1
|
Qiao W, Li H, Zhang J, Liu X, Jin R, Li H. Comparing the Environmental Influences and Community Assembly of Protist Communities in Two Anthropogenic Coastal Areas. Microorganisms 2024; 12:1618. [PMID: 39203460 PMCID: PMC11356250 DOI: 10.3390/microorganisms12081618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Anthropogenic stresses are intensively affecting the structure and function of microbial communities in coastal ecosystems. Despite being essential components of coastal ecosystems, the environmental influences and assembly processes of protist communities remain largely unknown in areas with severe disturbance. Here, we used 18S rRNA gene high-throughput sequencing to compare the composition, assembly process, and functional structure of the protist communities from the coastal areas of the Northern Yellow Sea (NYS) and the Eastern Bohai Sea (EBS). These two areas are separated by the Liaodong Peninsula and experience different anthropogenic stresses due to varying degrees of urbanization. We detected significant differences between the protist communities of the two areas. Environmental and geographic factors both influenced the composition of protist communities, with environmental factors playing a greater role. The neutral community model indicated that the assembly of protist communities was governed by deterministic processes, with stochastic processes having a stronger influence in the EBS area compared to the NYS area. The phototrophic and consumer communities, influenced by different environmental factors, differed significantly between the two areas. Our results provide insights into the biogeography and assembly of protist communities in estuaries under anthropogenic stresses, which may inform future coastal management.
Collapse
Affiliation(s)
- Wenwen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China;
| | - Hongbo Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China; (H.L.); (J.Z.); (X.L.)
| | - Jinyong Zhang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China; (H.L.); (J.Z.); (X.L.)
| | - Xiaohan Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China; (H.L.); (J.Z.); (X.L.)
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China;
| | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China; (H.L.); (J.Z.); (X.L.)
| |
Collapse
|
2
|
Hermans S, Gautam A, Lewis GD, Neale M, Buckley HL, Case BS, Lear G. Exploring freshwater stream bacterial communities as indicators of land use intensity. ENVIRONMENTAL MICROBIOME 2024; 19:45. [PMID: 38978138 PMCID: PMC11232138 DOI: 10.1186/s40793-024-00588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Stream ecosystems comprise complex interactions among biological communities and their physicochemical surroundings, contributing to their overall ecological health. Despite this, many monitoring programs ignore changes in the bacterial communities that are the base of food webs in streams, often focusing on stream physicochemical assessments or macroinvertebrate community diversity instead. We used 16S rRNA gene sequencing to assess bacterial community compositions within 600 New Zealand stream biofilm samples from 204 sites within a 6-week period (February-March 2010). Sites were either dominated by indigenous forests, exotic plantation forests, horticulture, or pastoral grasslands in the upstream catchment. We sought to predict each site's catchment land use and environmental conditions based on the composition of the stream bacterial communities. RESULTS Random forest modelling allowed us to use bacterial community composition to predict upstream catchment land use with 65% accuracy; urban sites were correctly assigned 90% of the time. Despite the variation inherent when sampling across a ~ 1000-km distance, bacterial community data could correctly differentiate undisturbed sites, grouped by their dominant environmental properties, with 75% accuracy. The positive correlations between actual values and those predicted by the models built using the stream biofilm bacterial data ranged from weak (average log N concentration in the stream water, R2 = 0.02) to strong (annual mean air temperature, R2 = 0.69). CONCLUSIONS Freshwater bacterial community data provide useful insights into land use impacts on stream ecosystems; they may be used as an additional measure to screen stream catchment attributes.
Collapse
Affiliation(s)
- Syrie Hermans
- School of Science, Auckland University of Technology, 34 St Paul Street, Auckland, 1142, New Zealand
| | - Anju Gautam
- School of Biological Sciences, The University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - Gillian D Lewis
- School of Biological Sciences, The University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - Martin Neale
- Puhoi Stour, 15 Taipari Road, Te Atatu, Auckland, 0610, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, 34 St Paul Street, Auckland, 1142, New Zealand
| | - Bradley S Case
- School of Science, Auckland University of Technology, 34 St Paul Street, Auckland, 1142, New Zealand
| | - Gavin Lear
- School of Biological Sciences, The University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand.
| |
Collapse
|
3
|
Le Geay M, Mayers K, Küttim M, Lauga B, Jassey VEJ. Development of a digital droplet PCR approach for the quantification of soil micro-organisms involved in atmospheric CO 2 fixation. Environ Microbiol 2024; 26:e16666. [PMID: 38889760 DOI: 10.1111/1462-2920.16666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Carbon-fixing micro-organisms (CFMs) play a pivotal role in soil carbon cycling, contributing to carbon uptake and sequestration through various metabolic pathways. Despite their importance, accurately quantifying the absolute abundance of these micro-organisms in soils has been challenging. This study used a digital droplet polymerase chain reaction (ddPCR) approach to measure the abundance of key and emerging CFMs pathways in fen and bog soils at different depths, ranging from 0 to 15 cm. We targeted total prokaryotes, oxygenic phototrophs, aerobic anoxygenic phototrophic bacteria and chemoautotrophs, optimizing the conditions to achieve absolute quantification of these genes. Our results revealed that oxygenic phototrophs were the most abundant CFMs, making up 15% of the total prokaryotic abundance. They were followed by chemoautotrophs at 10% and aerobic anoxygenic phototrophic bacteria at 9%. We observed higher gene concentrations in fen than in bog. There were also variations in depth, which differed between fen and bog for all genes. Our findings underscore the abundance of oxygenic phototrophs and chemoautotrophs in peatlands, challenging previous estimates that relied solely on oxygenic phototrophs for microbial carbon dioxide fixation assessments. Incorporating absolute gene quantification is essential for a comprehensive understanding of microbial contributions to soil processes. This approach sheds light on the complex mechanisms of soil functioning in peatlands.
