1
|
Li H, Liang X, Peng Y, Liu Z, Zhang L, Wang P, Jin M, Wilson K, Garvin MR, Wu K, Xiao Y. Novel Mito-Nuclear Combinations Facilitate the Global Invasion of a Major Agricultural Crop Pest. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305353. [PMID: 38965806 PMCID: PMC11425838 DOI: 10.1002/advs.202305353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/24/2024] [Indexed: 07/06/2024]
Abstract
A fundamental understanding of the underlying mechanisms involved in biological invasions is crucial to developing effective risk assessment and control measures against invasive species. The fall armyworm (FAW), Spodoptera frugiperda, is a highly invasive pest that has rapidly spread from its native Americas into much of the Eastern Hemisphere, with a highly homogeneous nuclear genetic background. However, the exact mechanism behind its rapid introduction and propagation remains unclear. Here, a systematic investigation is conducted into the population dynamics of FAW in China from 2019 to 2021 and found that FAW individuals carrying "rice" mitochondria (FAW-mR) are more prevalent (>98%) than that with "corn" mitochondria (FAW-mC) at the initial stage of the invasion and in newly-occupied non-overwintering areas. Further fitness experiments show that the two hybrid-strains of FAW exhibit different adaptions in the new environment in China, and this may have been facilitated by amino acid changes in mitochondrial-encoded proteins. FAW-mR used increases energy metabolism, faster wing-beat frequencies, and lower wing loadings to drive greater flight performance and subsequent rapid colonization of new habitats. In contrast, FAW-mC individuals adapt with more relaxed mitochondria and shuttle energetics into maternal investment, observed as faster development rate and higher fecundity. The presence of two different mitochondria types within FAW has the potential to significantly expand the range of damage and enhance competitive advantage. Overall, the study describes a novel invasion mechanism displayed by the FAW population that facilitates its expansion and establishment in new environments.
Collapse
Affiliation(s)
- Hongran Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xinyue Liang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Zhenxing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Ping Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Kenneth Wilson
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Michael R Garvin
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, 37830, USA
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| |
Collapse
|
2
|
Zhang J, Shu L, Peng Z. Adaptive evolution of mitochondrial genomes in Triplophysa cavefishes. Gene 2024; 893:147947. [PMID: 37923093 DOI: 10.1016/j.gene.2023.147947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Extreme conditions in caves pose survival challenges for cave dwellers, who gradually develop adaptive survival features. Cavefishes are one of the most successful animals among cave dwellers. Triplophysa cavefishes are an important group of cavefishes, and they show remarkable adaptability to the extreme environments of caves. However, there is a limited understanding of their adaptation mechanisms. In this study, eight complete mitochondrial genomes of Triplophysa cavefishes were newly obtained, and their genomic characteristics, including the base composition, base bias, and codon usage, were analyzed. Phylogenetic analysis was carried out based on 13 mitochondrial protein-coding genes from 44 Nemacheilidae species. This showed that Triplophysa cavefishes and non-cavefishes separate into two reciprocally monophyletic clades, suggesting a single origin of the cave phenotype. Positive selection analysis strongly suggested that the selection pressure in cavefishes is higher than that in non-cavefishes. Furthermore, the ND5 gene in cavefishes showed evidence of positive selection, which suggests that the gene may play an important role in the adaptation of cavefishes to the cave environment. Protein structure analysis of the ND5 subunit implied that the sites of positive selection in cavefishes might allow them to acquire lower ND5 protein stability, compared to that in non-cavefishes, which might help the accumulation of nonsynonymous (mildly deleterious) mutations. Together, our study revealed the genetic signatures of cave adaptation in Triplophysa cavefishes from the perspective of energy metabolism.
Collapse
Affiliation(s)
- Jiatong Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Lu Shu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China.
