1
|
Mu M, Tuluhong M, Jiang J, Yang M, Long X, Wang Z, Nie W, Zhao S, Wu Y, Hong J, Liu F, Cui G, Yin X. Role of the beneficial phyllosphere microbiome in the defense against red clover anthracnose caused by Colletotrichum americae-borealis. Microbiol Res 2025; 297:128184. [PMID: 40239427 DOI: 10.1016/j.micres.2025.128184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Red clover (Trifolium pratense), a high-quality forage plant, faces significant threats from anthracnose in northeastern China, but the pathogen responsible remains unidentified. The phyllosphere microbiota is crucial in plantpathogen interactions, yet its role in the resistance of red clover to anthracnose is poorly understood. Using morphological, molecular, and multigene phylogenetic analyses, we identified Colletotrichum americae-borealis (Cab) as the pathogen that causes anthracnose in red clover in China. We also investigated changes in the phyllosphere microbiomes of highly resistant (XJ) and susceptible (SC) red clover materials after Cab infection, via 16S rRNA gene sequencing. The results revealed significant differences in bacterial α- and β-diversity, with novel microbial taxa and a complex microbial network emerging postinfection. Notably, after Cab inoculation, the Shannon diversity index in XJ exhibited more pronounced changes, manifested as an increase in the abundance of beneficial microorganisms such as Bacillus, Pantoea, and Pseudomonas. Network analysis revealed that the XJ microbiome was more complex and stable than the SC microbiome was, regardless of infection status. Bacillus J2, the dominant bacterium, significantly inhibited Cab growth in vitro and reduced the disease index by 33.4-47.7 % when it was reapplied to the leaf surface, suggesting its role in enhancing disease resistance. This study is the first to report that C. americae-borealis causes anthracnose in red clover in China, and demonstrates the potential of the beneficial bacterium J2 in enhancing disease resistance, providing insights into disease resistance mechanisms and the role of the phyllosphere microbiome in pathogen challenge.
Collapse
Affiliation(s)
- Meiqi Mu
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Muzhapaer Tuluhong
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Jiang
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Minghao Yang
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xi Long
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zicheng Wang
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wanting Nie
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Siwen Zhao
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yuchen Wu
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jun Hong
- National Animal Husbandry Services, Beijing 100125, China
| | - Fang Liu
- National Animal Husbandry Services, Beijing 100125, China
| | - Guowen Cui
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiujie Yin
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Wen TY, Xie XL, Kong WL, Wu XQ. Expression and Antagonistic Activity Against Plant Pathogens of the Phage Tail-like Protein from Burkholderia multivorans WS-FJ9. Microorganisms 2025; 13:853. [PMID: 40284689 PMCID: PMC12029163 DOI: 10.3390/microorganisms13040853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Microorganisms exert antagonistic effects on pathogens through different mechanisms, thereby achieving biological control of plant diseases. Many Burkholderia strains can produce complex secondary metabolites and substances that have toxic effects on host cells. The phage tail-like bacteriocins (tailocins) is a compound with antibacterial activity. However, its function in B. multivorans has not yet been reported. This article explores the ability of B. multivorans WS-FJ9 to antagonise plant pathogenic fungi and oomycetes, screening the potential tailocins in the strain WS-FJ9 and verifying their function, to reveal its novel antimicrobial mechanisms. We found that WS-FJ9 had strong antagonistic effects on the plant pathogenic fungi Phomopsis macrospore and Sphaeropsis sapinea, and the pathogenic oomycete Phytophthora cinnamomi. The phage tail-like protein Bm_67459 was predicted from the WS-FJ9 strain genome. The Bm_67459 cDNA encoded 111 amino acid sequence, and the relative molecular weight was approximately 11.69 kDa, the theoretical isoelectric point (pI) was 5.49, and it was a hydrophilic protein. Bm_67459 had no transmembrane helix region or signal peptide, and it belonged to the Phage_TAC_7 super family. qRT-PCR results showed that Bm_67459 gene expression was significantly upregulated during contact between WS-FJ9 and P. cinnamomi. The purified Bm_67459 protein significantly inhibited P. cinnamomi mycelial growth at 10 μg·mL-1. In summary, the WS-FJ9 strain had broad-spectrum anti-phytopathogenic activity, and the tailocin Bm_67459 was an important effector against the plant pathogen P. cinnamomi, which helps to reveal the antagonistic mechanism of this strain at the molecular level and provides excellent strain resources for the biological control of plant diseases.
Collapse
Affiliation(s)
- Tong-Yue Wen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Xing-Li Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Zhu L, Zhou W, Wang J, Guo J, Zhou C. Root exudate-mediated assemblage of rhizo-microbiome enhances Fusarium wilt suppression in chrysanthemum. Microbiol Res 2025; 292:128031. [PMID: 39705829 DOI: 10.1016/j.micres.2024.128031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Intercropping is emerging as a sustainable strategy to manage soil-borne diseases, yet the underlying mechanisms remain largely elusive. Here, we investigated how intercropping chrysanthemum (Chrysanthemum morifolium) with ginger (Zingiber officinale) suppressed Fusarium wilt and influenced the associated rhizo-microbiome. Chrysanthemum plants in intercropping systems exhibited a marked reduction in wilt severity and greater biomass compared to those grown in monoculture. In contrast, soil sterilization intensified wilt severity and abrogated the benefits of intercropping, highlighting the critical role of soil microbiota. 16S rRNA gene amplicon analysis revealed that intercropping significantly changed the composition and structure of rhizo-bacterial communities, particularly enriching Burkholderia species, which were closely associated with plant growth and disease resistance. Further investigation demonstrated that ginger root exudates, including sinapyl alcohol and 6-gingerol, greatly promoted the proliferation and colonization of Burkholderia sp. in chrysanthemum rhizosphere, conferring the enhanced disease suppression. Metabolomic profiling revealed that ginger root exudates stimulated the release of specific metabolites by chrysanthemum roots, which promoted the growth and biofilm formation of Burkholderia sp. Our findings uncovered the mechanism by which intercropping chrysanthemum with ginger plants modulated the rhizo-microbiome and thereby resulted in the enhanced disease suppression, offering insights into optimizing plant-microbe interactions for improving crop health and productivity.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, College of Life and Health Science, Anhui Science and Technology University, Chuzhou 233100, China; School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, College of Life and Health Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jianfei Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, College of Life and Health Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou 310058, China; School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, College of Life and Health Science, Anhui Science and Technology University, Chuzhou 233100, China; Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Luo C, He Y, Chen Y. Rhizosphere microbiome regulation: Unlocking the potential for plant growth. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100322. [PMID: 39678067 PMCID: PMC11638623 DOI: 10.1016/j.crmicr.2024.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Rhizosphere microbial communities are essential for plant growth and health maintenance, but their recruitment and functions are affected by their interactions with host plants. Finding ways to use the interaction to achieve specific production purposes, so as to reduce the use of chemical fertilizers and pesticides, is an important research approach in the development of green agriculture. To demonstrate the importance of rhizosphere microbial communities and guide practical production applications, this review summarizes the outstanding performance of rhizosphere microbial communities in promoting plant growth and stress tolerance. We also discuss the effect of host plants on their rhizosphere microbes, especially emphasizing the important role of host plant species and genes in the specific recruitment of beneficial microorganisms to improve the plants' own traits. The aim of this review is to provide valuable insights into developing plant varieties that can consistently recruit specific beneficial microorganisms to improve crop adaptability and productivity, and thus can be applied to green and sustainable agriculture in the future.