Collapse
Affiliation(s)
- Marie Le Geay
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRE, IRD, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| | - Kyle Mayers
- NORCE Norwegian Research Centre AS, Bergen, Norway
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Béatrice Lauga
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Vincent E J Jassey
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRE, IRD, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
4
|
Oprei A, Schreckinger J, Franzmann I, Lee H, Mutz M, Risse-Buhl U. Light over mechanics: microbial community structure and activity in simulated migrating bedforms are controlled by oscillating light rather than by mechanical forces. FEMS Microbiol Ecol 2024; 100:fiae073. [PMID: 38702847 PMCID: PMC11110858 DOI: 10.1093/femsec/fiae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/05/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Sandy sediments of lowland streams are transported as migrating ripples. Benthic microorganisms colonizing sandy grains are exposed to frequent moving-resting cycles and are believed to be shaped by two dominant environmental factors: mechanical stress during the moving phase causing biofilm abrasion, and alternating light-dark cycles during the resting phase. Our study consisted of two laboratory experiments and aimed to decipher which environmental factor causes the previously observed hampered sediment-associated microbial activity and altered community structure during ripple migration. The first experiment tested the effect of three different migration velocities under comparable light conditions. The second experiment compared migrating and stationary sediments under either constant light exposure or light oscillation. We hypothesized that microbial activity and community structure would be more strongly affected by (1) higher compared to lower migration velocities, and by (2) light oscillation compared to mechanical stress. Combining the results from both experiments, we observed lower microbial activity and an altered community structure in sediments exposed to light oscillation, whereas migration velocity had less impact on community activity and structure. Our findings indicate that light oscillation is the predominating environmental factor acting during ripple migration, resulting in an increased vulnerability of light-dependent photoautotrophs and a possible shift toward heterotrophy.
Collapse
Affiliation(s)
- Anna Oprei
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Ecohydrology and Biogeochemistry, Justus-von-Liebig-Str. 7, 12489 Berlin, Germany
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
| | - José Schreckinger
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
- RPTU Kaiserslautern-Landau, Institute of Environmental Sciences, Fortstr. 7, 76829 Landau, Germany
| | - Insa Franzmann
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
| | - Hayoung Lee
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
| | - Michael Mutz
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
| | - Ute Risse-Buhl
- RPTU Kaiserslautern-Landau, Institute of Environmental Sciences, Fortstr. 7, 76829 Landau, Germany
- RPTU Kaiserslautern-Landau, Ecology, Department of Biolology, Erwin-Schroedinger-Str. 14, 67663 Kaiserslautern, Germany
- Helmholtz Centre for Environmental Research (UFZ), Department of River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| |
Collapse
|
5
|
Yang S, Zhou H, Pang Z, Wang Y, Chao J. Microbial community structure and diversity attached to the periphyton in different urban aquatic habitats. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:445. [PMID: 38607460 DOI: 10.1007/s10661-024-12599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Periphyton is a complex community composed of diverse prokaryotes and eukaryotes; understanding the characteristics of microbial communities within periphyton becomes crucial for biogeochemical cycles and energy dynamics of aquatic ecosystems. To further elucidate the community characteristics of periphyton across varied aquatic habitats, including unpolluted ecologically restored lakes, aquaculture ponds, and areas adjacent to domestic and industrial wastewater treatment plant outfalls, we explored the composition and diversity of prokaryotic and eukaryotic communities in periphyton by employing Illumina MiSeq sequencing. Our findings indicated that the prokaryotic communities were predominantly composed of Proteobacteria (40.92%), Bacteroidota (21.01%), and Cyanobacteria (10.12%), whereas the eukaryotic communities were primarily characterized by the dominance of Bacillariophyta (24.09%), Chlorophyta (20.83%), and Annelida (15.31%). Notably, Flavobacterium emerged as a widely distributed genus among the prokaryotic community. Unclassified_Tobrilidae exhibited higher abundance in unpolluted ecologically restored lakes. Chaetogaster and Nais were enriched in aquaculture ponds and domestic wastewater treatment plant outfall area, respectively, while Surirella and Gomphonema dominated industrial sewage treatment plant outfall area. The alpha diversity of eukaryotes was higher in unpolluted ecologically restored lakes. pH and nitrogen content (NO 2 - - N ,NO 3 - - N , and TN) significantly explained the variations for prokaryotic and eukaryotic community structures, respectively. Eukaryotic communities exhibited a more pronounced response to habitat variations compared to prokaryotic communities. Moreover, the association networks revealed an intensive positive correlation between dominant Bacillariophyta and Bacteroidota. This study provided useful data for identifying keystone species and understanding their ecological functions.