| |
Collapse
|
3
|
Sun KK, Ding Y, Chen L, Sun JT. A Comparative Analysis of Selection Pressures Suffered by Mitochondrial Genomes in Two Planthopper Species with Divergent Climate Distributions. Int J Mol Sci 2023; 24:16847. [PMID: 38069176 PMCID: PMC10706623 DOI: 10.3390/ijms242316847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondrial DNA (mtDNA) has been widely used as a valuable tool in studies related to evolution and population genetics, under the implicit assumption of neutral evolution. However, recent studies suggest that natural selection also plays a significant role in shaping mitochondrial genome evolution, although the specific driving forces remain elusive. In this study, we aimed to investigate whether and how climate influences mitochondrial genome evolution by comparing the selection pressures acting on mitochondrial genomes between two rice planthoppers, Sogatella furcifera (Horváth) and Laodelphax striatellus (Fallén), which have different climate distributions. We employed the dN/dS method, MK test and Tajima's D tests for our analysis. Our results showed that the mitochondrial genomes of the two species appear to undergo predominantly purifying selection, consistent with the nearly neutral evolution model. However, we observed varied degrees of purifying selection among the 13 protein-coding genes. Notably, ND1, ND2, ND6, COIII, and ATP8 exhibited significantly stronger purifying selection and greater divergence between the two species compared to the other genes. Additionally, we observed relatively stronger purifying selection in the mitochondrial genomes of S. furcifera compared to L. striatellus. This difference could be attributed to varying metabolic requirements arising from distinct habitats or other factors that are unclear here. Furthermore, we speculate that mito-nuclear epistatic interactions may play a role in maintaining nonsynonymous polymorphisms, particularly for COI and COII. Overall, our results shed some light on the influence of climate on mitochondrial genome evolution.
Collapse
Affiliation(s)
| | | | | | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; (K.-K.S.); (Y.D.)
| |
Collapse
|
4
|
Arnqvist G, Rowe L. Ecology, the pace-of-life, epistatic selection and the maintenance of genetic variation in life-history genes. Mol Ecol 2023; 32:4713-4724. [PMID: 37386734 DOI: 10.1111/mec.17062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Evolutionary genetics has long struggled with understanding how functional genes under selection remain polymorphic in natural populations. Taking as a starting point that natural selection is ultimately a manifestation of ecological processes, we spotlight an underemphasized and potentially ubiquitous ecological effect that may have fundamental effects on the maintenance of genetic variation. Negative frequency dependency is a well-established emergent property of density dependence in ecology, because the relative profitability of different modes of exploiting or utilizing limiting resources tends to be inversely proportional to their frequency in a population. We suggest that this may often generate negative frequency-dependent selection (NFDS) on major effect loci that affect rate-dependent physiological processes, such as metabolic rate, that are phenotypically manifested as polymorphism in pace-of-life syndromes. When such a locus under NFDS shows stable intermediate frequency polymorphism, this should generate epistatic selection potentially involving large numbers of loci with more minor effects on life-history (LH) traits. When alternative alleles at such loci show sign epistasis with a major effect locus, this associative NFDS will promote the maintenance of polygenic variation in LH genes. We provide examples of the kind of major effect loci that could be involved and suggest empirical avenues that may better inform us on the importance and reach of this process.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Swedish Collegium of Advanced Study, Uppsala, Sweden
| |
Collapse
|
5
|
Anand R, Singh SP, Sahu N, Singh YT, Mazumdar-Leighton S, Bentur JS, Nair S. Polymorphisms in the hypervariable control region of the mitochondrial DNA differentiate BPH populations. FRONTIERS IN INSECT SCIENCE 2022; 2:987718. [PMID: 38468808 PMCID: PMC10926497 DOI: 10.3389/finsc.2022.987718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/17/2022] [Indexed: 03/13/2024]
Abstract
The brown planthopper (BPH; Nilaparvata lugens) is one of India's most destructive pests of rice. BPH, a monophagous migratory insect, reported from all major rice-growing ecosystems of the country, is capable of traversing large distances and causing massive crop loss. A crucial step for developing viable management strategies is understanding its population dynamics. Very few reliable markers are currently available to screen BPH populations for their diversity. In the current investigation, we developed a combinatorial approach using the polymorphism present within the mitochondrial Control Region of BPH and in the nuclear genome (genomic simple sequence repeats; gSSRs) to unravel the diversity present in BPH populations collected from various rice-growing regions of India. Using two specific primer pairs, the complete Control Region (1112 to 2612 bp) was PCR amplified as two overlapping fragments, cloned and sequenced from BPH individuals representing nine different populations. Results revealed extensive polymorphism within this region due to a variable number of tandem repeats. The three selected gSSR markers also exhibited population-specific amplification patterns. Overall genetic diversity between the nine populations was high (>5%). Further, in silico double-digestion of the consensus sequences of the Control Region, with HpyCH4IV and Tsp45I restriction enzymes, revealed unique restriction fragment length polymorphisms (digital-RFLPs; dRFLPs) that differentiated all the nine BPH populations. To the best of our knowledge, this is the first report of markers developed from the Control Region of the BPH mitogenome that can differentiate populations. Eventually, such reliable and rapid marker-based identification of BPH populations will pave the way for an efficient pest management strategy.