Collapse
Affiliation(s)
- Chenghua Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yijun He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaping Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| |
Collapse
|
5
|
Li B, Yang P, Feng Y, Du C, Qi G, Zhao X. Rhizospheric microbiota of suppressive soil protect plants against Fusarium solani infection. PEST MANAGEMENT SCIENCE 2024; 80:4186-4198. [PMID: 38578633 DOI: 10.1002/ps.8122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Fusarium infection has caused huge economic losses in many crops. The study aimed to compare the microbial community of suppressive and conducive soils and relate to the reduction of Fusarium wilt. RESULTS High-throughput sequencing and microbial network analysis were used to investigate the differences in the rhizosphere microbiota of the suppressive and conducive soils and to identify the beneficial keystone taxa. Plant pathogens were enriched in the conducive soil. Potential plant-beneficial microorganisms and antagonistic microorganisms were enriched in the suppressive soil. More positive interactions and keystone taxa existed in the suppressive soil network. Thirty-nine and 16 keystone taxa were identified in the suppressive and conducive soil networks, respectively. Sixteen fungal strains and 168 bacterial strains were isolated from suppressive soil, some of which exhibited plant growth-promotion traits. Thirty-nine bacterial strains and 10 fungal strains showed antagonistic activity against F. solani. Keystone taxa Bacillus and Trichoderma exhibited high antifungal activity. Lipopeptides produced by Bacillus sp. RB150 and chitinase from Trichoderma spp. inhibited the growth of F. solani. Microbial consortium I (Bacillus sp. RB150, Pseudomonas sp. RB70 and Trichoderma asperellum RF10) and II (Bacillus sp. RB196, Bacillus sp. RB150 and T. asperellum RF10) effectively controlled root rot disease, the spore number of F. solani was reduced by 94.2% and 83.3%. CONCLUSION Rhizospheric microbiota of suppressive soil protects plants against F. solani infection. Antagonistic microorganisms in suppressive soil inhibit pathogen growth and infection. Microbial consortia consisted of keystone taxa well control root rot disease. These findings help control Fusarium wilt. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baolong Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yali Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenyang Du
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Tienda S, Vida C, Villar-Moreno R, de Vicente A, Cazorla FM. Development of a Pseudomonas-based biocontrol consortium with effective root colonization and extended beneficial side effects for plants under high-temperature stress. Microbiol Res 2024; 285:127761. [PMID: 38761488 DOI: 10.1016/j.micres.2024.127761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
The root microbiota plays a crucial role in plant performance. The use of microbial consortia is considered a very useful tool for studying microbial interactions in the rhizosphere of different agricultural crop plants. Thus, a consortium of 3 compatible beneficial rhizospheric Pseudomonas strains previously isolated from the avocado rhizosphere, was constructed. The consortium is composed of two compatible biocontrol P. chlororaphis strains (PCL1601 and PCL1606), and the biocontrol rhizobacterium Pseudomonas alcaligenes AVO110, which are all efficient root colonizers of avocado and tomato plants. These three strains were compatible with each other and reached stable levels both in liquid media and on plant roots. Bacterial strains were fluorescent tagged, and colonization-related traits were analyzed in vitro, revealing formation of mixed biofilm networks without exclusion of any of the strains. Additionally, bacterial colonization patterns compatible with the different strains were observed, with high survival traits on avocado and tomato roots. The bacteria composing the consortium shared the same root habitat and exhibited biocontrol activity against soil-borne fungal pathogens at similar levels to those displayed by the individual strains. As expected, because these strains were isolated from avocado roots, this Pseudomonas-based consortium had more stable bacterial counts on avocado roots than on tomato roots; however, inoculation of tomato roots with this consortium was shown to protect tomato plants under high-temperature stress. The results revealed that this consortium has side beneficial effect for tomato plants under high-temperature stress, thus improving the potential performance of the individual strains. We concluded that this rhizobacterial consortium do not improve the plant protection against soil-borne phytopathogenic fungi displayed by the single strains; however, its inoculation can show an specific improvement of plant performance on a horticultural non-host plant (such as tomato) when the plant was challenged by high temperature stress, thus extending the beneficial role of this bacterial consortium.
Collapse
Affiliation(s)
- Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Carmen Vida
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Rafael Villar-Moreno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain.
| |
Collapse
|
7
|
Qiao Y, Wang Z, Sun H, Guo H, Song Y, Zhang H, Ruan Y, Xu Q, Huang Q, Shen Q, Ling N. Synthetic community derived from grafted watermelon rhizosphere provides protection for ungrafted watermelon against Fusarium oxysporum via microbial synergistic effects. MICROBIOME 2024; 12:101. [PMID: 38840214 DOI: 10.1186/s40168-024-01814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Plant microbiota contributes to plant growth and health, including enhancing plant resistance to various diseases. Despite remarkable progress in understanding diseases resistance in plants, the precise role of rhizosphere microbiota in enhancing watermelon resistance against soil-borne diseases remains unclear. Here, we constructed a synthetic community (SynCom) of 16 core bacterial strains obtained from the rhizosphere of grafted watermelon plants. We further simplified SynCom and investigated the role of bacteria with synergistic interactions in promoting plant growth through a simple synthetic community. RESULTS Our results demonstrated that the SynCom significantly enhanced the growth and disease resistance of ungrafted watermelon grown in non-sterile soil. Furthermore, analysis of the amplicon and metagenome data revealed the pivotal role of Pseudomonas in enhancing plant health, as evidenced by a significant increase in the relative abundance and biofilm-forming pathways of Pseudomonas post-SynCom inoculation. Based on in vitro co-culture experiments and bacterial metabolomic analysis, we selected Pseudomonas along with seven other members of the SynCom that exhibited synergistic effects with Pseudomonas. It enabled us to further refine the initially constructed SynCom into a simplified SynCom comprising the eight selected bacterial species. Notably, the plant-promoting effects of simplified SynCom were similar to those of the initial SynCom. Furthermore, the simplified SynCom protected plants through synergistic effects of bacteria. CONCLUSIONS Our findings suggest that the SynCom proliferate in the rhizosphere and mitigate soil-borne diseases through microbial synergistic interactions, highlighting the potential of synergistic effects between microorganisms in enhancing plant health. This study provides a novel insight into using the functional SynCom as a promising solution for sustainable agriculture. Video Abstract.
Collapse
Affiliation(s)
- Yizhu Qiao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhendong Wang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Sun
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hanyue Guo
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Song
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - He Zhang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Ruan
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qicheng Xu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qiwei Huang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Ling
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
8
|
Liu Y, Xu Z, Chen L, Xun W, Shu X, Chen Y, Sun X, Wang Z, Ren Y, Shen Q, Zhang R. Root colonization by beneficial rhizobacteria. FEMS Microbiol Rev 2024; 48:fuad066. [PMID: 38093453 PMCID: PMC10786197 DOI: 10.1093/femsre/fuad066] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the nonsymbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the nonsymbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, 1 Shuizha West Road, Beijing 102300, P.R. China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xia Shu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, P.R. China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xinli Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Zhengqi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Yi Ren
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Ruifu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| |
Collapse
|
9
|
Li Y, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Biofilms formation in plant growth-promoting bacteria for alleviating agro-environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167774. [PMID: 37848152 DOI: 10.1016/j.scitotenv.2023.167774] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Biofilm formation represents a pivotal and adaptable trait among microorganisms within natural environments. This attribute plays a multifaceted role across diverse contexts, including environmental, aquatic, industrial, and medical systems. While previous research has primarily focused on the adverse impacts of biofilms, harnessing their potential effectively could confer substantial advantages to humanity. In the face of escalating environmental pressures (e.g., drought, salinity, extreme temperatures, and heavy metal pollution), which jeopardize global crop yields, enhancing crop stress tolerance becomes a paramount endeavor for restoring sufficient food production. Recently, biofilm-forming plant growth-promoting bacteria (PGPB) have emerged as promising candidates for agricultural application. These biofilms are evidence of microorganism colonization on plant roots. Their remarkable stress resilience empowers crops to thrive and yield even in harsh conditions. This is accomplished through increased root colonization, improved soil properties, and the synthesis of valuable secondary metabolites (e.g., ACC deaminase, acetin, 2,3-butanediol, proline, etc.). This article elucidates the mechanisms underpinning the role of biofilm-forming PGPB in bolstering plant growth amidst environmental challenges. Furthermore, it explores the tangible applications of these biofilms in agriculture and delves into strategies for manipulating biofilm formation to extract maximal benefits in practical crop production scenarios.
Collapse
Affiliation(s)
- Yujia Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai 602105, Tamil Nadu, India
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
10
|
Zhang N, Wang Z, Shao J, Xu Z, Liu Y, Xun W, Miao Y, Shen Q, Zhang R. Biocontrol mechanisms of Bacillus: Improving the efficiency of green agriculture. Microb Biotechnol 2023; 16:2250-2263. [PMID: 37837627 PMCID: PMC10686189 DOI: 10.1111/1751-7915.14348] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023] Open
Abstract
Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms underlying Bacillus biocontrol activity have been revealed with the development of microbiome and microbe-plant interaction research. In this review, we first briefly introduce the typical Bacillus biocontrol mechanisms, such as the production of antimicrobial compounds, competition for niches/nutrients, and induction of systemic resistance. Then, we discussed in detail the new mechanisms of pathogen quorum sensing interference and reshaping of the soil microbiota. The "cry for help" mechanism was also introduced, in which plants can release specific signals under pathogen attack to recruit biocontrol Bacillus for root colonization against invasion. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere-derived prebiotics, were proposed.