Collapse
Affiliation(s)
- Songnan Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Huiping Zhou
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Zhongzheng Pang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Yiqun Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Jianying Chao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, People's Republic of China.
| |
Collapse
|
6
|
Ramoneda J, Hoffert M, Stallard-Olivera E, Casamayor EO, Fierer N. Leveraging genomic information to predict environmental preferences of bacteria. THE ISME JOURNAL 2024; 18:wrae195. [PMID: 39361898 PMCID: PMC11488383 DOI: 10.1093/ismejo/wrae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Genomic information is now available for a broad diversity of bacteria, including uncultivated taxa. However, we have corresponding knowledge on environmental preferences (i.e. bacterial growth responses across gradients in oxygen, pH, temperature, salinity, and other environmental conditions) for a relatively narrow swath of bacterial diversity. These limits to our understanding of bacterial ecologies constrain our ability to predict how assemblages will shift in response to global change factors, design effective probiotics, or guide cultivation efforts. We need innovative approaches that take advantage of expanding genome databases to accurately infer the environmental preferences of bacteria and validate the accuracy of these inferences. By doing so, we can broaden our quantitative understanding of the environmental preferences of the majority of bacterial taxa that remain uncharacterized. With this perspective, we highlight why it is important to infer environmental preferences from genomic information and discuss the range of potential strategies for doing so. In particular, we highlight concrete examples of how both cultivation-independent and cultivation-dependent approaches can be integrated with genomic data to develop predictive models. We also emphasize the limitations and pitfalls of these approaches and the specific knowledge gaps that need to be addressed to successfully expand our understanding of the environmental preferences of bacteria.
Collapse
Affiliation(s)
- Josep Ramoneda
- Department of Ecology and Complexity, Center of Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Spain
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado, United States
| | - Michael Hoffert
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Elias Stallard-Olivera
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Emilio O Casamayor
- Department of Ecology and Complexity, Center of Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Spain
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
7
|
Abdelhak S, Menard Y, Artigas J. Effects of global change on the ability of stream biofilm to dissipate the herbicide glyphosate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121406. [PMID: 36893978 DOI: 10.1016/j.envpol.2023.121406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/21/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
The herbicide glyphosate is contaminating a large number of freshwater ecosystems worldwide and its fate and effects remains uncertain in light of the effects of global change. The present study examines how variations in water temperature and light availability relative to global change affect the ability of stream biofilms to degrade the herbicide glyphosate. Biofilms were exposed in microcosms to two levels of water temperature simulating global warming (Ambient = 19-22 °C and Warm = 21-24 °C) and three levels of light representative of riparian habitat destruction due to land use change (Dark = 0, Intermediate = 600, High = 1200 μmol photons m-2 s-1). Biofilms were acclimated to six different experimental treatments, namely i) ambient temperature without light (AMB_D), ii) ambient temperature and intermediate light (AMB_IL), iii) ambient temperature and high light (AMB_HL), iv) warm temperature without light (WARM_D), v) warm temperature and intermediate light (WARM_IL) and vi) warm temperature and high light (WARM_HL). The ability of biofilms to degrade 50 μg L-1 of glyphosate was tested. Results showed that water temperature increase, but not light availability increase, significantly increased aminomethyl phosphonic acid (AMPA) production by biofilms. However, the combined increase of temperature and light generated the shortest time to dissipate half of the glyphosate supplied and/or half of the maximum AMPA produced (6.4 and 5.4 days, respectively) by biofilms. Despite light had a major effect in modulating biofilm structural and functional descriptors, the response of certain descriptors (i. e. chlorophyll-a concentration, bacterial density and diversity, nutrient content and PHO activity) to light availability increase depended on water temperature. Specifically, the biofilms in the WARM_HL treatment displayed the highest Glucosidase: Peptidase and Glucosidase: Phosphatase enzyme activity ratios and the lowest biomass C: N molar ratios compared to the other treatments. According to these results, warmer temperatures and high light availability could have been exacerbating the decomposition of organic C compounds in biofilms, including the use of glyphosate as a C source for microbial heterotrophs. This study shows that ecoenzymatic stoichiometry and xenobiotic biodegradation approaches can be combined to better understand the functioning of biofilms in pesticide-polluted streams.
Collapse
Affiliation(s)
- Selma Abdelhak
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), F-63000, Clermont-Ferrand, France
| | - Yoann Menard
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), F-63000, Clermont-Ferrand, France
| | - Joan Artigas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), F-63000, Clermont-Ferrand, France.
| |
Collapse
|
8
|
Zhi Xiang JK, Bairoliya S, Cho ZT, Cao B. Plastic-microbe interaction in the marine environment: Research methods and opportunities. ENVIRONMENT INTERNATIONAL 2023; 171:107716. [PMID: 36587499 DOI: 10.1016/j.envint.2022.107716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Approximately 9 million metric tons of plastics enters the ocean annually, and once in the marine environment, plastic surfaces can be quickly colonised by marine microorganisms, forming a biofilm. Studies on plastic debris-biofilm associations, known as plastisphere, have increased exponentially within the last few years. In this review, we first briefly summarise methods and techniques used in exploring plastic-microbe interactions. Then we highlight research gaps and provide future research opportunities for marine plastisphere studies, especially, on plastic characterisation and standardised biodegradation tests, the fate of "environmentally friendly" plastics, and plastisphere of coastal habitats. Located in the tropics, Southeast Asian (SEA) countries are significant contributors to marine plastic debris. However, plastisphere studies in this region are lacking and therefore, we discuss how the unique environmental conditions in the SEA seas may affect plastic-microbe interaction and why there is an imperative need to conduct plastisphere studies in SEA marine environments. Finally, we also highlight the lack of understanding of the pathogenicity and ecotoxicological effects of plastisphere on marine ecosystems.
