1
|
Pereira DS, Phillips AJL. Exploring the Diversity and Ecological Dynamics of Palm Leaf Spotting Fungi-A Case Study on Ornamental Palms in Portugal. J Fungi (Basel) 2025; 11:43. [PMID: 39852462 PMCID: PMC11766901 DOI: 10.3390/jof11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
Palm trees (Arecaceae) are among the most popular ornamental plants worldwide. Despite extensive research on the fungi associated with Arecaceae, the diversity and ecological dynamics of fungi affecting ornamental palms remain poorly studied, although they have significant impact on palm health and economic value. Furthermore, while research on palm fungal diversity has traditionally focused on tropical assemblages, ornamental palms in temperate climates offer a unique opportunity to explore the diversity of palm fungi in non-native habitats. The present study conducted a preliminary assessment of the diversity and ecology of potential phytopathogenic fungi associated with foliar lesions on various ornamental palm host species in Portugal, combining morphological examination, PCR-based genomic fingerprinting, and biodiversity data analysis. The examination of 134 foliar lesions sampled from 100 palm trees resulted in a collection of 2064 palm leaf spotting fungi (PLSF), representing a diverse fungal assemblage of 320 molecular operational taxonomic units (MOTUs) across 97 genera. The overall fungal community composition revealed a distinct assemblage dominated by Neosetophoma, Alternaria, Phoma, and Cladosporium, with a profusion of infrequent and rare taxa consistent with a logseries distribution. Significantly positive co-occurrence (CO) patterns among prevalent and uncommon taxa suggest potential synergistic interactions enhancing fungal colonisation, persistence, and pathogenicity. The taxonomic structures of the PLSF contrasted markedly from tropical palm fungi, especially in the prevalence of pleosporalean coelomycetes of the Didymellaceae and Phaeosphaeriaceae, including recently introduced or not previously documented genera on Arecaceae. This novel assemblage suggests that climatic constraints shape the structure of palm fungal communities, resulting in distinctive temperate and tropical assemblages. In addition, the fungal assemblages varied significantly across palm host species, with temperate-native palms hosting more diverse, coelomycete-enriched communities. The present findings highlight foliar lesions as hyperdiverse microhabitats harbouring fungal communities with intricate interactions and a complex interplay of climatic, host, and ecological factors. With climate change altering environmental conditions, the identification of fungi thriving in or inhabiting these microhabitats becomes crucial for predicting shifts in pathogen dynamics and mitigating future fungal disease outbreaks. Understanding these complex ecological dynamics is essential for identifying potential phytopathogenic threats and developing effective management strategies for the health and sustainability of ornamental plants.
Collapse
Affiliation(s)
- Diana S. Pereira
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alan J. L. Phillips
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
2
|
Wang X, Zhang Y, Li J, Ding Y, Ma X, Zhang P, Liu H, Wei J, Bao Y. Diversity and Functional Insights into Endophytic Fungi in Halophytes from West Ordos Desert Ecosystems. J Fungi (Basel) 2025; 11:30. [PMID: 39852449 PMCID: PMC11766765 DOI: 10.3390/jof11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Arid desert regions are among the harshest ecological environments on Earth. Halophytes, with their unique physiological characteristics and adaptability, have become the dominant vegetation in these areas. Currently, research on halophytes in this region is relatively limited, particularly concerning studies related to their root endophytic fungi, which have been rarely reported on. Therefore, investigating the diversity and composition of endophytic fungi in halophytes is crucial for maintaining ecological balance in such an arid environment. This study focuses on eight representative angiosperm halophytes from the West Ordos Desert in China (including Nitraria tangutorum, Salsola passerina, Suaeda glauca, Reaumuria trigyna, Reaumuria kaschgarica, Limonium aureum, Apocynum venetum, and Tripolium vulgare), utilizing Illumina MiSeq high-throughput sequencing technology combined with soil physicochemical factor data to analyze the diversity, composition, and ecological functions of their root-associated fungal communities. Ascomycota dominated the fungal composition in most halophytes, particularly among the recretohalophytes, where it accounted for an average of 88.45%, while Basidiomycota was predominant in Suaeda glauca. A Circos analysis of the top 10 most abundant genera revealed Fusarium, Dipodascus, Curvularia, Penicillium, and other dominant genera. Co-occurrence network analysis showed significant differences in fungal networks across halophyte types, with the most complex network observed in excreting halophytes, characterized by the highest number of nodes and connections, indicating tighter fungal symbiotic relationships. In contrast, fungal networks in pseudohalophytes were relatively simple, reflecting lower community cohesiveness. Redundancy analysis (RDA) and Mantel tests demonstrated that soil factors such as organic matter, available sulfur, and urease significantly influenced fungal diversity, richness, and evenness, suggesting that soil physicochemical properties play a critical role in regulating fungal-plant symbiosis. Functional predictions indicated that endophytic fungi play important roles in metabolic pathways such as nucleotide biosynthesis, carbohydrate degradation, and lipid metabolism, which may enhance plant survival in saline-alkaline and arid environments. Furthermore, the high abundance of plant pathogens and saprotrophs in some fungal communities suggests their potential roles in plant defense and organic matter decomposition. The results of this study provide a reference for advancing the development and utilization of halophyte endophytic fungal resources, with applications in desert ecosystem restoration and halophyte cultivation.