Collapse
Affiliation(s)
- Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Zhengqi Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural SciencesBeijingChina
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
11
|
Wu D, Wang W, Yao Y, Li H, Wang Q, Niu B. Microbial interactions within beneficial consortia promote soil health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165801. [PMID: 37499809 DOI: 10.1016/j.scitotenv.2023.165801] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
By ecologically interacting with various biotic and abiotic agents acting in soil ecosystems, highly diverse soil microorganisms establish complex and stable assemblages and survive in a community context in natural settings. Besides facilitating soil microbiome to maintain great levels of population homeostasis, such microbial interactions drive soil microbes to function as the major engine of terrestrial biogeochemical cycling. It is verified that the regulative effect of microbe-microbe interplay plays an instrumental role in microbial-mediated promotion of soil health, including bioremediation of soil pollutants and biocontrol of soil-borne phytopathogens, which is considered an environmentally friendly strategy for ensuring the healthy condition of soils. Specifically, in microbial consortia, it has been proven that microorganism-microorganism interactions are involved in enhancing the soil health-promoting effectiveness (i.e., efficacies of pollution reduction and disease inhibition) of the beneficial microbes, here defined as soil health-promoting agents. These microbial interactions can positively regulate the soil health-enhancing effect by supporting those soil health-promoting agents utilized in combination, as multi-strain soil health-promoting agents, to overcome three main obstacles: inadequate soil colonization, insufficient soil contaminant eradication and inefficient soil-borne pathogen suppression, all of which can restrict their probiotic functionality. Yet the mechanisms underlying such beneficial interaction-related adjustments and how to efficiently assemble soil health-enhancing consortia with the guidance of microbe-microbe communications remain incompletely understood. In this review, we focus on bacterial and fungal soil health-promoting agents to summarize current research progress on the utilization of multi-strain soil health-promoting agents in the control of soil pollution and soil-borne plant diseases. We discuss potential microbial interaction-relevant mechanisms deployed by the probiotic microorganisms to upgrade their functions in managing soil health. We emphasize the interplay-related factors that should be taken into account when building soil health-promoting consortia, and propose a workflow for assembling them by employing a reductionist synthetic community approach.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Weixiong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongtao Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
12
|
Xiong Q, Yang J, Ni S. Microbiome-Mediated Protection against Pathogens in Woody Plants. Int J Mol Sci 2023; 24:16118. [PMID: 38003306 PMCID: PMC10671361 DOI: 10.3390/ijms242216118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens, especially invasive species, have caused significant global ecological, economic, and social losses in forests. Plant disease research has traditionally focused on direct interactions between plants and pathogens in an appropriate environment. However, recent research indicates that the microbiome can interact with the plant host and pathogens to modulate plant resistance or pathogen pathogenicity, thereby altering the outcome of plant-pathogen interactions. Thus, this presents new opportunities for studying the microbial management of forest diseases. Compared to parallel studies on human and crop microbiomes, research into the forest tree microbiome and its critical role in forest disease progression has lagged. The rapid development of microbiome sequencing and analysis technologies has resulted in the rapid accumulation of a large body of evidence regarding the association between forest microbiomes and diseases. These data will aid the development of innovative, effective, and environmentally sustainable methods for the microbial management of forest diseases. Herein, we summarize the most recent findings on the dynamic structure and composition of forest tree microbiomes in belowground and aboveground plant tissues (i.e., rhizosphere, endosphere, and phyllosphere), as well as their pleiotropic impact on plant immunity and pathogen pathogenicity, highlighting representative examples of biological control agents used to modulate relevant tree microbiomes. Lastly, we discuss the potential application of forest tree microbiomes in disease control as well as their future prospects and challenges.
Collapse
Affiliation(s)
- Qin Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (J.Y.); (S.N.)
| | | | | |
Collapse
|
13
|
Naranjo HD, Rat A, De Zutter N, De Ridder E, Lebbe L, Audenaert K, Willems A. Uncovering Genomic Features and Biosynthetic Gene Clusters in Endophytic Bacteria from Roots of the Medicinal Plant Alkanna tinctoria Tausch as a Strategy To Identify Novel Biocontrol Bacteria. Microbiol Spectr 2023; 11:e0074723. [PMID: 37436171 PMCID: PMC10434035 DOI: 10.1128/spectrum.00747-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023] Open
Abstract
The world's population is increasing at a rate not seen in the past. Agriculture, providing food for this increasing population, is reaching its boundaries of space and natural resources. In addition, changing legislation and increased ecological awareness are forcing agriculture to reduce its environmental impact. This entails the replacement of agrochemicals with nature-based solutions. In this regard, the search for effective biocontrol agents that protect crops from pathogens is in the spotlight. In this study, we have investigated the biocontrol activity of endophytic bacteria isolated from the medicinal plant Alkanna tinctoria Tausch. To do so, an extensive collection of bacterial strains was initially genome sequenced and in silico screened for features related to plant stimulation and biocontrol. Based on this information, a selection of bacteria was tested in vitro for antifungal activity using direct antagonism in a plate assay and in planta with a detached-leaf assay. Bacterial strains were tested individually and in combinations to assess the best-performing treatments. The results revealed that many bacteria could produce metabolites that efficiently inhibit the proliferation of several fungi, especially Fusarium graminearum. Among these, Pseudomonas sp. strain R-71838 showed a strong antifungal effect, in both dual-culture and in planta assays, making it the most promising candidate for biocontrol application. Using microbes from medicinal plants, this study highlights the opportunities of using genomic information to speed up the screening of a taxonomically diverse set of bacteria with biocontrol properties. IMPORTANCE Phytopathogenic fungi are a major threat to global food production. The most common management practice to prevent plant infections involves the intensive use of fungicides. However, with the growing awareness of the ecological and human impacts of chemicals, there is a need for alternative strategies, such as the use of bacterial biocontrol agents. Limitations in the design of bacterial biocontrol included the need for labor-intensive and time-consuming experiments to test a wide diversity of strains and the lack of reproducibility of their activity against pathogens. Here, we show that genomic information is an effective tool to select bacteria of interest quickly. Also, we highlight that the strain Pseudomonas sp. R-71838 produced a reproducible antifungal effect both in vitro and in planta. These findings build a foundation for designing a biocontrol strategy based on Pseudomonas sp. R-71838.
Collapse
Affiliation(s)
- Henry D. Naranjo
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Angélique Rat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emmelie De Ridder
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Liesbeth Lebbe
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Park I, Seo YS, Mannaa M. Recruitment of the rhizo-microbiome army: assembly determinants and engineering of the rhizosphere microbiome as a key to unlocking plant potential. Front Microbiol 2023; 14:1163832. [PMID: 37213524 PMCID: PMC10196466 DOI: 10.3389/fmicb.2023.1163832] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
The viable community of microorganisms in the rhizosphere significantly impacts the physiological development and vitality of plants. The assembly and functional capacity of the rhizosphere microbiome are greatly influenced by various factors within the rhizosphere. The primary factors are the host plant genotype, developmental stage and status, soil properties, and resident microbiota. These factors drive the composition, dynamics, and activity of the rhizosphere microbiome. This review addresses the intricate interplay between these factors and how it facilitates the recruitment of specific microbes by the host plant to support plant growth and resilience under stress. This review also explores current methods for engineering and manipulating the rhizosphere microbiome, including host plant-mediated manipulation, soil-related methods, and microbe-mediated methods. Advanced techniques to harness the plant's ability to recruit useful microbes and the promising use of rhizo-microbiome transplantation are highlighted. The goal of this review is to provide valuable insights into the current knowledge, which will facilitate the development of cutting-edge strategies for manipulating the rhizosphere microbiome for enhanced plant growth and stress tolerance. The article also indicates promising avenues for future research in this field.
Collapse
Affiliation(s)
- Inmyoung Park
- School of Food and Culinary Arts, Youngsan University, Busan, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Yao H, Shi W, Wang X, Li J, Chen M, Li J, Chen D, Zhou L, Deng Z. The root-associated Fusarium isolated based on fungal community analysis improves phytoremediation efficiency of Ricinus communis L. in multi metal-contaminated soils. CHEMOSPHERE 2023; 324:138377. [PMID: 36905995 DOI: 10.1016/j.chemosphere.2023.138377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Phytoremediation is a widely accepted bioremediation method of treating heavy metal contaminated soils. Nevertheless, the remediation efficiency in multi-metal contaminated soils is still unsatisfactory attributable to susceptibility to different metals. To isolate root-associated fungi for improving phytoremediation efficiency in multi-metal contaminated soils, the fungal flora in root endosphere, rhizoplane, rhizosphere of Ricinus communis L. in heavy metal contaminated soils and non-heavy metal contaminated soils were compared by ITS amplicon sequencing, and then the critical fungal strains were isolated and inoculated into host plants to improve phytoremediation efficiency in Cd, Pb, and Zn-contaminated soils. The fungal ITS amplicon sequencing analysis indicated that the fungal community in root endosphere was more susceptible to heavy metals than those in rhizoplane and rhizosphere soils and Fusarium dominated the endophytic fungal community of R. communis L. roots under heavy metal stress. Three endophytic strains (Fusarium sp. F2, Fusarium sp. F8, and Fusarium sp. F14) isolated from Ricinus communis L. roots showed high resistances to multi-metals and possessed growth-promoting characteristics. Biomass and metal extraction amount of R. communis L. with Fusarium sp. F2, Fusarium sp. F8, and Fusarium sp. F14 inoculation in Cd-, Pb- and Zn-contaminated soils were significantly higher than those without the inoculation. The results suggested that fungal community analysis-guided isolation could be employed to obtain desired root-associated fungi for enhancing phytoremediation of multi-metal contaminated soils.