Collapse
Affiliation(s)
- Jonas Koh Zhi Xiang
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore
| | - Sakcham Bairoliya
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Zin Thida Cho
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
9
|
Brauer A, Bengtsson MM. DNA extraction bias is more pronounced for microbial eukaryotes than for prokaryotes. Microbiologyopen 2022; 11:e1323. [PMID: 36314757 PMCID: PMC9524606 DOI: 10.1002/mbo3.1323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
DNA extraction and preservation bias is a recurring topic in DNA sequencing-based microbial ecology. The different methodologies can lead to distinct outcomes, which has been demonstrated especially in studies investigating prokaryotic community composition. Eukaryotic microbes are ubiquitous, diverse, and increasingly a subject of investigation in addition to bacteria and archaea. However, little is known about how the choice of DNA preservation and extraction methodology impacts perceived eukaryotic community composition. In this study, we compared the effect of two DNA preservation methods and six DNA extraction methods on the community profiles of both eukaryotes and prokaryotes in phototrophic biofilms on seagrass (Zostera marina) leaves from the Baltic Sea. We found that, whereas both DNA preservation and extraction method caused significant bias in perceived community composition for both eukaryotes and prokaryotes, extraction bias was more pronounced for eukaryotes than for prokaryotes. In particular, soft-bodied and hard-shelled eukaryotes like nematodes and diatoms, respectively, were differentially abundant depending on the extraction method. We conclude that careful consideration of DNA preservation and extraction methodology is crucial to achieving representative community profiles of eukaryotes in marine biofilms and likely all other habitats containing diverse eukaryotic microbial communities.
Collapse
Affiliation(s)
- Anne Brauer
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Mia M. Bengtsson
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
- Institute of Marine BiotechnologyGreifswaldGermany
| |
Collapse
|
10
|
Michaels R, Eliason K, Kuzniar T, Petty JT, Strager MP, Ziemkiewicz PF, Morrissey E. Microbial communities reveal impacts of unconventional oil and gas development on headwater streams. WATER RESEARCH 2022; 212:118073. [PMID: 35091219 DOI: 10.1016/j.watres.2022.118073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The demand for natural gas has led to the development of techniques used to access unconventional oil and natural gas (UOG) resources, due to the novelty of UOG, the potential impacts to freshwater ecosystems are not fully understood. We used a dual pronged approach to study the effects of UOG development on microbial biodiversity and function via a laboratory microcosm experiment and a survey study of streams with and without UOG development within their watersheds. The microcosm experiment simulated stream contamination with produced water, a byproduct of UOG operations, using sediment collected from one high water-quality stream and two low water-quality streams. For the survey study, biofilm and sediment samples were collected from streams experiencing varying levels of UOG development. In the microcosm experiment, produced water decreased microbial aerobic and anaerobic CO2 production in the high water-quality stream sediment but had a positive effect on this microbial activity in the lower water-quality stream sediments, suggesting habitat degradation alters the response of microbes to contaminants. Results from the stream survey indicate UOG development alters stream water temperature, chemistry, sediment aerobic and anaerobic CO2 production, and microbial community biodiversity in both sediments and biofilms. Correlations among UOG associated land use, environmental, and microbial variables suggest increases in light availability and sediment delivery to streams, due to deforestation and land disturbance, impact stream microbial communities and their function. Consistent changes in the relative abundance of bacterial taxa suggest microorganisms may be good indicators of the environmental changes associated with UOG development. The observed impacts of UOG development on microbial community composition and carbon cycling could have cascading effects on stream health and broader ecosystem function.
Collapse
Affiliation(s)
- Rachel Michaels
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, United States of America
| | - Kevin Eliason
- West Virginia Division of Natural Resources: Wildlife Diversity, South Charleston, WV 25303, United States of America; Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV 26505, United States of America
| | - Teagan Kuzniar
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, United States of America
| | - J Todd Petty
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV 26505, United States of America; Department of Forestry and Environmental Conservation, Clemson University, Clemson, South Carolina 29634, United States of America
| | - Michael P Strager
- Division of Resource Economics and Management, West Virginia University, Morgantown, WV 26506, United States of America
| | - Paul F Ziemkiewicz
- West Virginia Water Research Institute, A Center of the WVU Energy Institute, West Virginia University, Morgantown, WV 26506, United States of America
| | - Ember Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, United States of America.
| |
Collapse
|
11
|
Non-destructive investigation of extracellular enzyme activities and kinetics in intact freshwater biofilms with mineral beads as carriers. Appl Microbiol Biotechnol 2021; 106:425-440. [PMID: 34910241 DOI: 10.1007/s00253-021-11712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Current procedures for fluorometric detection of extracellular hydrolytic enzyme activities in intact aquatic biofilms are very laborious and insufficiently standardized. To facilitate the direct determination of a multitude of enzymatic parameters without biofilm disintegration, a new approach was followed. Beads made of different mineral materials were subjected to biofilm growth in various aquatic environments. After biofilm coating, the beads were singly placed in microplate wells, containing the required liquid analytical medium and a fluorogenic substrate. Based on fluorometric detection of the enzymatically generated reaction products, enzyme activities and kinetics were determined. Mean enzymatic activities of ceramic bead-attached biofilms grown in a natural stream followed the decreasing sequence L-alanine aminopeptidase > L-leucine aminopeptidase > phosphomonoesterase > β-glucosidase > phosphodiesterase > α-glucosidase > sulfatase. After one week of exposure, the relative standard deviations of enzyme activities ranged from 21 to 67%. Sintered glass bead-associated biofilms displayed the lowest standard deviations ranging from 19 to 34% in all experiments. This material proved to be suitable for short-time experiments in stagnant media. Ceramic beads were stable during more than three weeks of exposure in a natural stream. Biofilm formation was inhomogeneous or poorly visible on glass and lava beads accompanied by high variations of enzyme activities. The applicability of the method to study enzyme inhibition reactions was successfully proven by the determination of inhibition effects of caffeine on biofilm-associated phosphodiesterase.Key points• Optimized method to determine enzymatic parameters in aquatic biofilms• Direct investigation of bead-bound biofilms without biofilm disintegration• Fluorometric detection offers high sensitivity and sample throughput.
