquatic Resources (DTU Aqua) Technical University of Denmark Silkeborg Denmark
| | - Anna Kuparinen
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin Germany.,Faculty of Life Sciences Department for Crop and Animal Sciences Division of Integrative Fisheries Management Humboldt-Universität zu Berlin Berlin Germany
| |
Collapse
|