Collapse
Affiliation(s)
- Rashi Anand
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- Plant Biotic Interaction Lab, Department of Botany, University of Delhi, Delhi, India
| | | | - Nihar Sahu
- Agri Biotech Foundation, Hyderabad, India
| | | | | | | | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
6
|
Zhou XY, Ding Y, Zhou JY, Sun KK, Matsukura K, Zhang H, Chen L, Hong XY, Sun JT. Genetic evidence of transoceanic migration of the small brown planthopper between China and Japan. PEST MANAGEMENT SCIENCE 2022; 78:2909-2920. [PMID: 35415865 DOI: 10.1002/ps.6915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The small brown planthopper, Laodelphax striatellus (Fallén), is an important pest of rice. It is suspected of migrating over the sea from China to Japan. However, where in China it comes from and how it affects Japanese populations remain unclear. RESULTS Here, we studied the genetic structure of 15 L. striatellus populations sampled from Japan and China using single nucleotide polymorphisms generated by the double digest restriction site-associated DNA sequencing technique. We found weak genetic differentiation between the Chinese and Japanese populations. Our data revealed migration signals of L. striatellus from China to southern and northern Japan. However, the source regions of the immigrants remain unclear due to the low genetic differentiation between populations. Our results also pointed to the possibility of backward gene flow from Japanese to Chinese populations. We suspect that the south-eastern wind associated with the East Asian summer monsoon may facilitate the reverse migration of L. striatellus from Japan to China. Interestingly, we found that the X chromosome displayed relatively higher genetic differentiation among populations and suffered more intensive selection pressure than autosomes. CONCLUSION We provide genetic evidence of transoceanic migration of L. striatellus from China to Japan and found that the X chromosome can aid the deciphering of the migration trajectories of species with low genetic differentiation. These findings have implications for forecasting the outbreak of this pest and also provide insights into how to improve the tracking of the migration routes of small insects via population genomics. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Yu Zhou
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yi Ding
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Yi Zhou
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Kang-Kang Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | | | - Hui Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Insights into the Divergence of Chinese Ips Bark Beetles during Evolutionary Adaptation. BIOLOGY 2022; 11:biology11030384. [PMID: 35336758 PMCID: PMC8945085 DOI: 10.3390/biology11030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Bark beetle species of the genus Ips are among the major pests of Chinese conifer forests. Based on mitochondrial genome and SNP, we investigated the phylogenetic relationships and evolutionary trends of 19 populations of six Ips species that had serious outbreaks in recent years. Our results demonstrated the relationships between Ips evolution and host plants, pheromones, and altitudinal differences, and provided new insights into the mechanism of adaptive evolution of Ips bark beetles. Abstract Many bark beetles of the genus Ips are economically important insect pests that cause severe damage to conifer forests worldwide. In this study, sequencing the mitochondrial genome and restriction site-associated DNA of Ips bark beetles helps us understand their phylogenetic relationships, biogeographic history, and evolution of ecological traits (e.g., pheromones and host plants). Our results show that the same topology in phylogenetic trees constructed in different ways (ML/MP/BI) and with different data (mtDNA/SNP) helps us to clarify the phylogenetic relationships between Chinese Ips bark beetle populations and Euramerican species and their higher order clades; Ips bark beetles are polyphyletic. The structure of the mitochondrial genome of Ips bark beetles is similar and conserved to some extent, especially in the sibling species Ips typographus and Ips nitidus. Genetic differences among Ips species are mainly related to their geographic distribution and different hosts. The evolutionary pattern of aggregation pheromones of Ips species reflects their adaptations to the environment and differences among hosts in their evolutionary process. The evolution of Ips species is closely related to the uplift of the Qinghai-Tibet Plateau and host switching. Our study addresses the evolutionary trend and phylogenetic relationships of Ips bark beetles in China, and also provides a new perspective on the evolution of bark beetles and their relationships with host plants and pheromones.