Collapse
|
12
|
Guo K, Wu N, Li W, Baattrup-Pedersen A, Riis T. Microbial biofilm community dynamics in five lowland streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149169. [PMID: 34329932 DOI: 10.1016/j.scitotenv.2021.149169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Stream biofilms are complex aggregates of diverse organism groups that play a vital role in global carbon and nitrogen cycles. Most of the current studies on stream biofilm focus on a limited number of organism groups (e.g., bacteria and algae), and few have included both prokaryote and eukaryote communities simultaneously. In this study, we incubated artificial substrates in five Danish lowland streams exhibiting different hydrological and physico-chemical conditions and explored the dynamics of community composition and diversity of the benthic biofilm, including both prokaryotes and eukaryotes. We found that few phyla in the prokaryote (Gammaproteobacteria and Bacteroidetes) and eukaryote (Cercozoa) communities accounted for over two-thirds of the total abundance at most of the sites. Both prokaryotic and eukaryotic diversity displayed the same temporal patterns, i.e., diversity peaked in July and January. We also found that hydrological and physico-chemical variables significantly explained the variation in the community composition at phylum level for both prokaryotes and eukaryotes. However, a large proportion of variation remained unexplained, which can be ascribed to important but unmeasured variables like light intensity and biological factors such as trophic and non-trophic interactions as revealed by network analysis. Therefore, we suggest that use of a multitrophic level perspective is needed to study biofilm i.e., the "microbial jungles", where high occurrences of trophic and non-trophic interactions are expected.
Collapse
Affiliation(s)
- Kun Guo
- Department of Biology, Aarhus University, Ole Worms Allé 1, 8000 Aarhus, Denmark; School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, 315211 Ningbo, China.
| | - Wei Li
- Department of Land Resources and Environmental Sciences, Montana State University, 59717 Bozeman, MT, United States
| | | | - Tenna Riis
- Department of Biology, Aarhus University, Ole Worms Allé 1, 8000 Aarhus, Denmark; WATEC, Aarhus University, Centre for Water Technology, 8000 Aarhus, Denmark
| |
Collapse
|
13
|
Loustau E, Leflaive J, Boscus C, Amalric Q, Ferriol J, Oleinikova O, Pokrovsky OS, Girbal-Neuhauser E, Rols JL. The Response of Extracellular Polymeric Substances Production by Phototrophic Biofilms to a Sequential Disturbance Strongly Depends on Environmental Conditions. Front Microbiol 2021; 12:742027. [PMID: 34707592 PMCID: PMC8542934 DOI: 10.3389/fmicb.2021.742027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
Phototrophic biofilms are exposed to multiple stressors that can affect them both directly and indirectly. By modifying either the composition of the community or the physiology of the microorganisms, press stressors may indirectly impact the ability of the biofilms to cope with disturbances. Extracellular polymeric substances (EPS) produced by the biofilm are known to play an important role in its resilience to various stresses. The aim of this study was to decipher to what extent slight modifications of environmental conditions could alter the resilience of phototrophic biofilm EPS to a realistic sequential disturbance (4-day copper exposure followed by a 14-day dry period). By using very simplified biofilms with a single algal strain, we focused solely on physiological effects. The biofilms, composed by the non-axenic strains of a green alga (Uronema confervicolum) or a diatom (Nitzschia palea) were grown in artificial channels in six different conditions of light intensity, temperature and phosphorous concentration. EPS quantity (total organic carbon) and quality (ratio protein/polysaccharide, PN/PS) were measured before and at the end of the disturbance, and after a 14-day rewetting period. The diatom biofilm accumulated more biomass at the highest temperature, with lower EPS content and lower PN/PS ratio while green alga biofilm accumulated more biomass at the highest light condition with lower EPS content and lower PN/PS ratio. Temperature, light intensity, and P concentration significantly modified the resistance and/or recovery of EPS quality and quantity, differently for the two biofilms. An increase in light intensity, which had effect neither on the diatom biofilm growth nor on EPS production before disturbance, increased the resistance of EPS quantity and the resilience of EPS quality. These results emphasize the importance of considering the modulation of community resilience ability by environmental conditions, which remains scarce in the literature.
Collapse
Affiliation(s)
- Emilie Loustau
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France.,LBAE, Université de Toulouse, Université Toulouse 3 - Paul Sabatier (UPS), Auch, France
| | - Joséphine Leflaive
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Claire Boscus
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Quentin Amalric
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Jessica Ferriol
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Olga Oleinikova
- GET, Université de Toulouse, CNRS, IRD, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Oleg S Pokrovsky
- GET, Université de Toulouse, CNRS, IRD, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France.,BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
| | | | - Jean-Luc Rols
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
14
|
Ruen-Pham K, Graham LE, Satjarak A. Spatial Variation of Cladophora Epiphytes in the Nan River, Thailand. PLANTS (BASEL, SWITZERLAND) 2021; 10:2266. [PMID: 34834629 PMCID: PMC8622721 DOI: 10.3390/plants10112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Cladophora is an algal genus known to be ecologically important. It provides habitats for microorganisms known to provide ecological services such as biosynthesis of cobalamin (vitamin B12) and nutrient cycling. Most knowledge of microbiomes was obtained from studies of lacustrine Cladophora species. However, whether lotic freshwater Cladophora microbiomes are as complex as the lentic ones or provide similar ecological services is not known. To illuminate these issues, we used amplicons of 16S rDNA, 18S rDNA, and ITS to investigate the taxonomy and diversity of the microorganisms associated with replicate Cladophora samples from three sites along the Nan River, Thailand. Results showed that the diversity of prokaryotic and eukaryotic members of Cladophora microbiomes collected from different sampling sites was statistically different. Fifty percent of the identifiable taxa were shared across sampling sites: these included organisms belonging to different trophic levels, decomposers, and heterotrophic bacteria. These heterogeneous assemblages of bacteria, by functional inference, have the potential to perform various ecological functions, i.e., cellulose degradation, cobalamin biosynthesis, fermentative hydrogen production, ammonium oxidation, amino acid fermentation, dissimilatory reduction of nitrate to ammonium, nitrite reduction, nitrate reduction, sulfur reduction, polyphosphate accumulation, denitrifying phosphorus-accumulation, and degradation of aromatic compounds. Results suggested that river populations of Cladophora provide ecologically important habitat for microorganisms that are key to nutrient cycling in lotic ecosystems.