Collapse
Affiliation(s)
- Huaxiong Yao
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wenguang Shi
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xing Wang
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Junyan Li
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Meiqi Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jianbin Li
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Danting Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lin Zhou
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zujun Deng
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
16
|
Stuart AKDC, Furuie JL, Cataldi TR, Stuart RM, Zawadneak MAC, Labate CA, Pimentel IC. Metabolomics of the interaction between a consortium of entomopathogenic fungi and their target insect: Mechanisms of attack and survival. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105369. [PMID: 36963938 DOI: 10.1016/j.pestbp.2023.105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
One of the most concerning pests that attack strawberries in Brazil is Duponchelia fovealis (Zeller), a non-native moth with no registered control methods to date. Our group recently observed that a fungal consortium formed by two strains of Beauveria bassiana (Balsamo) increased the mortality of D. fovealis more than inoculation with each strain on its own. However, the molecular interaction between the fungal consortium and the caterpillars is unknown. Thus, in this work, we sought to pioneer the evaluation of the molecular interaction between a fungal consortium of B. bassiana and D. fovealis caterpillars. We aimed to understand the biocontrol process involved in this interaction and the defense system of the caterpillar. Seven days after D. fovealis were inoculated with the consortium, the dead and surviving caterpillars were analyzed using GC-MS and LC-MS. Some of the metabolites identified in dead caterpillars have primarily antioxidant action. Other metabolites may have insecticidal potential, such as diltiazem-like and tamsulosin-like compounds, as well as 2,5-dimethoxymandelic acid. In surviving caterpillars, the main mechanisms are pro-inflammatory from 2-Palmitoylglycerol metabolite and the antifungal action of the metabolite Aegle marmelos Alkaloid-C. The metabolites identified in dead caterpillars may explain the increased mortality caused by the consortium due to its antioxidant mechanism, which can suppress the caterpillars' immune system, and insecticide action. In surviving caterpillars, the main resistance mechanisms may involve the stimulus to the immunity and antifungal action.
Collapse
Affiliation(s)
- Andressa Katiski da Costa Stuart
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | - Jason Lee Furuie
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Thais Regiani Cataldi
- Laboratório de Genética de Plantas Max Feffer, Departamento de Genética, Escola Superior de Agronomia Luiz de Queiroz - Esalq/USP, Piracicaba, São Paulo, Brazil
| | - Rodrigo Makowiecky Stuart
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Maria Aparecida Cassilha Zawadneak
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Programa de Pós-graduação em Agronomia Produção Vegetal, Departamento de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Carlos Alberto Labate
- Laboratório de Genética de Plantas Max Feffer, Departamento de Genética, Escola Superior de Agronomia Luiz de Queiroz - Esalq/USP, Piracicaba, São Paulo, Brazil
| | - Ida Chapaval Pimentel
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
17
|
Xun W, Ren Y, Yan H, Ma A, Liu Z, Wang L, Zhang N, Xu Z, Miao Y, Feng H, Shen Q, Zhang R. Sustained Inhibition of Maize Seed-Borne Fusarium Using a Bacillus-Dominated Rhizospheric Stable Core Microbiota with Unique Cooperative Patterns. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205215. [PMID: 36529951 PMCID: PMC9929125 DOI: 10.1002/advs.202205215] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/08/2022] [Indexed: 06/01/2023]
Abstract
Seed-borne pathogens can inhabit the rhizosphere and infect the plant after germination. The rhizosphere microbiome plays critical roles in defending against seed-borne pathogens. However, the assembly of a core rhizosphere microbiome to suppress seed-borne pathogens is unknown. Here, the root-associated microbiome is infested with seed-borne Fusarium in sterile environment, while the root-associated microbiome is not infested when it interacts with the native soil microbiome across maize cultivars, suggesting that a core rhizosphere microbiome assembles to suppress seed-borne Fusarium. Two strategies of progressive dilution and rhizodepositional attraction are applied to identify the core rhizobacteria. A synthetic microbiota (SynM) is constructed using the isolates of the core rhizobacteria and optimized according to superior community stability and Fusarium-suppression capability, which surpasses the single strain and randomly formed microbiota. The optimized SynM (OptSynM) presents a distinctive cooperative pattern in which a key strain harbors the Fusarium suppression function by synthesizing the antagonistic substance fengycin, while other members intensify the functional performance by promoting the growth and the expression of the antagonistic and plant-growth-promoting related genes of the key strain. This study demonstrates innovative approaches to construct stable and minimal microbiota for sustainable agriculture and proposes a unique cooperative pattern to sustain community stability and functionality.
Collapse
Affiliation(s)
- Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095P. R. China
| | - Yi Ren
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095P. R. China
| | - He Yan
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095P. R. China
| | - Aiyuan Ma
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095P. R. China
| | - Zihao Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095P. R. China
| | - Lingling Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095P. R. China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095P. R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095P. R. China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095P. R. China
| | - Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095P. R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095P. R. China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095P. R. China
- Key Laboratory of Microbial Resources Collection and PreservationMinistry of AgricultureInstitute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijing100081P. R. China
| |
Collapse
|
18
|
Villar-Moreno R, Tienda S, Gutiérrez-Barranquero JA, Carrión VJ, de Vicente A, Cazorla FM, Arrebola E. Interplay between rhizospheric Pseudomonas chlororaphis strains lays the basis for beneficial bacterial consortia. FRONTIERS IN PLANT SCIENCE 2022; 13:1063182. [PMID: 36589057 PMCID: PMC9797978 DOI: 10.3389/fpls.2022.1063182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Pseudomonas chlororaphis (Pc) representatives are found as part of the rhizosphere-associated microbiome, and different rhizospheric Pc strains frequently perform beneficial activities for the plant. In this study we described the interactions between the rhizospheric Pc strains PCL1601, PCL1606 and PCL1607 with a focus on their effects on root performance. Differences among the three rhizospheric Pc strains selected were first observed in phylogenetic studies and confirmed by genome analysis, which showed variation in the presence of genes related to antifungal compounds or siderophore production, among others. Observation of the interactions among these strains under lab conditions revealed that PCL1606 has a better adaptation to environments rich in nutrients, and forms biofilms. Interaction experiments on plant roots confirmed the role of the different phenotypes in their lifestyle. The PCL1606 strain was the best adapted to the habitat of avocado roots, and PCL1607 was the least, and disappeared from the plant root scenario after a few days of interaction. These results confirm that 2 out 3 rhizospheric Pc strains were fully compatible (PCL1601 and PCL1606), efficiently colonizing avocado roots and showing biocontrol activity against the fungal pathogen Rosellinia necatrix. The third strain (PCL1607) has colonizing abilities when it is alone on the root but displayed difficulties under the competition scenario, and did not cause deleterious effects on the other Pc competitors when they were present. These results suggest that strains PCL1601 and PCL1606 are very well adapted to the avocado root environment and could constitute a basis for constructing a more complex beneficial microbial synthetic community associated with avocado plant roots.
Collapse
Affiliation(s)
- Rafael Villar-Moreno
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Sandra Tienda
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Jose A. Gutiérrez-Barranquero
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Víctor J. Carrión
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Antonio de Vicente
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Francisco M. Cazorla
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Eva Arrebola
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| |
Collapse
|
19
|
Barbé S, Figàs-Segura À, Benada M, Navarro-Herrero I, Sampaio TM, Biosca EG, Marco-Noales E. Plant-associated microbiota as a source of antagonistic bacteria against the phytopathogen Erwinia amylovora. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:559-569. [PMID: 35403335 DOI: 10.1111/1758-2229.13064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Control of bacterial plant diseases is a major concern, as they affect economically important species and spread easily, such as the case of fire blight of rosaceous caused by Erwinia amylovora. In the search for alternatives to the use of agrochemicals and antibiotics, this work presents a screening of natural bacterial antagonists of this relevant and devastating phytopathogen. We recovered bacterial isolates from different plant tissues and geographical origins and then selected those with the strongest ability to reduce fire blight symptoms ex vivo and remarkable in vitro antagonistic activity against E. amylovora. None of them elicited a hypersensitivity reaction in tobacco leaves, most produced several hydrolytic enzymes and presented other biocontrol and/or plant growth-promoting activities, such as siderophore production and phosphate solubilization. These isolates, considered as biocontrol candidates, were identified by 16S rRNA sequencing as Pseudomonas rhizosphaerae, Curtobacterium flaccumfaciens, Enterobacter cancerogenus, Pseudomonas azotoformans, Rosenbergiella epipactidis and Serratia plymuthica. This is the first time that the last five bacterial species are reported to have biocontrol potential against E. amylovora.
Collapse
Affiliation(s)
- Silvia Barbé
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Àngela Figàs-Segura
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - M'hamed Benada
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315 km 10.7, 46113 Moncada, Valencia, Spain
- Faculty of Natural Sciences, Earth and the Universe, 8 Mai 1945 University, Guelma, Algeria
| | - Inmaculada Navarro-Herrero
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Telma Maria Sampaio
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Elena G Biosca
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Ester Marco-Noales
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| |
Collapse
|
20
|
Stuart AKDC, Furuie JL, Cataldi TR, Stuart RM, Zawadneak MAC, Labate CA, Pimentel IC. Fungal consortium of two Beauveria bassiana strains increases their virulence, growth, and resistance to stress: A metabolomic approach. PLoS One 2022; 17:e0271460. [PMID: 35834517 PMCID: PMC9282594 DOI: 10.1371/journal.pone.0271460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
The use of two or more microorganisms in a microbial consortium has been increasingly applied in the biological control of diseases and pests. Beauveria bassiana is one of the most widely studied fungal species in biological control, yet little is known about its role in fungal consortiums. In a previous study, our group found that a consortium formed by two strains of B. bassiana had significantly greater biocontrol potential against the polyphagous caterpillars Duponchelia fovealis (Lepidoptera: Crambidae) than either strain on its own. In this study, we use GC-MS and LC-MS/MS to evaluate and discuss the metabolomics of the consortium. A total of 21 consortium biomarkers were identified, corresponding to 14 detected by LC-MS/MS and seven by GC-MS. Antioxidant and anti-inflammatory mechanisms are the main properties of the metabolites produced by the consortium. These metabolites can depress the insect’s immune system, increasing its vulnerability and, hence, the fungal virulence of the consortium. In light of these results, we propose an action model of insect mortality due to the metabolites secreted by the consortium. The model includes the inhibition of defense mechanisms such as pro-inflammatory interleukin secretion, cell migration, cell aggregation, Dif, Dorsal and Relish gene transcription, and JAK/STAT and JNK signaling pathways. It also promotes the cleaning of oxidative molecules, like ROS, NOS, and H2O2, and the induction of virulence factors.