Collapse
Affiliation(s)
- Xingzhe Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Yan Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Jingpeng Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Yiteng Ding
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Xiaodan Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Peng Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Jie Wei
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| |
Collapse
|
3
|
Wang W, Shi H, Liu X, Mao L, Zhang L, Zhu L, Wu C, Wu W. Enhanced remediation of acetochlor-contaminated soils using phosphate-modified biochar: Impacts on environmental fate, microbial communities, and plant health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177359. [PMID: 39500462 DOI: 10.1016/j.scitotenv.2024.177359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/12/2024]
Abstract
Given that acetochlor (ACT) persists in soil for extended periods, disrupting microbial community structure and causing phytotoxicity to sensitive crops, this study investigated the potential of phosphate-modified biochar (PBC-800) to remediate ACT-contaminated soil. Incorporating 0.5 % PBC-800 into fluvo-aquic, red, and black soils increased their adsorption capacities by 80.4 mg g-1, 76.6 mg g-1, and 76.0 mg g-1, respectively. Even after six months of aging, the Kf values remained 1.6 to 5.1 times higher than in untreated soils. PBC-800 also accelerated ACT degradation across all three soil types, reducing residual ACT levels by 34.3 % to 76.4 % after 60 days, and shortening the degradation half-life by 5 to 7 days. High-throughput sequencing revealed that ACT reduced soil microbial diversity and disrupted community structure, while 0.5 % PBC-800 amendments promoted the growth of degradation-capable genera such as Rhodococcus, Lysobacter, and Gemmatimonas, enhancing microbial ecosystem stability. Furthermore, the amendment of soil with 0.5 % PBC-800 reduced ACT residue concentrations in maize and soybeans by 76.5 % to 82.9 %, and restored plant biomass, leaf chlorophyll content, and mesophyll cell ultrastructure to levels comparable to the control. Therefore, amending ACT-contaminated soil with PBC-800 mitigates ecological and environmental risks, boosts microbial activity, and safeguards plant health.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haojie Shi
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenzhu Wu
- Nanjing Institute of Environmental Sciences, MEE, Nanjing 211299, China.
| |
Collapse
|
4
|
Noguchi M, Toju H. Mycorrhizal and endophytic fungi structure forest below-ground symbiosis through contrasting but interdependent assembly processes. ENVIRONMENTAL MICROBIOME 2024; 19:84. [PMID: 39488693 PMCID: PMC11531145 DOI: 10.1186/s40793-024-00628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Interactions between plants and diverse root-associated fungi are essential drivers of forest ecosystem dynamics. The symbiosis is potentially dependent on multiple ecological factors/processes such as host/symbiont specificity, background soil microbiome, inter-root dispersal of symbionts, and fungus-fungus interactions within roots. Nonetheless, it has remained a major challenge to reveal the mechanisms by which those multiple factors/processes determine the assembly of root-associated fungal communities. Based on the framework of joint species distribution modeling, we examined 1,615 root-tips samples collected in a cool-temperate forest to reveal how root-associated fungal community structure was collectively formed through filtering by host plants, associations with background soil fungi, spatial autocorrelation, and symbiont-symbiont interactions. In addition, to detect fungi that drive the assembly of the entire root-associated fungal community, we inferred networks of direct fungus-fungus associations by a statistical modeling that could account for implicit environmental effects. RESULTS The fine-scale community structure of root-associated fungi were best explained by the statistical model including the four ecological factors/processes. Meanwhile, among partial models, those including background soil fungal community structure and within-root fungus-fungus interactions showed the highest performance. When fine-root distributions were examined, ectomycorrhizal fungi tended to show stronger associations with background soil community structure and spatially autocorrelated patterns than other fungal guilds. In contrast, the distributions of root-endophytic fungi were inferred to depend greatly on fungus-fungus interactions. An additional statistical analysis further suggested that some endophytic fungi, such as Phialocephala and Leptodontidium, were placed at the core positions within the web of direct associations with other root-associated fungi. CONCLUSION By applying emerging statistical frameworks to intensive datasets of root-associated fungal communities, we demonstrated background soil fungal community structure and fungus-fungus associations within roots, as well as filtering by host plants and spatial autocorrelation in ecological processes, could collectively drive the assembly of root-associated fungi. We also found that basic assembly rules could differ between mycorrhizal and endophytic fungi, both of which were major components of forest ecosystems. Consequently, knowledge of how multiple ecological factors/processes differentially drive the assembly of multiple fungal guilds is indispensable for comprehensively understanding the mechanisms by which terrestrial ecosystem dynamics are organized by plant-fungal symbiosis.