Collapse
Affiliation(s)
- Karnjana Ruen-Pham
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Linda E. Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA;
| | - Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
15
|
Hamard S, Küttim M, Céréghino R, Jassey VEJ. Peatland microhabitat heterogeneity drives phototrophic microbe distribution and photosynthetic activity. Environ Microbiol 2021; 23:6811-6827. [PMID: 34559454 DOI: 10.1111/1462-2920.15779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
Phototrophic microbes are widespread in soils, but their contribution to soil carbon (C) uptake remains underexplored in most terrestrial systems, including C-accreting systems such as peatlands. Here, by means of metabarcoding and ecophysiological measurements, we examined how microbial photosynthesis and its biotic (e.g., phototrophic community structure, biomass) and abiotic drivers (e.g., Sphagnum moisture, light intensity) vary across peatland microhabitats. Using a natural gradient of microhabitat conditions from pool to forest, we show that the structure of phototrophic microbial communities shifted from a dominance of eukaryotes in pools to prokaryotes in forests. We identified five groups of co-occurring phototrophic operational taxonomic units with specific environmental preferences across the gradient. Along with such structural changes, we found that microbial C uptake was the highest in the driest and shadiest microhabitats. This study renews and improves current views on phototrophic microbes in peatlands, as the contribution of microbial photosynthesis to peatland C uptake has essentially been studied in wet microhabitats.
Collapse
Affiliation(s)
- Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and Health, Tallinn University, Uus-Sadama 5, Tallinn, 10120, Estonia
| | - Regis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Vincent E J Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, UPS, CNRS, Toulouse, France
| |
Collapse
|
16
|
The soil microbial food web revisited: Predatory myxobacteria as keystone taxa? THE ISME JOURNAL 2021; 15:2665-2675. [PMID: 33746204 PMCID: PMC8397742 DOI: 10.1038/s41396-021-00958-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Trophic interactions are crucial for carbon cycling in food webs. Traditionally, eukaryotic micropredators are considered the major micropredators of bacteria in soils, although bacteria like myxobacteria and Bdellovibrio are also known bacterivores. Until recently, it was impossible to assess the abundance of prokaryotes and eukaryotes in soil food webs simultaneously. Using metatranscriptomic three-domain community profiling we identified pro- and eukaryotic micropredators in 11 European mineral and organic soils from different climes. Myxobacteria comprised 1.5-9.7% of all obtained SSU rRNA transcripts and more than 60% of all identified potential bacterivores in most soils. The name-giving and well-characterized predatory bacteria affiliated with the Myxococcaceae were barely present, while Haliangiaceae and Polyangiaceae dominated. In predation assays, representatives of the latter showed prey spectra as broad as the Myxococcaceae. 18S rRNA transcripts from eukaryotic micropredators, like amoeba and nematodes, were generally less abundant than myxobacterial 16S rRNA transcripts, especially in mineral soils. Although SSU rRNA does not directly reflect organismic abundance, our findings indicate that myxobacteria could be keystone taxa in the soil microbial food web, with potential impact on prokaryotic community composition. Further, they suggest an overlooked, yet ecologically relevant food web module, independent of eukaryotic micropredators and subject to separate environmental and evolutionary pressures.
Collapse
|
17
|
Yu L, Zhang Y, Li M, Wang C, Lin X, Li L, Shi X, Guo C, Lin S. Comparative metatranscriptomic profiling and microRNA sequencing to reveal active metabolic pathways associated with a dinoflagellate bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134323. [PMID: 31522044 DOI: 10.1016/j.scitotenv.2019.134323] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Harmful algal blooms (HABs) have increased as a result of global climate and environmental changes, exerting increasing impacts on the aquatic ecosystem, coastal economy, and human health. Despite great research efforts, our understanding on the drivers of HABs is still limited in part because HAB species' physiology is difficult to probe in situ. Here, we used molecular ecological analyses to characterize a dinoflagellate bloom at Xiamen Harbor, China. Prorocentrum donghaiense was identified as the culprit, which nutrient bioassays showed were not nutrient-limited. Metatranscriptome profiling revealed that P. donghaiense highly expressed genes related to N- and P-nutrient uptake, phagotrophy, energy metabolism (photosynthesis, oxidative phophorylation, and rhodopsin) and carbohydrate metabolism (glycolysis/gluconeogenesis, TCA cycle and pentose phosphate) during the bloom. Many genes in P. donghaiense were up-regulated at night, including phagotrophy and environmental communication genes, and showed active expression in mitosis. Eight microbial defense genes were up-regulated in the bloom compared with previously analyzed laboratory cultures. Furthermore, 76 P. donghaiense microRNA were identified from the bloom, and their target genes exhibited marked differences in amino acid metabolism between the bloom and cultures and the potential of up-regulated antibiotic and cell communication capabilities. These findings, consistent with and complementary to recent reports, reveal major metabolic processes in P. donghaiense potentially important for bloom formation and provide a gene repertoire for developing bloom markers in future research.