Collapse
Affiliation(s)
- Andressa Katiski da Costa Stuart
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- * E-mail:
| | - Jason Lee Furuie
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Thais Regiani Cataldi
- Departamento de Genética, Laboratório de Genética de Plantas Max Feffer, Escola Superior de Agronomia Luiz de Queiroz – Esalq/USP, Piracicaba, São Paulo, Brazil
| | - Rodrigo Makowiecky Stuart
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Maria Aparecida Cassilha Zawadneak
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Departamento de Fitotecnia e Fitossanitaríssimo, Programa de Pós-graduação em Agronomia Produção Vegetal, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Carlos Alberto Labate
- Departamento de Genética, Laboratório de Genética de Plantas Max Feffer, Escola Superior de Agronomia Luiz de Queiroz – Esalq/USP, Piracicaba, São Paulo, Brazil
| | - Ida Chapaval Pimentel
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Laboratório de Microbiologia e Biologia Molecular (LabMicro), Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
21
|
A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nat Commun 2022; 13:3361. [PMID: 35688828 PMCID: PMC9187771 DOI: 10.1038/s41467-022-31113-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/06/2022] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are important for crop performance. However, a deeper knowledge of crop-associated microbial communities is needed to harness beneficial host-microbe interactions. Here, by assessing the assembly and functions of maize microbiomes across soil types, climate zones, and genotypes, we found that the stem xylem selectively recruits highly conserved microbes dominated by Gammaproteobacteria. We showed that the proportion of bacterial taxa carrying the nitrogenase gene (nifH) was larger in stem xylem than in other organs such as root and leaf endosphere. Of the 25 core bacterial taxa identified in xylem sap, several isolated strains were confirmed to be active nitrogen-fixers or to assist with biological nitrogen fixation. On this basis, we established synthetic communities (SynComs) consisting of two core diazotrophs and two helpers. GFP-tagged strains and 15N isotopic dilution method demonstrated that these SynComs do thrive and contribute, through biological nitrogen fixation, 11.8% of the total N accumulated in maize stems. These core taxa in xylem sap represent an untapped resource that can be exploited to increase crop productivity. The plant xylem microbiota remains understudied. Here, the authors characterise the xylem microbiota in maize plants finding that some bacteria carried N fixing genes. By using synthetic communities the authors confirm that xylem inhabiting and N fixing bacteria provide the host plant with N.
Collapse
|
22
|
Huang YH, Liu Y, Geng J, Lü H, Zhao HM, Xiang L, Li H, Mo CH, Li YW, Cai QY. Maize root-associated niches determine the response variation in bacterial community assembly and function to phthalate pollution. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128280. [PMID: 35093749 DOI: 10.1016/j.jhazmat.2022.128280] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Plant root-associated microbiome can be influenced by environmental stress like pollution. However, how organic pollution influences microbial communities in different root-associated niches and plant-microbe interaction remains unclear. We analyzed maize root-associated bacterial communities under stress of di-(2-ethylhexyl) phthalate (DEHP). The results demonstrate that structures and functions of bacterial communities are significantly different among four root-associated niches, and bacterial diversities gradually decline along bulk soil - rhizosphere - rhizoplane - endosphere. DEHP stress significantly reduces bacterial community diversities in both rhizosphere and rhizoplane, and changes their composition, enrichment and depleting process. DEHP stress led to the enrichment of some specific bacterial taxa like phthalate-degrading bacteria (e.g., Rhizobium and Agromyces) and functional genes involving in phthalate degradation (e.g., pht3 and pcaG). Notably, rhizoplane bacterial community is more sensitive to DEHP stress by enriching stress-resistant bacteria and more complex microbial network on rhizoplane than in rhizosphere. DEHP stress also disturbs the colonization and biofilm forming of root-associated bacteria on rhizoplane. Rhizoplane bacterial community is significantly correlated with maize growth while negatively influenced by DEHP stress. DEHP stress negatively influences plant-microbe interaction and inhibits maize growth. This study provides deep and comprehensive understanding for root-associated bacterial community in response to organic pollution.
Collapse
Affiliation(s)
- Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yue Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jun Geng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
23
|
Annulment of Bacterial Antagonism Improves Plant Beneficial Activity of a Bacillus velezensis Consortium. Appl Environ Microbiol 2022; 88:e0024022. [PMID: 35380452 DOI: 10.1128/aem.00240-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacillus sp. strains that are beneficial to plants are widely used in commercial biofertilizers and biocontrol agents for sustainable agriculture. Generally, functional Bacillus strains are applied as single-strain communities since the principles of synthetic microbial consortia constructed with Bacillus strains remain largely unclear. Here, we demonstrated that the mutual compatibility directly affects the survival and function of two-member consortia composed of Bacillus velezensis SQR9 and FZB42 in the rhizosphere. A mutation in the global regulator Spo0A of SQR9 markedly reduced the boundary phenotype (appearance of a visible boundary line at the meeting point of two swarms) with wild-type FZB42, and the combined use of the SQR9(△spo0A) mutant and FZB42 improved biofilm formation, root colonization, and the production of secondary metabolites that are beneficial to plants. Furthermore, alleviation of antagonistic interactions of two-member Bacillus consortia improved its beneficial effects to cucumber in a greenhouse experiment. Our results provide evidence that social interactions among bacteria could be an influencing factor for achieving a desired community-level function. IMPORTANCE Bacillus velezensis is one of the most widely applied bacteria in biofertilizers in China and Europe. Additionally, the molecular mechanisms of plant growth promotion and disease suppression by representative model strains are well established, such as B. velezensis SQR9 and FZB42. However, it remains extremely challenging to design efficient consortia based on these model strains. Here, we showed that swarm encounter phenotype is one of the major determinants that affects the performance of two-member Bacillus consortia in vitro and in the rhizosphere. Deletion in global regulatory gene spo0A of SQR9 reduced the strength of boundary formation with FZB42 and resulted in the improved plant growth promotion performance of the dual consortium. This knowledge provides new insights into efficient probiotics consortia design in Bacillus spp.
Collapse
|
24
|
Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. THE ISME JOURNAL 2022; 16:774-787. [PMID: 34593997 PMCID: PMC8483172 DOI: 10.1038/s41396-021-01125-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Trophic interactions play a central role in driving microbial community assembly and function. In gut or soil ecosystems, successful inoculants are always facilitated by efficient colonization; however, the metabolite exchanges between inoculants and resident bacteria are rarely studied, particularly in the rhizosphere. Here, we used bioinformatic, genetic, transcriptomic, and metabonomic analyses to uncover syntrophic cooperation between inoculant (Bacillus velezensis SQR9) and plant-beneficial indigenous Pseudomonas stutzeri in the cucumber rhizosphere. We found that the synergistic interaction of these two species is highly environmental dependent, the emergence of syntrophic cooperation was only evident in a static nutrient-rich niche, such as pellicle biofilm in addition to the rhizosphere. Our results identified branched-chain amino acids (BCAAs) biosynthesis pathways are involved in syntrophic cooperation. Genome-scale metabolic modeling and metabolic profiling also demonstrated metabolic facilitation among the bacterial strains. In addition, biofilm matrix components from Bacillus were essential for the interaction. Importantly, the two-species consortium promoted plant growth and helped plants alleviate salt stress. In summary, we propose a mechanism in which synergic interactions between a biocontrol bacterium and a partner species promote plant health.
Collapse
|
25
|
Wu F, Duan Z, Xu P, Yan Q, Meng M, Cao M, Jones CS, Zong X, Zhou P, Wang Y, Luo K, Wang S, Yan Z, Wang P, Di H, Ouyang Z, Wang Y, Zhang J. Genome and systems biology of Melilotus albus provides insights into coumarins biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:592-609. [PMID: 34717292 PMCID: PMC8882801 DOI: 10.1111/pbi.13742] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 05/08/2023]
Abstract
Melilotus species are used as green manure and rotation crops worldwide and contain abundant pharmacologically active coumarins. However, there is a paucity of information on its genome and coumarin production and function. Here, we reported a chromosome-scale assembly of Melilotus albus genome with 1.04 Gb in eight chromosomes, containing 71.42% repetitive elements. Long terminal repeat retrotransposon bursts coincided with declining of population sizes during the Quaternary glaciation. Resequencing of 94 accessions enabled insights into genetic diversity, population structure, and introgression. Melilotus officinalis had relatively larger genetic diversity than that of M. albus. The introgression existed between M. officinalis group and M. albus group, and gene flows was from M. albus to M. officinalis. Selection sweep analysis identified candidate genes associated with flower colour and coumarin biosynthesis. Combining genomics, BSA, transcriptomics, metabolomics, and biochemistry, we identified a β-glucosidase (BGLU) gene cluster contributing to coumarin biosynthesis. MaBGLU1 function was verified by overexpression in M. albus, heterologous expression in Escherichia coli, and substrate feeding, revealing its role in scopoletin (coumarin derivative) production and showing that nonsynonymous variation drives BGLU enzyme activity divergence in Melilotus. Our work will accelerate the understanding of biologically active coumarins and their biosynthetic pathways, and contribute to genomics-enabled Melilotus breeding.