Collapse
Affiliation(s)
- Mikihito Noguchi
- Center for Ecological Research, Kyoto University, Otsu, 520-2133, Shiga, Japan.
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Hirokazu Toju
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Chávez-González JD, Flores-Núñez VM, Merino-Espinoza IU, Partida-Martínez LP. Desert plants, arbuscular mycorrhizal fungi and associated bacteria: Exploring the diversity and role of symbiosis under drought. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13300. [PMID: 38979873 PMCID: PMC11231939 DOI: 10.1111/1758-2229.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/08/2024] [Indexed: 07/10/2024]
Abstract
Desert plants, such as Agave tequilana, A. salmiana and Myrtillocactus geometrizans, can survive harsh environmental conditions partly due to their symbiotic relationships with microorganisms, including arbuscular mycorrhizal fungi (AMF). Interestingly, some of these fungi also harbour endosymbiotic bacteria. Our research focused on investigating the diversity of these AMFs and their associated bacteria in these plants growing in arid soil. We found that agaves have a threefold higher AMF colonization than M. geometrizans. Metabarcoding techniques revealed that the composition of AMF communities was primarily influenced by the plant host, while the bacterial communities were more affected by the specific plant compartment or niche they inhabited. We identified both known and novel endofungal bacterial taxa, including Burkholderiales, and confirmed their presence within AMF spores using multiphoton microscopy. Our study also explored the effects of drought on the symbiosis between A. tequilana and AMF. We discovered that the severity of drought conditions could modulate the strength of this symbiosis and its outcomes for the plant holobiont. Severe drought conditions prevented the formation of this symbiosis, while moderate drought conditions promoted it, thereby conferring drought tolerance in A. tequilana. This research sheds light on the diversity of AMF and associated bacteria in Crassulacean Acid Metabolism (CAM) plants and underscores the crucial role of drought as a factor modulating the symbiosis between A. tequilana and AMF. Further research is needed to understand the role of endofungal bacteria in this response.
Collapse
Affiliation(s)
- Jose Daniel Chávez-González
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Víctor M Flores-Núñez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Irving U Merino-Espinoza
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Laila Pamela Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| |
Collapse
|
6
|
Burg S, Ovaskainen O, Furneaux B, Ivanova N, Abrahamyan A, Niittynen P, Somervuo P, Abrego N. Experimental evidence that root-associated fungi improve plant growth at high altitude. Mol Ecol 2024; 33:e17376. [PMID: 38703052 DOI: 10.1111/mec.17376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
Unravelling how species communities change along environmental gradients requires a dual understanding: the direct responses of the species to their abiotic surroundings and the indirect variation of these responses through biotic interactions. Here, we focus on the interactive relationships between plants and their symbiotic root-associated fungi (RAF) along stressful abiotic gradients. We investigate whether variations in RAF community composition along altitudinal gradients influence plant growth at high altitudes, where both plants and fungi face harsher abiotic conditions. We established a translocation experiment between pairs of Bistorta vivipara populations across altitudinal gradients. To separate the impact of shifting fungal communities from the overall influence of changing abiotic conditions, we used a root barrier to prevent new colonization by RAF following translocation. To characterize the RAF communities, we applied DNA barcoding to the root samples. Through the utilization of joint species distribution modelling, we assessed the relationship between changes in plant functional traits resulting from experimental treatments and the corresponding changes in the RAF communities. Our findings indicate that RAF communities influence plant responses to stressful abiotic conditions. Plants translocated from low to high altitudes grew more when they were able to associate with the resident high-altitude RAF compared to those plants that were not allowed to associate with the resident RAF. We conclude that interactions with RAF impact how plants respond to stressful abiotic conditions. Our results provide experimental support that interactions with RAF improve plant stress tolerance to altitudinal stressors such as colder temperatures and less nutrient availability.