Collapse
Affiliation(s)
- Liying Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yaqun Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Meizhen Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xinguo Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; College of Biological Science and Engineering, Fuzhou University, Fujian 350116, China
| | - Chentao Guo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
18
|
Furey PC, Liess A, Lee S. Substratum-associated microbiota. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1326-1341. [PMID: 31523907 DOI: 10.1002/wer.1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This survey of 2018 literature on substratum-associated microbiota presents brief highlights on research findings from primarily freshwaters, but includes those from a variety of aquatic ecosystems. Coverage of topics associated with benthic algae and cyanobacteria, though not comprehensive, includes new methods, taxa new to science, nutrient dynamics, trophic interactions, herbicides and other pollutants, metal contaminants, nuisance, bloom-forming and harmful algae, bioassessment, and bioremediation. Coverage of bacteria, also not comprehensive, focused on methylation of mercury, metal contamination, toxins, and other environmental pollutants, including oil, as well as the use of benthic bacteria as bioindicators, in bioassessment tools and in biomonitoring. Additionally, we cover trends in recent and emerging topics on substratum-associated microbiota of relevance to the Water Environment Federation. PRACTITIONER POINTS: This review of literature from 2018 on substratum-associated microbiota presents highlights of findings on algae, cyanobacteria, and bacteria from primarily freshwaters. Topics covered that focus on algae and cyanobacteria include findings on new methods, taxa new to science, nutrient dynamics, trophic interactions, herbicides and other pollutants, metal contaminants, nuisance, bloomforming and harmful algae, bioassessment, and bioremediation. Topics covered that focus on bacteria include findings on methylation of mercury, metal contamination, toxins and other environmental pollutants, including oil, as well as the us e of benthic bacteria as bioindicators, in bioassessment tools and in biomonitoring. A brief presentation of new, noteworthy and emerging topics on substratum-associated microbiota, build on those from 2017, to highlight those of particular relevance to the Water Environment Federation.
Collapse
Affiliation(s)
- Paula C Furey
- Department Biology, St. Catherine University, St. Paul, Minnesota, USA
| | - Antonia Liess
- Rydberg Laboratory, School of Buisness, Engineering and Science, Halmstad University, Halmstad, Sweden
| | - Sylvia Lee
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| |
Collapse
|
19
|
Pinto M, Langer TM, Hüffer T, Hofmann T, Herndl GJ. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS One 2019; 14:e0217165. [PMID: 31166981 PMCID: PMC6550384 DOI: 10.1371/journal.pone.0217165] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/06/2019] [Indexed: 01/23/2023] Open
Abstract
Once in the ocean, plastics are rapidly colonized by complex microbial communities. Factors affecting the development and composition of these communities are still poorly understood. Additionally, whether there are plastic-type specific communities developing on different plastics remains enigmatic. We determined the development and succession of bacterial communities on different plastics under ambient and dim light conditions in the coastal Northern Adriatic over the course of two months using scanning electron microscopy and 16S rRNA gene analyses. Plastics used were low- and high-density polyethylene (LDPE and HDPE, respectively), polypropylene (PP) and polyvinyl chloride with two typical additives (PVC DEHP and PVC DINP). The bacterial communities developing on the plastics clustered in two groups; one group was found on PVC and the other group on all the other plastics and on glass, which was used as an inert control. Specific bacterial taxa were found on specific surfaces in essentially all stages of biofilm development and in both ambient and dim light conditions. Differences in bacterial community composition between the different plastics and light exposures were stronger after an incubation period of one week than at the later stages of the incubation. Under both ambient and dim light conditions, one part of the bacterial community was common on all plastic types, especially in later stages of the biofilm development, with families such as Flavobacteriaceae, Rhodobacteraceae, Planctomycetaceae and Phyllobacteriaceae presenting relatively high relative abundances on all surfaces. Another part of the bacterial community was plastic-type specific. The plastic-type specific fraction was variable among the different plastic types and was more abundant after one week of incubation than at later stages of the succession.
Collapse
Affiliation(s)
- Maria Pinto
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
| | - Teresa M. Langer
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Thorsten Hüffer
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Thilo Hofmann
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Gerhard J. Herndl
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| |
Collapse
|
20
|
Veach AM, Griffiths NA. Testing the light:nutrient hypothesis: Insights into biofilm structure and function using metatranscriptomics. Mol Ecol 2019; 27:2909-2912. [PMID: 29998558 DOI: 10.1111/mec.14733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/18/2018] [Indexed: 01/17/2023]
Abstract
Aquatic biofilms are hotspots of biogeochemical activity due to concentrated microbial biomass (Battin, Kaplan, Newbold, & Hansen, ). However, biofilms are often considered a single entity when their role in biogeochemical transformations is assessed, even though these biofilms harbour functionally diverse microbial communities (Battin, Besemer, Bengtsson, Romani, & Packmann, ; Veach, Stegen, Brown, Dodds, & Jumpponen, ). Often overlooked are the biotic interactions among biofilm components that can affect ecosystem-scale processes such as primary production and nutrient cycling. These interactions are likely to be especially important under resource limitation. Light is a primary resource mediating algal photosynthesis and both phototrophic and heterotrophic production due to bacterial reliance on C-rich algal exudates (Cole, ). However, current understanding of function-structure linkages in streams has yet to unravel the relative degree of these microbial feedbacks under resource availability gradients. In this issue of Molecular Ecology, Bengtsson, Wagner, Schwab, Urich, and Battin () studied stream biofilm responses to light availability to understand its impact across three domains of life. By integrating biogeochemical rate estimation and metatranscriptomics within a microcosm experiment, they were able to link primary production and nutrient uptake rates to algal and bacterial metabolic processes and specify what taxa contributed to gene expression. Under low light, diatoms and cyanobacteria upregulated photosynthetic machinery and diatom-specific chloroplast rRNA suggesting heightened transcriptional activity under light limitation to maintain phototrophic energy demands. Under high light, heterotrophic bacteria upregulated mRNAs related to phosphorous (P) metabolism while biofilm P uptake increased indicating high bacterial-specific P demand when algal biomass was high. Together, these results indicate that biogeochemical function is mediated by complex microbial interactions across trophic levels.