Collapse
Affiliation(s)
- Fan Wu
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Zhen Duan
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Pan Xu
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Qi Yan
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Minghui Meng
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Mingshu Cao
- Grasslands Research CentreAgResearch LimitedPalmerston NorthNew Zealand
| | - Chris S. Jones
- Feed and Forage DevelopmentInternational Livestock Research InstituteNairobiKenya
| | - Xifang Zong
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Pei Zhou
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Yimeng Wang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Kai Luo
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Shengsheng Wang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Zhuanzhuan Yan
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Penglei Wang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Hongyan Di
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Zifeng Ouyang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro‐ecosystemsKey Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsEngineering Research Center of Grassland Industry, Ministry of EducationCollege of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| |
Collapse
|
26
|
Tsalgatidou PC, Thomloudi EE, Baira E, Papadimitriou K, Skagia A, Venieraki A, Katinakis P. Integrated Genomic and Metabolomic Analysis Illuminates Key Secreted Metabolites Produced by the Novel Endophyte Bacillus halotolerans Cal.l.30 Involved in Diverse Biological Control Activities. Microorganisms 2022; 10:microorganisms10020399. [PMID: 35208854 PMCID: PMC8877463 DOI: 10.3390/microorganisms10020399] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
The endophytic strain Cal.l.30, isolated from the medicinal plant Calendula officinalis, was selected among seven Bacillus strains with plant growth promoting activity and strong biological potential against the postharvest fungal pathogen Botrytis cinerea. Treatment by inoculating Cal.l.30 bacterial cell culture or cell free supernatant on harvested grapes and cherry tomato fruits, significantly reduced gray mold disease severity index and disease incidence. Based on 16S rRNA sequence analysis and whole genome phylogeny, Cal.l.30 was identified as Bacillus halotolerans. Genome mining revealed that B. halotolerans Cal.l.30 is endowed with a diverse arsenal of secondary metabolite biosynthetic gene clusters (SM-BGCs) responsible for metabolite production with antimicrobial properties. A sub-set of the identified SM-BGCs (mojavensin A, ‘bacillunoic acid’) appears to be the result of recent horizontal gene transfer events. Its genome was also mined for CAZymes associated with antifungal activity. Further UHPLC-HRMS analysis indicated that Cal.l.30 synthesizes and secretes secondary metabolites with antimicrobial activity, including the lipopeptides, fengycin, surfactin and mojavensin A, bacillaene isoforms, L-dihydroanticapsin and bacillibactin. Other compounds with known antimicrobial activity were also detected, such as azelaic acid, 15- hydroxypentadecanoid acid and 2-hydroxyphenylacetic acid. The genomic and metabolomic features of the B. halotolerans Cal.l.30 provided new perspectives on the exploitation of novel Bacillus sp. as a biocontrol agent.
Collapse
Affiliation(s)
- Polina C. Tsalgatidou
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Eirini-Evangelia Thomloudi
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
| | - Eirini Baira
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute (BPI), Kifissia, 14561 Athens, Greece;
| | | | - Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
| | - Anastasia Venieraki
- Laboratory of Plant Pathology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: (A.V.); (P.K.)
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
- Correspondence: (A.V.); (P.K.)
| |
Collapse
|
27
|
Yang L, Guan D, Valls M, Ding W. Sustainable natural bioresources in crop protection: antimicrobial hydroxycoumarins induce membrane depolarization-associated changes in the transcriptome of Ralstonia solanacearum. PEST MANAGEMENT SCIENCE 2021; 77:5170-5185. [PMID: 34255407 DOI: 10.1002/ps.6557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ralstonia solanacearum is one of the most devastating pathogens affecting crop production worldwide. The hydroxycoumarins (umbelliferone, esculetin and daphnetin) represent sustainable natural bioresources on controlling plant bacterial wilt. However, the antibacterial mechanism of hydroxycoumarins against plant pathogens still remains poorly understood. RESULTS Here we characterized the effect of three hydroxycoumarins on the transcriptome of R. solanacearum. All three hydroxycoumarins were able to kill R. solanacearum, but their antibacterial activity impacted differently the bacterial transcriptome, indicating that their modes of action might be different. Treatment of R. solanacearum cultures with hydroxycoumarins resulted in a large number of differentially expressed genes (DEGs), involved in basic cellular functions and metabolic process, such as down-regulation of genes involved in fatty acid synthesis, lipopolysaccharides biosynthesis, RNA modification, ribosomal submits, oxidative phosphorylation and electrontransport, as well as up-regulation of genes involved in transcriptional regulators, drug efflux, and oxidative stress responses. Future studies based on in vitro experiments are proposed to investigate lipopolysaccharides biosynthesis pathway leading to R. solanacearum cell death caused by hydroxycoumarins. Deletion of lpxB substantially inhibited the growth of R. solanacearum, and reduced virulence of pathogen on tobacco plants. CONCULSION Our transcriptomic analyses show that specific hydroxycoumarins suppressed gene expression involved in fatty acid synthesis, RNA modification, ribosomal submits, oxidative phosphorylation and electrontransport. These findings provide evidence that hydroxycoumarins inhibit R. solanacearum growth through multi-target effect. Hydroxycoumarins could serve as sustainable natural bioresources against plant bacterial wilt through membrane destruction targeting the lipopolysaccharides biosynthesis pathway.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Genetics Section, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Genome-Wide Analysis of the UDP-Glycosyltransferase Family Reveals Its Roles in Coumarin Biosynthesis and Abiotic Stress in Melilotus albus. Int J Mol Sci 2021; 22:ijms221910826. [PMID: 34639166 PMCID: PMC8509628 DOI: 10.3390/ijms221910826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 01/11/2023] Open
Abstract
Coumarins, natural products abundant in Melilotus albus, confer features in response to abiotic stresses, and are mainly present as glycoconjugates. UGTs (UDP-glycosyltransferases) are responsible for glycosylation modification of coumarins. However, information regarding the relationship between coumarin biosynthesis and stress-responsive UGTs remains limited. Here, a total of 189 MaUGT genes were identified from the M. albus genome, which were distributed differentially among its eight chromosomes. According to the phylogenetic relationship, MaUGTs can be classified into 13 major groups. Sixteen MaUGT genes were differentially expressed between genotypes of Ma46 (low coumarin content) and Ma49 (high coumarin content), suggesting that these genes are likely involved in coumarin biosynthesis. About 73.55% and 66.67% of the MaUGT genes were differentially expressed under ABA or abiotic stress in the shoots and roots, respectively. Furthermore, the functions of MaUGT68 and MaUGT186, which were upregulated under stress and potentially involved in coumarin glycosylation, were characterized by heterologous expression in yeast and Escherichia coli. These results extend our knowledge of the UGT gene family along with MaUGT gene functions, and provide valuable findings for future studies on developmental regulation and comprehensive data on UGT genes in M. albus.
Collapse
|
29
|
Yang L, Wang Y, He X, Xiao Q, Han S, Jia Z, Li S, Ding W. Discovery of a novel plant-derived agent against Ralstonia solanacearum by targeting the bacterial division protein FtsZ. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104892. [PMID: 34301354 DOI: 10.1016/j.pestbp.2021.104892] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Ralstonia solanacearum (R. solanacearum) is one of the most devastating bacterial pathogens and leads to serious economic losses in crops worldwide. In this study, the antibacterial activities of novel plant-derived coumarins against R. solanacearum and their underlying mechanisms were initially investigated. The bioactivity assay results showed that certain coumarins had significant in vitro inhibitory effects against R. solanacearum. Notably, 6-methylcoumarin showed the best in vitro antibacterial activity with 76.79%. Interestingly, 6-methylcoumarin was found to cause cell elongation, disrupt cell division, and suppress the expression of the bacterial division protein coding genes ftsZ. Compared with the control treatment, the ∆ftsZ mutant inhibited bacterial growth and caused the bacteria to be more sensitive to 6-methylcoumarin. The application of 6-methylcoumarin effectively suppressed the development of tobacco bacterial wilt in pot and field experiments, and significantly reduced the bacterial population in tobacco stems. The control efficiency of 6-methylcoumarin treatment was 35.76%, 40.51%, 38.99% at 10, 11, and 12 weeks after tobacco transplantation in field condition. All of these results demonstrate that 6-methylcoumarin has potential as an eco-friendly and target specificity agent for controlling tobacco bacterial wilt.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yao Wang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xiaobin He
- Chongqing Tobacco Industry Co., Ltd., Chongqing 400060, China
| | - Qingli Xiao
- Chongqing Tobacco Industry Co., Ltd., Chongqing 400060, China
| | - Songting Han
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zhou Jia
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
30
|
Tovi N, Orevi T, Grinberg M, Kashtan N, Hadar Y, Minz D. Pairwise Interactions of Three Related Pseudomonas Species in Plant Roots and Inert Surfaces. Front Microbiol 2021; 12:666522. [PMID: 34335497 PMCID: PMC8320352 DOI: 10.3389/fmicb.2021.666522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria are social organisms that interact extensively within and between species while responding to external stimuli from their environments. Designing synthetic microbial communities can enable efficient and beneficial microbiome implementation in many areas. However, in order to design an efficient community, one must consider the interactions between their members. Using a reductionist approach, we examined pairwise interactions of three related Pseudomonas species in various microenvironments including plant roots and inert surfaces. Our results show that the step between monoculture and co-culture is already very complex. Monoculture root colonization patterns demonstrate that each isolate occupied a particular location on wheat roots, such as root tip, distance from the tip, or scattered along the root. However, pairwise colonization outcomes on the root did not follow the bacterial behavior in monoculture, suggesting various interaction patterns. In addition, we show that interspecies interactions on a microscale on inert surface take part in co-culture colonization and that the interactions are affected by the presence of root extracts and depend on its source. The understanding of interrelationships on the root may contribute to future attempts to manipulate and improve bacterial colonization and to intervene with root microbiomes to construct and design effective synthetic microbial consortia.