Collapse
Affiliation(s)
- Skylar Burg
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Otso Ovaskainen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Brendan Furneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Natalia Ivanova
- Canadian Centre for DNA Barcoding, Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
- Nature Metrics North America Ltd., Guelph, Ontario, Canada
| | - Arusyak Abrahamyan
- Canadian Centre for DNA Barcoding, Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
- ImmunoCeutica Inc., Guelph, Ontario, Canada
| | - Pekka Niittynen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Panu Somervuo
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nerea Abrego
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Li L, Hu Z, Tan G, Fan J, Chen Y, Xiao Y, Wu S, Zhi Q, Liu T, Yin H, Tang Q. Enhancing plant growth in biofertilizer-amended soil through nitrogen-transforming microbial communities. FRONTIERS IN PLANT SCIENCE 2023; 14:1259853. [PMID: 38034579 PMCID: PMC10683058 DOI: 10.3389/fpls.2023.1259853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Biofertilizers have immense potential for enhancing agricultural productivity. However, there is still a need for clarification regarding the specific mechanisms through which these biofertilizers improve soil properties and stimulate plant growth. In this research, a bacterial agent was utilized to enhance plant growth and investigate the microbial modulation mechanism of soil nutrient turnover using metagenomic technology. The results demonstrated a significant increase in soil fast-acting nitrogen (by 46.7%) and fast-acting phosphorus (by 88.6%) upon application of the bacterial agent. This finding suggests that stimulated soil microbes contribute to enhanced nutrient transformation, ultimately leading to improved plant growth. Furthermore, the application of the bacterial agent had a notable impact on the accumulation of key genes involved in nitrogen cycling. Notably, it enhanced nitrification genes (amo, hao, and nar), while denitrification genes (nir and nor) showed a slight decrease. This indicates that ammonium oxidation may be the primary pathway for increasing fast-acting nitrogen in soils. Additionally, the bacterial agent influenced the composition and functional structure of the soil microbial community. Moreover, the metagenome-assembled genomes (MAGs) obtained from the soil microbial communities exhibited complementary metabolic processes, suggesting mutual nutrient exchange. These MAGs contained widely distributed and highly abundant genes encoding plant growth promotion (PGP) traits. These findings emphasize how soil microbial communities can enhance vegetation growth by increasing nutrient availability and regulating plant hormone production. This effect can be further enhanced by introducing inoculated microbial agents. In conclusion, this study provides novel insights into the mechanisms underlying the beneficial effects of biofertilizers on soil properties and plant growth. The significant increase in nutrient availability, modulation of key genes involved in nitrogen cycling, and the presence of MAGs encoding PGP traits highlight the potential of biofertilizers to improve agricultural practices. These findings have important implications for enhancing agricultural sustainability and productivity, with positive societal and environmental impacts.