Collapse
|
8
|
Complete Mitochondrial Genomes of Metcalfa pruinosa and Salurnis marginella (Hemiptera: Flatidae): Genomic Comparison and Phylogenetic Inference in Fulgoroidea. Curr Issues Mol Biol 2021; 43:1391-1418. [PMID: 34698117 PMCID: PMC8929015 DOI: 10.3390/cimb43030099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022] Open
Abstract
The complete mitochondrial genomes (mitogenomes) of two DNA barcode-defined haplotypes of Metcalfa pruinosa and one of Salurnis marginella (Hemiptera: Flatidae) were sequenced and compared to those of other Fulgoroidea species. Furthermore, the mitogenome sequences were used to reconstruct phylogenetic relationships among fulgoroid families. The three mitogenomes, including that of the available species of Flatidae, commonly possessed distinctive structures in the 1702-1836 bp A+T-rich region, such as two repeat regions at each end and a large centered nonrepeat region. All members of the superfamily Fulgoroidea, including the Flatidae, consistently possessed a motiflike sequence (TAGTA) at the ND1 and trnS2 junction. The phylogenetic analyses consistently recovered the familial relationships of (((((Ricaniidae + Issidae) + Flatidae) + Fulgoridae) + Achilidae) + Derbidae) in the amino acid-based analysis, with the placement of Cixiidae and Delphacidae as the earliest-derived lineages of fulgoroid families, whereas the monophyly of Delphacidae was not congruent between tree-constructing algorithms.
Collapse
|
9
|
Ai D, Peng L, Qin D, Zhang Y. Characterization of Three Complete Mitogenomes of Flatidae (Hemiptera: Fulgoroidea) and Compositional Heterogeneity Analysis in the Planthoppers' Mitochondrial Phylogenomics. Int J Mol Sci 2021; 22:ijms22115586. [PMID: 34070437 PMCID: PMC8197536 DOI: 10.3390/ijms22115586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Although sequences of mitogenomes have been widely used for investigating phylogenetic relationship, population genetics, and biogeography in many members of Fulgoroidea, only one complete mitogenome of a member of Flatidae has been sequenced. Here, the complete mitogenomes of Cerynia lineola, Cromna sinensis, and Zecheuna tonkinensis are sequenced. The gene arrangements of the three new mitogenomes are consistent with ancestral insect mitogenomes. The strategy of using mitogenomes in phylogenetics remains in dispute due to the heterogeneity in base composition and the possible variation in evolutionary rates. In this study, we found compositional heterogeneity and variable evolutionary rates among planthopper mitogenomes. Phylogenetic analysis based on site-homogeneous models showed that the families (Delphacidae and Derbidae) with high values of Ka/Ks and A + T content tended to fall together at a basal position on the trees. Using a site-heterogeneous mixture CAT + GTR model implemented in PhyloBayes yielded almost the same topology. Our results recovered the monophyly of Fulgoroidea. In this study, we apply the heterogeneous mixture model to the planthoppers’ phylogenetic analysis for the first time. Our study is based on a large sample and provides a methodological reference for future phylogenetic studies of Fulgoroidea.
Collapse
Affiliation(s)
- Deqiang Ai
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of
Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Lingfei Peng
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian
Ag-riculture and Forestry University, Fuzhou 350002, Fujian, China;
| | - Daozheng Qin
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of
Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China;
- Correspondence: (D.Q.); (Y.Z.)
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of
Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China;
- Correspondence: (D.Q.); (Y.Z.)
| |
Collapse
|
10
|
Breton S, Ghiselli F, Milani L. Mitochondrial Short-Term Plastic Responses and Long-Term Evolutionary Dynamics in Animal Species. Genome Biol Evol 2021; 13:6248094. [PMID: 33892508 PMCID: PMC8290114 DOI: 10.1093/gbe/evab084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
How do species respond or adapt to environmental changes? The answer to this depends partly on mitochondrial epigenetics and genetics, new players in promoting adaptation to both short- and long-term environmental changes. In this review, we explore how mitochondrial epigenetics and genetics mechanisms, such as mtDNA methylation, mtDNA-derived noncoding RNAs, micropeptides, mtDNA mutations, and adaptations, can contribute to animal plasticity and adaptation. We also briefly discuss the challenges in assessing mtDNA adaptive evolution. In sum, this review covers new advances in the field of mitochondrial genomics, many of which are still controversial, and discusses processes still somewhat obscure, and some of which are still quite speculative and require further robust experimentation.
Collapse
Affiliation(s)
- Sophie Breton
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|