Collapse
Affiliation(s)
- Nesli Tovi
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization - Volcani Center, Rishon LeZion, Israel.,Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tomer Orevi
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maor Grinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nadav Kashtan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization - Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
31
|
Marín O, González B, Poupin MJ. From Microbial Dynamics to Functionality in the Rhizosphere: A Systematic Review of the Opportunities With Synthetic Microbial Communities. FRONTIERS IN PLANT SCIENCE 2021; 12:650609. [PMID: 34149752 PMCID: PMC8210828 DOI: 10.3389/fpls.2021.650609] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/15/2021] [Indexed: 05/07/2023]
Abstract
Synthetic microbial communities (SynComs) are a useful tool for a more realistic understanding of the outcomes of multiple biotic interactions where microbes, plants, and the environment are players in time and space of a multidimensional and complex system. Toward a more in-depth overview of the knowledge that has been achieved using SynComs in the rhizosphere, a systematic review of the literature on SynComs was performed to identify the overall rationale, design criteria, experimental procedures, and outcomes of in vitro or in planta tests using this strategy. After an extensive bibliography search and a specific selection process, a total of 30 articles were chosen for further analysis, grouping them by their reported SynCom size. The reported SynComs were constituted with a highly variable number of members, ranging from 3 to 190 strains, with a total of 1,393 bacterial isolates, where the three most represented phyla were Proteobacteria, Actinobacteria, and Firmicutes. Only four articles did not reference experiments with SynCom on plants, as they considered only microbial in vitro studies, whereas the others chose different plant models and plant-growth systems; some of them are described and reviewed in this article. Besides, a discussion on different approaches (bottom-up and top-down) to study the microbiome role in the rhizosphere is provided, highlighting how SynComs are an effective system to connect and fill some knowledge gaps and to have a better understanding of the mechanisms governing these multiple interactions. Although the SynCom approach is already helpful and has a promising future, more systematic and standardized studies are needed to harness its full potential.
Collapse
Affiliation(s)
- Olga Marín
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- *Correspondence: María Josefina Poupin
| |
Collapse
|
32
|
Gupta R, Anand G, Gaur R, Yadav D. Plant-microbiome interactions for sustainable agriculture: a review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:165-179. [PMID: 33627969 PMCID: PMC7873154 DOI: 10.1007/s12298-021-00927-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Plant-microbiome interactions are significant determinant for plant growth, fitness and productivity. Depending upon the specific habitat, plants' microbial communities are classified as the rhizo-, phyllo-, and endospheric regions. Understanding the plant microbiome interactions could provide an opportunity to develop strategies for sustainable agricultural practices. There is a necessity to decipher the complex structural and functional diversity within plant microbiomes to reveal its immense potential in agriculture. The plant microbiota harbors enormous microbial communities that defy analytical methodologies to study dynamics underlying plant microbiome interactions. Findings based on conventional approaches have ignored many beneficial microbial strains, which creates a serious gap in understanding the microbial communications along with the genetic adaptations, which favors their association with host plant. The new era of next generation sequencing techniques and modern cost-effective high-throughput molecular approaches can decipher microbial community composition and function. In this review, we have presented the overview of the various compartments of plants, approaches to allow the access to microbiome and factors that influence microbial community composition and function. Next, we summarize how plant microbiome interactions modulate host beneficial properties particularly nutrient acquisition and defense, along with future agricultural applications. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at. 10.1007/s12298-021-00927-1.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon, Israel
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon, Israel
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh India
| | - Rajeeva Gaur
- Department of Microbiology, Dr. Ram Manohar Lohia Avadh University, Ayodhya, 224001 Uttar Pradesh India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh India
| |
Collapse
|
33
|
Tseng YH, Rouina H, Groten K, Rajani P, Furch ACU, Reichelt M, Baldwin IT, Nataraja KN, Uma Shaanker R, Oelmüller R. An Endophytic Trichoderma Strain Promotes Growth of Its Hosts and Defends Against Pathogen Attack. FRONTIERS IN PLANT SCIENCE 2020; 11:573670. [PMID: 33424876 PMCID: PMC7793846 DOI: 10.3389/fpls.2020.573670] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/02/2020] [Indexed: 05/30/2023]
Abstract
Plants host numerous endophytic microbes which promote plant performance, in particular under stress. A new endophytic fungus was isolated from the leaves of a deciduous wood tree Leucas aspera. Morphological inspection and multilocus phylogeny identified the fungus as a new Trichoderma strain. If applied to Arabidopsis thaliana and Nicotiana attenuata, it mainly colonizes their roots and strongly promotes initial growth of the plants on soil. The fungus grows on high NaCl or mannitol concentrations, and shows predatory capability on the pathogenic fungus Alternaria brassicicola. Colonized Arabidopsis plants tolerate higher salt stress and show lower A. brassicicola spread in roots and shoots, while arbuscular mycorrhiza formation in N. attenuata is not affected by the Trichoderma strain. These beneficial features of the novel Trichoderma strain are important prerequisites for agricultural applications.
Collapse
Affiliation(s)
- Yu-Heng Tseng
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Hamid Rouina
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Karin Groten
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Pijakala Rajani
- School of Ecology and Conservation, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, India
| | - Alexandra C. U. Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Reichelt
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, India
| | - Ramanan Uma Shaanker
- School of Ecology and Conservation, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, India
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
- School of Ecology and Conservation, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, India
| |
Collapse
|
34
|
Katiski da Costa Stuart A, Lee Furuie J, Aparecida Cassilha Zawadneak M, Chapaval Pimentel I. Increased mortality of the European pepper moth Duponchelia fovealis (Lepidoptera:Crambidae) using entomopathogenic fungal consortia. J Invertebr Pathol 2020; 177:107503. [PMID: 33207222 DOI: 10.1016/j.jip.2020.107503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
The European pepper moth (Duponchelia fovealis) is an invasive pest affecting crops in many countries. The use of chemicals to control D. fovealis is not only ineffective but is hazardous to the environment. The most effective way to reduce this invasive species is biological control using entomopathogenic fungi. Furthermore, the use of combining entomopathogenic fungi is a novel and underexplored approach in the field of biocontrol research. The compatibility of different strains of Beauveria bassiana, Purpureocillium lilacinum, and Isaria javanica was evaluated by forming two-fungi consortia. The pathogenicity of these consortia against D. fovealis, as well as the related enzymatic activities, were investigated. Seven consortia increased D. fovealis mortality, showing synergistic activity. One consortium formed by two strains of B. bassiana produced highest control. Moreover, these consortia also demonstrated increased chitinase and lipase activities. Higher mortality of D. fovealis by these consortia was mainly associated with enzyme production. One consortium, also formed by two strains of B. bassiana, was unique in producing lower D. fovealis mortality than the two strains alone. The potential use of entomopathogenic fungal consortia is a promising alternative approach for biological control. Most of the consortia used in this study improved control of D. fovealis, showed synergistic activity and could be a suitable strategy to control this pest.