Collapse
Affiliation(s)
- Liangzhi Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhengrong Hu
- Hunan Tobacco Research Institute, Changsha, China
| | - Ge Tan
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Jianqiang Fan
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Yiqiang Chen
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Yansong Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, China
| | - Shaolong Wu
- Hunan Tobacco Research Institute, Changsha, China
| | - Qiqi Zhi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Tianbo Liu
- Hunan Tobacco Research Institute, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Qianjun Tang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
8
|
Zhang D, Yu H, Yang Y, Liu F, Li M, Huang J, Yu Y, Wang C, Jiang F, He Z, Yan Q. Ecological interactions and the underlying mechanism of anammox and denitrification across the anammox enrichment with eutrophic lake sediments. MICROBIOME 2023; 11:82. [PMID: 37081531 PMCID: PMC10116762 DOI: 10.1186/s40168-023-01532-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Increasing attention has recently been devoted to the anaerobic ammonium oxidation (anammox) in eutrophic lakes due to its potential key functions in nitrogen (N) removal for eutrophication control. However, successful enrichment of anammox bacteria from lake sediments is still challenging, partly due to the ecological interactions between anammox and denitrifying bacteria across such enrichment with lake sediments remain unclear. RESULTS This study thus designed to fill such knowledge gaps using bioreactors to enrich anammox bacteria with eutrophic lake sediments for more than 365 days. We continuously monitored the influent and effluent water, measured the anammox and denitrification efficiencies, quantified the anammox and denitrifying bacteria, as well as the related N cycling genes. We found that the maximum removal efficiencies of NH4+ and NO2- reached up to 85.92% and 95.34%, respectively. Accordingly, the diversity of anammox and denitrifying bacteria decreased significantly across the enrichment, and the relative dominant anammox (e.g., Candidatus Jettenia) and denitrifying bacteria (e.g., Thauera, Afipia) shifted considerably. The ecological cooperation between anammox and denitrifying bacteria tended to increase the microbial community stability, indicating a potential coupling between anammox and denitrifying bacteria. Moreover, the nirS-type denitrifiers showed stronger coupling with anammox bacteria than that of nirK-type denitrifiers during the enrichment. Functional potentials as depicted by metagenome sequencing confirmed the ecological interactions between anammox and denitrification. Metagenome-assembled genomes-based ecological model indicated that the most dominant denitrifiers could provide various materials such as amino acid, cofactors, and vitamin for anammox bacteria. Cross-feeding in anammox and denitrifying bacteria highlights the importance of microbial interactions for increasing the anammox N removal in eutrophic lakes. CONCLUSIONS This study greatly expands our understanding of cooperation mechanisms among anammox and denitrifying bacteria during the anammox enrichment with eutrophic lake sediments, which sheds new insights into N removal for controlling lake eutrophication. Video Abstract.
Collapse
Affiliation(s)
- Dandan Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yuchun Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Fei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Mingyue Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Jie Huang
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Yuhe Yu
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Feng Jiang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|
9
|
Changes of Arbuscular Mycorrhizal Fungal Community and Glomalin in the Rhizosphere along the Distribution Gradient of Zonal Stipa Populations across the Arid and Semiarid Steppe. Microbiol Spectr 2022; 10:e0148922. [PMID: 36214678 PMCID: PMC9602637 DOI: 10.1128/spectrum.01489-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) have been reported to have a wide distribution in terrestrial ecosystems and to play a vital role in ecosystem functioning and symbiosis with Stipa grasses. However, exactly how AMF communities in the rhizosphere change and are distributed along different Stipa population with substituted distribution and their relationships remain unclear. Here, the changes and distribution of the rhizosphere AMF communities and their associations between hosts and the dynamic differences in the glomalin-related soil protein (GRSP) in the rhizosphere soil of seven Stipa species with spatial substitution distribution characteristics in arid and semiarid grasslands were investigated. Along with the substituted distribution of the Stipa populations, the community structures, taxa, species numbers, and alpha diversity index values of AMF in the rhizosphere changed. Some AMF taxa appeared only in certain Stipa species, but there was no obvious AMF taxon turnover. When the Stipa baicalensis population was replaced by the Stipa gobica population, the GRSP tended to decline, whereas the carbon contribution of the GRSP tended to increase. Stipa grandis and Stipa krylovii had a great degree of network modularity of the rhizosphere AMF community and exhibited a simple and unstable network structure, while the networks of Stipa breviflora were complex, compact, and highly stable. Furthermore, with the succession of zonal populations, the plant species, vegetation coverage, and climate gradient facilitated the differentiation of AMF community structures and quantities in the rhizospheres of different Stipa species. These findings present novel insights into ecosystem functioning and dynamics correlated with changing environments. IMPORTANCE This study fills a gap in our understanding of the soil arbuscular mycorrhizal fungal community distribution, community composition changes, and diversity of Stipa species along different Stipa population substitution distributions and of their adaptive relationships; furthermore, the differences in the glomalin-related soil protein (GRSP) contents in the rhizospheres of different Stipa species and GRSP's contribution to the grassland organic carbon pool were investigated. These findings provide a theoretical basis for the protection and utilization of regional biodiversity resources and sustainable ecosystem development.