Collapse
Affiliation(s)
- Allison M Veach
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Natalie A Griffiths
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
21
|
Di Gregorio L, Congestri R, Tandoi V, Neu TR, Rossetti S, Di Pippo F. Biofilm diversity, structure and matrix seasonality in a full-scale cooling tower. BIOFOULING 2018; 34:1093-1109. [PMID: 30663885 DOI: 10.1080/08927014.2018.1541454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
Biofilms commonly colonise cooling water systems, causing equipment damage and interference with the operational requirements of the systems. In this study, next-generation sequencing (NGS), catalysed reporter deposition fluorescence in situ hybridisation (CARD-FISH), lectin staining and microscopy were used to evaluate temporal dynamics in the diversity and structure of biofilms collected seasonally over one year from an open full-scale cooling tower. Water samples were analysed to evaluate the contribution of the suspended microorganisms to the biofilm composition and structure. Alphaproteobacteria dominated the biofilm communities along with Beta- and Gammaproteobacteria. The phototrophic components were mainly cyanobacteria, diatoms and green algae. Bacterial biodiversity decreased from winter to autumn, concurrently with an increase in cyanobacterial and microalgal richness. Differences in structure, spatial organisation and glycoconjugates were observed among assemblages during the year. Overall, microbial variation appeared to be mostly affected by irradiance and water temperature rather than the source of the communities. Variations in biofilms over seasons should be evaluated to develop specific control strategies.
Collapse
Affiliation(s)
- L Di Gregorio
- a CNR-IRSA , Water Research Institute , Rome , Italy
- b Department of Biology , University of Rome Tor Vergata , Rome , Italy
| | - R Congestri
- b Department of Biology , University of Rome Tor Vergata , Rome , Italy
| | - V Tandoi
- a CNR-IRSA , Water Research Institute , Rome , Italy
| | - T R Neu
- c Department of River Ecology , Helmholtz Centre for Environmental Research - UFZ , Magdeburg , Germany
| | - S Rossetti
- a CNR-IRSA , Water Research Institute , Rome , Italy
| | - F Di Pippo
- a CNR-IRSA , Water Research Institute , Rome , Italy
| |
Collapse
|
22
|
Bengtsson MM, Wagner K, Schwab C, Urich T, Battin TJ. Light availability impacts structure and function of phototrophic stream biofilms across domains and trophic levels. Mol Ecol 2018; 27:2913-2925. [PMID: 29679511 PMCID: PMC6055792 DOI: 10.1111/mec.14696] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/15/2018] [Accepted: 02/09/2018] [Indexed: 01/08/2023]
Abstract
Phototrophic biofilms are ubiquitous in freshwater and marine environments where they are critical for biogeochemical cycling, food webs and in industrial applications. In streams, phototrophic biofilms dominate benthic microbial life and harbour an immense prokaryotic and eukaryotic microbial biodiversity with biotic interactions across domains and trophic levels. Here, we examine how community structure and function of these biofilms respond to varying light availability, as the crucial energy source for phototrophic biofilms. Using metatranscriptomics, we found that under light limitation‐dominant phototrophs, including diatoms and cyanobacteria, displayed a remarkable plasticity in their photosynthetic machinery manifested as higher abundance of messenger RNAs (mRNAs) involved in photosynthesis and chloroplast ribosomal RNA. Under higher light availability, bacterial mRNAs involved in phosphorus metabolism, mainly from Betaproteobacteria and Cyanobacteria, increased, likely compensating for nutrient depletion in thick biofilms with high biomass. Consumers, including diverse ciliates, displayed community shifts indicating preferential grazing on algae instead of bacteria under higher light. For the first time, we show that the functional integrity of stream biofilms under variable light availability is maintained by structure–function adaptations on several trophic levels. Our findings shed new light on complex biofilms, or “microbial jungles”, where in analogy to forests, diverse and multitrophic level communities lend stability to ecosystem functioning. This multitrophic level perspective, coupling metatranscriptomics to process measurements, could advance understanding of microbial‐driven ecosystems beyond biofilms, including planktonic and soil environments. https://doi.org/10.1111/mec.14733
Collapse
Affiliation(s)
- Mia M Bengtsson
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Department of Limnology and Oceanography, University of Vienna, Vienna, Austria
| | - Karoline Wagner
- Department of Limnology and Oceanography, University of Vienna, Vienna, Austria
| | - Clarissa Schwab
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tom J Battin
- Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC, Lausanne, Switzerland
| |
Collapse
|