Collapse
Affiliation(s)
- Andressa Katiski da Costa Stuart
- Department of Basic Pathology, Sector of Biological Sciences, Federal University of Paraná, PO Box 19031, CEP 81531-990, Curitiba, Paraná, Brazil.
| | - Jason Lee Furuie
- Department of Basic Pathology, Sector of Biological Sciences, Federal University of Paraná, PO Box 19031, CEP 81531-990, Curitiba, Paraná, Brazil
| | - Maria Aparecida Cassilha Zawadneak
- Department of Basic Pathology, Sector of Biological Sciences, Federal University of Paraná, PO Box 19031, CEP 81531-990, Curitiba, Paraná, Brazil
| | - Ida Chapaval Pimentel
- Department of Basic Pathology, Sector of Biological Sciences, Federal University of Paraná, PO Box 19031, CEP 81531-990, Curitiba, Paraná, Brazil
| |
Collapse
|
35
|
Niu B, Wang W, Yuan Z, Sederoff RR, Sederoff H, Chiang VL, Borriss R. Microbial Interactions Within Multiple-Strain Biological Control Agents Impact Soil-Borne Plant Disease. Front Microbiol 2020; 11:585404. [PMID: 33162962 PMCID: PMC7581727 DOI: 10.3389/fmicb.2020.585404] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Major losses of crop yield and quality caused by soil-borne plant diseases have long threatened the ecology and economy of agriculture and forestry. Biological control using beneficial microorganisms has become more popular for management of soil-borne pathogens as an environmentally friendly method for protecting plants. Two major barriers limiting the disease-suppressive functions of biocontrol microbes are inadequate colonization of hosts and inefficient inhibition of soil-borne pathogen growth, due to biotic and abiotic factors acting in complex rhizosphere environments. Use of a consortium of microbial strains with disease inhibitory activity may improve the biocontrol efficacy of the disease-inhibiting microbes. The mechanisms of biological control are not fully understood. In this review, we focus on bacterial and fungal biocontrol agents to summarize the current state of the use of single strain and multi-strain biological control consortia in the management of soil-borne diseases. We discuss potential mechanisms used by microbial components to improve the disease suppressing efficacy. We emphasize the interaction-related factors to be considered when constructing multiple-strain biological control consortia and propose a workflow for assembling them by applying a reductionist synthetic community approach.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Weixiong Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Rainer Borriss
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| |
Collapse
|
36
|
Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL. The Plant Microbiome: From Ecology to Reductionism and Beyond. Annu Rev Microbiol 2020; 74:81-100. [PMID: 32530732 DOI: 10.1146/annurev-micro-022620-014327] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plantmicrobiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments.
Collapse
Affiliation(s)
- Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Isai Salas-González
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jonathan M Conway
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Omri M Finkel
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Sarah Gilbert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Paulo José Pereira Lima Teixeira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, São Paulo 13418-900, Brazil
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
37
|
Yadav V, Wang Z, Wei C, Amo A, Ahmed B, Yang X, Zhang X. Phenylpropanoid Pathway Engineering: An Emerging Approach towards Plant Defense. Pathogens 2020; 9:pathogens9040312. [PMID: 32340374 PMCID: PMC7238016 DOI: 10.3390/pathogens9040312] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 11/23/2022] Open
Abstract
Pathogens hitting the plant cell wall is the first impetus that triggers the phenylpropanoid pathway for plant defense. The phenylpropanoid pathway bifurcates into the production of an enormous array of compounds based on the few intermediates of the shikimate pathway in response to cell wall breaches by pathogens. The whole metabolomic pathway is a complex network regulated by multiple gene families and it exhibits refined regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels. The pathway genes are involved in the production of anti-microbial compounds as well as signaling molecules. The engineering in the metabolic pathway has led to a new plant defense system of which various mechanisms have been proposed including salicylic acid and antimicrobial mediated compounds. In recent years, some key players like phenylalanine ammonia lyases (PALs) from the phenylpropanoid pathway are proposed to have broad spectrum disease resistance (BSR) without yield penalties. Now we have more evidence than ever, yet little understanding about the pathway-based genes that orchestrate rapid, coordinated induction of phenylpropanoid defenses in response to microbial attack. It is not astonishing that mutants of pathway regulator genes can show conflicting results. Therefore, precise engineering of the pathway is an interesting strategy to aim at profitably tailored plants. Here, this review portrays the current progress and challenges for phenylpropanoid pathway-based resistance from the current prospective to provide a deeper understanding.
Collapse
Affiliation(s)
- Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Zhongyuan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Aduragbemi Amo
- College of Agronomy, Northwest A&F University, Xianyang 712100, China;
| | - Bilal Ahmed
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Xiaozhen Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
- Correspondence: ; Tel.: +86-029-8708-2613
| |
Collapse
|
38
|
Ben Slama H, Triki MA, Chenari Bouket A, Ben Mefteh F, Alenezi FN, Luptakova L, Cherif-Silini H, Vallat A, Oszako T, Gharsallah N, Belbahri L. Screening of the High-Rhizosphere Competent Limoniastrum monopetalum' Culturable Endophyte Microbiota Allows the Recovery of Multifaceted and Versatile Biocontrol Agents. Microorganisms 2019; 7:microorganisms7080249. [PMID: 31405010 PMCID: PMC6723025 DOI: 10.3390/microorganisms7080249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022] Open
Abstract
Halophyte Limoniastrum monopetalum, an evergreen shrub inhabiting the Mediterranean region, has well-documented phytoremediation potential for metal removal from polluted sites. It is also considered to be a medicinal halophyte with potent activity against plant pathogens. Therefore, L. monopetalum may be a suitable candidate for isolating endophytic microbiota members that provide plant growth promotion (PGP) and resistance to abiotic stresses. Selected for biocontrol abilities, these endophytes may represent multifaceted and versatile biocontrol agents, combining pathogen biocontrol in addition to PGP and plant protection against abiotic stresses. In this study 117 root culturable bacterial endophytes, including Gram-positive (Bacillus and Brevibacillus), Gram-negative (Proteus, Providencia, Serratia, Pantoea, Klebsiella, Enterobacter and Pectobacterium) and actinomycete Nocardiopsis genera have been recovered from L. monopetalum. The collection exhibited high levels of biocontrol abilities against bacterial (Agrobacterium tumefaciens MAT2 and Pectobacterium carotovorum MAT3) and fungal (Alternaria alternata XSZJY-1, Rhizoctonia bataticola MAT1 and Fusarium oxysporum f. sp. radicis lycopersici FORL) pathogens. Several bacteria also showed PGP capacity and resistance to antibiotics and metals. A highly promising candidate Bacillus licheniformis LMRE 36 with high PGP, biocontrol, metal and antibiotic, resistance was subsequently tested in planta (potato and olive trees) for biocontrol of a collection of 14 highly damaging Fusarium species. LMRE 36 proved very effective against the collection in both species and against an emerging Fusarium sp. threatening olive trees culture in nurseries. These findings provide a demonstration of our pyramiding strategy. Our strategy was effective in combining desirable traits in biocontrol agents towards broad-spectrum resistance against pathogens and protection of crops from abiotic stresses. Stacking multiple desirable traits into a single biocontrol agent is achieved by first, careful selection of a host for endophytic microbiota recovery; second, stringent in vitro selection of candidates from the collection; and third, application of the selected biocontrol agents in planta experiments. That pyramiding strategy could be successfully used to mitigate effects of diverse biotic and abiotic stresses on plant growth and productivity. It is anticipated that the strategy will provide a new generation of biocontrol agents by targeting the microbiota of plants in hostile environments.
Collapse
Affiliation(s)
- Houda Ben Slama
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia
- Institut de l'Olivier Sfax, Sfax 3000, Tunisia
| | | | - Ali Chenari Bouket
- Plant Protection Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, 5355179854 Tabriz, Iran
| | - Fedia Ben Mefteh
- Faculty of Science, B.P. 1171, 3000, University of Sfax, Sfax 3029, Tunisia
| | - Faizah N Alenezi
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia
- Department of Environmental Technology Management, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Lenka Luptakova
- Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and Pharmacy, 04181 Kosice, Slovakia
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif, 19000 Setif, Algeria
| | - Armelle Vallat
- Neuchatel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchatel, 2000 Neuchatel, Switzerland
| | - Tomasz Oszako
- Department of Forest Protection, Forest Research Institute, 05-090 Raszyn, Poland
| | - Neji Gharsallah
- Faculty of Science, B.P. 1171, 3000, University of Sfax, Sfax 3029, Tunisia
| | - Lassaad Belbahri
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland.
| |
Collapse
|
39
|
Stringlis IA, de Jonge R, Pieterse CMJ. The Age of Coumarins in Plant-Microbe Interactions. PLANT & CELL PHYSIOLOGY 2019; 60:1405-1419. [PMID: 31076771 PMCID: PMC6915228 DOI: 10.1093/pcp/pcz076] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/23/2019] [Indexed: 05/05/2023]
Abstract
Coumarins are a family of plant-derived secondary metabolites that are produced via the phenylpropanoid pathway. In the past decade, coumarins have emerged as iron-mobilizing compounds that are secreted by plant roots and aid in iron uptake from iron-deprived soils. Members of the coumarin family are found in many plant species. Besides their role in iron uptake, coumarins have been extensively studied for their potential to fight infections in both plants and animals. Coumarin activities range from antimicrobial and antiviral to anticoagulant and anticancer. In recent years, studies in the model plant species tobacco and Arabidopsis have significantly increased our understanding of coumarin biosynthesis, accumulation, secretion, chemical modification and their modes of action against plant pathogens. Here, we review current knowledge on coumarins in different plant species. We focus on simple coumarins and provide an overview on their biosynthesis and role in environmental stress responses, with special attention for the recently discovered semiochemical role of coumarins in aboveground and belowground plant-microbe interactions and the assembly of the root microbiome.
Collapse
Affiliation(s)
- Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Corresponding author: E-mail, ; Fax,+31 30 253 2837
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Corn� M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| |
Collapse
|