Collapse
|
10
|
Rasmussen PU, Abrego N, Roslin T, Öpik M, Sepp S, Blanchet FG, Huotari T, Hugerth LW, Tack AJM. Elevation and plant species identity jointly shape a diverse arbuscular mycorrhizal fungal community in the High Arctic. THE NEW PHYTOLOGIST 2022; 236:671-683. [PMID: 35751540 PMCID: PMC9796444 DOI: 10.1111/nph.18342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Knowledge about the distribution and local diversity patterns of arbuscular mycorrhizal (AM) fungi are limited for extreme environments such as the Arctic, where most studies have focused on spore morphology or root colonization. We here studied the joint effects of plant species identity and elevation on AM fungal distribution and diversity. We sampled roots of 19 plant species in 18 locations in Northeast Greenland, using next generation sequencing to identify AM fungi. We studied the joint effect of plant species, elevation and selected abiotic conditions on AM fungal presence, richness and composition. We identified 29 AM fungal virtual taxa (VT), of which six represent putatively new VT. Arbuscular mycorrhizal fungal presence increased with elevation, and as vegetation cover and the active soil layer decreased. Arbuscular mycorrhizal fungal composition was shaped jointly by elevation and plant species identity. We demonstrate that the Arctic harbours a relatively species-rich and nonrandomly distributed diversity of AM fungi. Given the high diversity and general lack of knowledge exposed herein, we encourage further research into the diversity, drivers and functional role of AM fungi in the Arctic. Such insight is urgently needed for an area with some of the globally highest rates of climate change.
Collapse
Affiliation(s)
- Pil U. Rasmussen
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
- The National Research Centre for the Working Environment105 Lersø ParkalléDK‐2100CopenhagenDenmark
| | - Nerea Abrego
- Department of Agricultural SciencesUniversity of HelsinkiPO Box 27, (Latokartanonkaari 5)HelsinkiFI‐00014Finland
| | - Tomas Roslin
- Department of Agricultural SciencesUniversity of HelsinkiPO Box 27, (Latokartanonkaari 5)HelsinkiFI‐00014Finland
- Department of EcologySwedish University of Agricultural SciencesBox 7044UppsalaSE‐750 07Sweden
| | - Maarja Öpik
- Department of BotanyUniversity of Tartu40 Lai StreetTartu51005Estonia
| | - Siim‐Kaarel Sepp
- Department of BotanyUniversity of Tartu40 Lai StreetTartu51005Estonia
| | - F. Guillaume Blanchet
- Département de Biologie, Faculté des SciencesUniversité de Sherbrooke2500 Boulevard UniversitéSherbrookeQCJ1K 2R1Canada
- Département de Mathématiques, Faculté des SciencesUniversité de Sherbrooke2500 Boulevard UniversitéSherbrookeQCJ1K 2R1Canada
- Département des Sciences de la Santé Communautaire, Faculté de Médecine et des Sciences de la SantéUniversité de Sherbrooke3001 12 Avenue NordSherbrookeQCJ1H 5N4Canada
| | - Tea Huotari
- Department of Agricultural SciencesUniversity of HelsinkiPO Box 27, (Latokartanonkaari 5)HelsinkiFI‐00014Finland
| | - Luisa W. Hugerth
- Department of Molecular, Tumor and Cell Biology, Science for Life Laboratory, Center for Translational Microbiome ResearchKarolinska InstitutetSE‐171 65SolnaSweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
| |
Collapse
|
11
|
Lazar A, Mushinski RM, Bending GD. Landscape scale ecology of Tetracladium spp. fungal root endophytes. ENVIRONMENTAL MICROBIOME 2022; 17:40. [PMID: 35879740 PMCID: PMC9310467 DOI: 10.1186/s40793-022-00431-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The genus Tetracladium De Wild. (Ascomycota) has been traditionally regarded as a group of Ingoldian fungi or aquatic hyphomycetes-a polyphyletic group of phylogenetically diverse fungi which grow on decaying leaves and plant litter in streams. Recent sequencing evidence has shown that Tetracladium spp. may also exist as root endophytes in terrestrial environments, and furthermore may have beneficial effects on the health and growth of their host. However, the diversity of Tetracladium spp. communities in terrestrial systems and the factors which shape their distribution are largely unknown. RESULTS Using a fungal community internal transcribed spacer amplicon dataset from 37 UK Brassica napus fields we found that soils contained diverse Tetracladium spp., most of which represent previously uncharacterised clades. The two most abundant operational taxonomic units (OTUs), related to previously described aquatic T. furcatum and T. maxilliforme, were enriched in roots relative to bulk and rhizosphere soil. For both taxa, relative abundance in roots, but not rhizosphere or bulk soil was correlated with B. napus yield. The relative abundance of T. furcatum and T. maxilliforme OTUs across compartments showed very similar responses with respect to agricultural management practices and soil characteristics. The factors shaping the relative abundance of OTUs homologous to T. furcatum and T. maxilliforme OTUs in roots were assessed using linear regression and structural equation modelling. Relative abundance of T. maxilliforme and T. furcatum in roots increased with pH, concentrations of phosphorus, and increased rotation frequency of oilseed rape. It decreased with increased soil water content, concentrations of extractable phosphorus, chromium, and iron. CONCLUSIONS The genus Tetracladium as a root colonising endophyte is a diverse and widely distributed part of the oilseed rape microbiome that positively correlates to crop yield. The main drivers of its community composition are crop management practices and soil nutrients.
Collapse
Affiliation(s)
- Anna Lazar
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Ryan M Mushinski
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Gary D Bending
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
12
|
Zhang D, Li M, Yang Y, Yu H, Xiao F, Mao C, Huang J, Yu Y, Wang Y, Wu B, Wang C, Shu L, He Z, Yan Q. Nitrite and nitrate reduction drive sediment microbial nitrogen cycling in a eutrophic lake. WATER RESEARCH 2022; 220:118637. [PMID: 35617789 DOI: 10.1016/j.watres.2022.118637] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 05/05/2023]
Abstract
The anaerobic microbial nitrogen (N) removal in lake sediments is one of the most important processes driving the nitrogen cycling in lake ecosystems. However, the N removal and its underlying mechanisms regulated by denitrifying and anaerobic ammonia oxidation (anammox) bacteria in lake sediments remain poorly understood. With the field sediments collected from different areas of Lake Donghu (a shallow eutrophic lake), we examined the denitrifying and anammox bacterial communities by sequencing the nirS/K and hzsB genes, respectively. The results indicated that denitrifiers in sediments were affiliated to nine clusters, which are involved in both heterotrophic and autotrophic denitrification. However, anammox bacteria were only dominated by Candidatus Brocadia. We found that NO3- and NO2- concentrations, as well as Nar enzyme activity were the key factors affecting denitrifying and anammox communities in this eutrophic lake. The enrichment experiments in bioreactors confirmed the divergence of denitrification and anammox rates with an additional complement of NO2-, especially under a condition low nitrate reductase activity. The coupled denitrification and anammox may play significant roles in N removal, and the availability of electronic acceptors (i.e., NO2- and NO3-) strongly influenced the N loss in lake sediments. Further path analysis indicated that NO2-, NO3- and some N-related enzymes were the key factors affecting microbial N removal in lake sediments. This study advances our understanding of the mechanisms driving the of denitrification and anammox in lake sediments, which also provides new insights into coupled denitrification-anammox N removal in eutrophic lake ecosystems.
Collapse
Affiliation(s)
- Dandan Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyue Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuchun Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Chengzhi Mao
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Huang
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuhe Yu
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunfeng Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Institute of Evolution & Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Wang J, Hu A, Meng F, Zhao W, Yang Y, Soininen J, Shen J, Zhou J. Embracing mountain microbiome and ecosystem functions under global change. THE NEW PHYTOLOGIST 2022; 234:1987-2002. [PMID: 35211983 DOI: 10.1111/nph.18051] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Mountains are pivotal to maintaining habitat heterogeneity, global biodiversity, ecosystem functions and services to humans. They have provided classic model natural systems for plant and animal diversity gradient studies for over 250 years. In the recent decade, the exploration of microorganisms on mountainsides has also achieved substantial progress. Here, we review the literature on microbial diversity across taxonomic groups and ecosystem types on global mountains. Microbial community shows climatic zonation with orderly successions along elevational gradients, which are largely consistent with traditional climatic hypotheses. However, elevational patterns are complicated for species richness without general rules in terrestrial and aquatic environments and are driven mainly by deterministic processes caused by abiotic and biotic factors. We see a major shift from documenting patterns of biodiversity towards identifying the mechanisms that shape microbial biogeographical patterns and how these patterns vary under global change by the inclusion of novel ecological theories, frameworks and approaches. We thus propose key questions and cutting-edge perspectives to advance future research in mountain microbial biogeography by focusing on biodiversity hypotheses, incorporating meta-ecosystem framework and novel key drivers, adapting recently developed approaches in trait-based ecology and manipulative field experiments, disentangling biodiversity-ecosystem functioning relationships and finally modelling and predicting their global change responses.
Collapse
Affiliation(s)
- Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing, 210008, China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Fanfan Meng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqian Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Ji Shen
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
14
|
Fournier P, Pellan L, Barroso-Bergadà D, Bohan DA, Candresse T, Delmotte F, Dufour MC, Lauvergeat V, Le Marrec C, Marais A, Martins G, Masneuf-Pomarède I, Rey P, Sherman D, This P, Frioux C, Labarthe S, Vacher C. The functional microbiome of grapevine throughout plant evolutionary history and lifetime. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Slabbert E, Knight T, Wubet T, Kautzner A, Baessler C, Auge H, Roscher C, Schweiger O. Abiotic factors are more important than land management and biotic interactions in shaping vascular plant and soil fungal communities. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2021.e01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Zhang C, Jiao S, Shu D, Wei G. Inter-phylum negative interactions affect soil bacterial community dynamics and functions during soybean development under long-term nitrogen fertilization. STRESS BIOLOGY 2021; 1:15. [PMID: 37676329 PMCID: PMC10441860 DOI: 10.1007/s44154-021-00015-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/14/2021] [Indexed: 09/08/2023]
Abstract
Understanding interspecies interactions is essential to predict the response of microbial communities to exogenous perturbation. Herein, rhizospheric and bulk soils were collected from five developmental stages of soybean, which grew in soils receiving 16-year nitrogen inputs. Bacterial communities and functional profiles were examined using high-throughput sequencing and quantitative PCR, respectively. The objective of this study was to identify the key bacterial interactions that influenced community dynamics and functions. We found that the stages of soybean development outcompeted nitrogen fertilization management in shaping bacterial community structure, while fertilization treatments significantly shaped the abundance distribution of nitrogen functional genes. Temporal variations in bacterial abundances increased in bulk soils, especially at the stage of soybean branching, which helps to infer underlying negative interspecies interactions. Members of Cyanobacteria and Actinobacteria actively engaged in inter-phylum negative interactions in bulk soils and soybean rhizosphere, respectively. Furthermore, the negative interactions between nitrogen-fixing functional groups and the reduction of nifH gene abundance were coupled during soybean development, which may help to explain the linkages between population dynamics and functions. Overall, these findings highlight the importance of inter-phylum negative interactions in shaping the correlation patterns of bacterial communities and in determining soil functional potential.
Collapse
Affiliation(s)
- Chunfang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Duntao Shu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
17
|
Faticov M, Abdelfattah A, Roslin T, Vacher C, Hambäck P, Blanchet FG, Lindahl BD, Tack AJM. Climate warming dominates over plant genotype in shaping the seasonal trajectory of foliar fungal communities on oak. THE NEW PHYTOLOGIST 2021; 231:1770-1783. [PMID: 33960441 DOI: 10.1111/nph.17434] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/15/2021] [Indexed: 05/13/2023]
Abstract
Leaves interact with a wealth of microorganisms. Among these, fungi are highly diverse and are known to contribute to plant health, leaf senescence and early decomposition. However, patterns and drivers of the seasonal dynamics of foliar fungal communities are poorly understood. We used a multifactorial experiment to investigate the influence of warming and tree genotype on the foliar fungal community on the pedunculate oak Quercus robur across one growing season. Fungal species richness increased, evenness tended to decrease, and community composition strongly shifted during the growing season. Yeasts increased in relative abundance as the season progressed, while putative fungal pathogens decreased. Warming decreased species richness, reduced evenness and changed community composition, especially at the end of the growing season. Warming also negatively affected putative fungal pathogens. We only detected a minor imprint of tree genotype and warming × genotype interactions on species richness and community composition. Overall, our findings demonstrate that warming plays a larger role than plant genotype in shaping the seasonal dynamics of the foliar fungal community on oak. These warming-induced shifts in the foliar fungal community may have a pronounced impact on plant health, plant-fungal interactions and ecosystem functions.
Collapse
Affiliation(s)
- Maria Faticov
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, A-8010, Austria
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, Uppsala, SE-756 51, Sweden
| | | | - Peter Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - F Guillaume Blanchet
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K 2R1, Canada
- Département de Mathématique, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K 2R1, Canada
- Département des Sciences de la Santé Communautaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, PO Box 7014, Uppsala, SE-750 07, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| |
Collapse
|